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Human papillomaviruses (HPVs) have been reported to infect epithelial trophoblastic 

cells of the placenta, induce cell death and even cause placental malfunction associated 

with spontaneous preterm delivery. To date, no study has been conducted to determine 

the role of HIV on HPV genotype distribution and pathogenesis in the placental 

compartment. This is despite the evidence that the human immunodeficiency virus (HIV) 

can decrease the cellular immune response and increase the incidence of malignant 

cancers in HPV patients. Therefore, in this study, we analyzed 200 genomic DNA 

(gDNA) samples extracted from paraffin embedded placental tissues of HIV positive and 

HIV negative Zambian women. The gDNA was PCR amplified using GP5+/GP6+ and 

CPI/CPII primers targeted to the L1 and E1regions of the HPV genome, respectively. We 

found the overall prevalence of HPV to be 85.0%. The prevalence of HPV in the HIV+ 

tissues was 84(80.8%), while that of the HIV- tissues was 86(89.6%). This difference in 

HPV prevalence between the HIV+ and HIV- placental tissues was not significant 

(p>0.05; p=0.112). Direct sequencing of the PCR products revealed 3 HPV genotypes 

namely: HPV6, 16 and 90.We observed a significant difference (p<0.05; p=0.0241) in the 

high risk (HR) HPV16 incidence between the HIV+ and HIV- tissue with an odds ratio of 

2.1. Because p16 is a surrogate marker for HR-HPV infection, we analyzed the placental 

tissue sections by p16 immunohistochemistry (IHC). The relative p16 signal per tissue 

area was significantly different (p<0.05; p=0.0142) between the HIV+/HPV16+ and 



HIV-/HPV16+ groups. To confirm our L1 PCR findings, we also performed HPV16 L1 

IHC and found that the relative L1signal per tissue area was significantly different 

(p<0.05; p=0.0132) between the HIV+/HPV16+ and HIV-/HPV16+ groups.  

To the best of our knowledge, we are the first group to study HPV in the context of HIV 

within the placental compartment.  
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Biology of Human Papillomaviruses 

Human papillomaviruses (HPVs) are small, non-enveloped, double-stranded DNA 

(dsDNA) viruses (60) that infect squamous epithelial cells (10) and are responsible for 

benign warts of the hands, genitals and the larynx (25). To date, as many as 120 different 

types of HPVs have been identified, two-thirds of which infect cutaneous membranes and 

one-third of which infects mucosal membranes. Based on their ability to cause malignant 

carcinomas, the HPVs that target the mucosa can be categorized into the: high-risk type 

(HPV type 16, 18, 31) and the low-risk (HPV type 6, 11) type (27). The high-risk HPVs 

cause intraepithelial neoplastic lesions which can progress to cervical cancer, whereas the 

low-rick HPVs are responsible for genital warts (Condyloma acuminata) and express a 

rarity for progression to cancer (10). 

 

 
Figure 1.1 Organization of the HPV genome.  

The HPV16 genome has 8 open reading frames (ORFs). Before productive replication occurs, the 

early proteins namely E1, E2, E6 and E7 are expressed. Expression of the late proteins (L1 and L2, 

including E1
ᴧ
 E4 and E5) occurs in the more terminally differentiated suprabasal cells.  
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The organization of the genes is the same in all human papillomaviruses (Figure 1.1). The 

HPV genome is approximately 8000 base pairs (bps) long and is composed of an early 

region in which non-structural genes (E1, E2, E4 and E5) are encoded; the late region 

which codes for structural genes (L1 and L2) and contains the long control region [LCR] 

(27). Each of the viral proteins plays a specific role; for example, E1 acts as a DNA 

helicase/ATPase (25) and in concert with E2, a transcriptional transactivator,  induce 

viral DNA replication. Regulation of the  cell cycle control and maintenance of the HPV 

viral genome is mediated by the E6 and E7 oncoproteins (19, 27). The E6 protein targets 

the tumor suppressor p53 for proteasomal degradation via the E3 ubiquitin ligase (E6-

AP) complex (54, 73). Additionally, E6 activates the transcription of human telomerase 

reverse transcriptase (hTERT) which is a telomerase catalytic subunit (29, 73). The E7 

oncoprotein binds and inactivates the retinoblastoma (Rb) protein, which acts as a brake 

in the cell cycle. The functional inactivation of Rb therefore prevents Rb from binding to 

the E2F transcription factors and consequently allows cells with inactivated Rb to 

proliferate uncontrollably (15, 37, 73). The biological role of the E4 protein in human 

papillomavirus infections has long been reported to be vague; however, recent studies 

have shown that the E4 N-terminal domain of both HPV16 and 18 enables the E4 protein 

to interact with cytokeratin. The C-terminal domain, however, allows E4 to induce 

cytoplasmic aggregate formation and to disintegrate the network structure of the 

cytokeratin intermediate filament (39). The E5 protein is a transmembrane protein that in 

the bovine papillomavirus (BPv) activates the platelet-derived growth factor β (PDGF-β) 

receptor tyrosine kinase by a mechanism that does not require a ligand. The BPV E5 

protein induces receptor dimerization activation and, trans-phosphorylation and receptor-
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associated recruitment of signaling proteins by forming a stable complex with the 

receptor. It is speculated that the E5 human papillomavirus protein could also affect the 

activity of  PDGF-β and its signaling pathways in a similar fashion (12). The L1 protein 

is the major capsid protein which by itself can spontaneously assemble into virus-like 

particles (VLPs) in many expression systems of eukaryotes (17, 28). The role of the L2 

protein is to bind DNA and mediate encapsidation (17, 82).  

The HPV Life Cycle 

The human papillomavirus life cycle is driven by the differentiation program of the 

infected keratinocytes. Infection of the basal layer cells with HPV initially occurs when 

there are minor abrasions or microtrauma in the epithelia (4). There is evidence to show 

that HPV entry into host cells occurs when virus like particles (VLPs) bind with 

specificity to the alpha 6 (α6) integrin subunit. The formed VLP- α6 complex containing 

either β1 or β4 integrin then serves as a receptor for the binding of the papillomavirus and 

therefore facilitates its entry into epithelial cells (17). The HPV life cycle is characterized 

by a genome maintenance phase, a proliferative phase, a genome amplification phase and 

a virus synthesis phase (14) in that order. The E1 and E2 proteins are thought to be 

expressed first, following infection and uncoating of the virus, in order to induce DNA  

replication (25) and establish a stable episomal viral DNA state (14, 74). The episomal 

viral genomes are tethered to the cellular factors via the E2 protein. This interaction 

results in the correct segregation of HPV genomes into daughter cells (36). During this 

phase, viral DNA replication occurs independently of the cell cycle and the viral copy 

number is amplified between 50 and 100 copies per cell. Furthermore, the expression of 
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high-risk HPV E6 and E7 oncogenes is regulated tightly and their respective transcripts 

cannot be detected in the proliferating epithelial compartment (61). 

 

 

 

 

 

 

 

 

 

 

 

Genome maintenance is followed by a proliferative phase during which the number of 

basal cells harboring extrachromosomal viral DNA increases (14) to several thousands of 

copies per cell. This occurs when infected basal cells egress into the stratum spinosum, 

which is under active differentiation, and is accompanied by increased viral gene 

expression and viral DNA replication? Furthermore, the early genes (E6 and E7) are 

expressed abundantly and this is accompanied by the late gene expression from the late 

Figure 1.2 The human papillomavirus (HPV) life cycle. 

Infection with HPV occurs when there is a micro-wound in the skin which acts as a conduit for the 

virus to the basal cells. The virus replicates episomally in basal cells at low copy number. The HPV 

viral life cycle is controlled by the host cell differentiation program. In the more terminally 

differentiated cells of the upper epithelial layers, productive life cycle occurs and this followed by the 

release of virion particles in the cornified keratinocytes 
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promoter region (8, 61). In infections with the high-risk HPVs, E6 and E7 are expressed 

as oncogenes (14, 57). On the other hand, these proteins play no detectable oncogenic 

role in infections associated with the low-risk HPVs (34). The binding of the high-risk E6 

transforming protein to the p53 tumor suppressor protein in concert with the E6AP 

cellular ubiquitin ligase (34, 55, 70) results in the targeting of p53 for proteasome 

degradation (61).  The binding of the high-risk E7 oncogene to the unphosphorylated 

retinoblastoma tumor suppressor protein (Rb), phosphorylates the latter and releases the 

E2F transcription factor from the E2F-Rb complex. This allows E2F to bind cellular 

DNA and upregulate the expression of cell proliferation genes (69). The complementary 

role of E6 to E7 is thought to thwart apoptosis following the entry of the cell cycle into 

the S-phase (14).  

During the late phase of the HPV lifecycle, the L1 and L2 proteins are assembled into 

icosahedral capsids. Virion assembly is accompanied by the release of mature viruses 

from the stratum corneum (34).  

Biology of HPV and HIV Infection 

Human papillomavirus (HPV) infections have been reported to be prevalent in human 

immunodeficiency virus (HIV) positive individuals (13). There is evidence to show that 

HIV-positive women have a high prevalence of HPV infections in the cervix (23, 42, 63) 

and a study conducted by Ahdieh and colleagues showed that HIV-positive women were 

1.8, 2.1 and 2.7 times more likely to harbor high-, intermediate-, and low-risk HPV 

infections, respectively, than HIV-negative women. The persistence of HPV lesions was 

approximately twice greater in women with a CD4 cell count less than 200 cells/µl 

compared with greater than 500 cells/µl (1). 
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The number of sexual partners is one of the key risk factors for HPV acquisition. This is 

in agreement with findings that have suggested that individuals infected with HIV tend to 

have a higher prevalence of anogenital infections, (9, 42) with a lower CD4+ count being 

one of the most consistent risk factors for anogenital intraepithelial neoplasia. Thus, 

immune suppression due to HIV infection may play an important role in the development 

of high-grade intraepithelial neoplasia and eventual progression to cancer (42). The 

importance of cell-mediated immunity in the control of HPV infection has been 

evidenced by studies that have documented an increased prevalence and progression of 

HPV infections in the immunosuppressed (56, 59). Multiple recurrences of cervical HPV 

infections occur in HIV infected patients (20, 59). HIV may attenuate the systemic 

immune response against HPV via its effect on CD4+ cells and regulation of immune 

responses to different types of antigens. A low number of circulating HPV specific 

memory cells is thought to make the HPV-specific immunity vulnerable to the effects of 

HIV (42).  

Biology of the Placenta  

The placenta is an organ assembled from maternal and fetal cells and is involved in 

nourishing and protecting the fetus (81). Placentation is initially characterized by 

implantation of the blastocyst directly underneath the uterine epithelium followed by 

differentiation into embryonic and extra-embryonic tissues (5).  

In humans, anchorage of the placenta in the uterine implantation site, known as the 

decidua, is mediated by invasive extravillous trophoblasts (EVT) which are involved in 

invading and restructuring maternal arteries to ensure that maternal blood flows into the 

intervillous space, bathing the fetally derived villous trees (81). The tertiary chorionic 
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villi consist of an outer layer of trophoblast covering mesoderm and blood vessels which 

connect proximally to the umbilical arteries and therefore separating maternal and fetal 

blood in a haemochorial pattern. The coordinated development of mature villous trees is 

vital for the growth and health of the fetus during the third-trimester of pregnancy. The 

villous trophoblast is a heterogeneous population of cells that make up the outer layer of 

the villi whose original columns of the cytotrophoblast are dispersed initially into a 

monolayer of cells that reside on a basal lamina. Finally, the proliferating stem cells give 

rise to the syncytiotrophoblast (5, 26) which plays an important role by providing 

resistance during pregnancy to a wide variety of pathogens, including cytomegalovirus 

[CMV] (18, 81), Listeria monocytogens (47, 81) and Toxoplasma gondii (48, 81). The 

blood-bathed surface of the syncytium cannot be breached by gastrointestinal pathogens 

such as Listeria monocytogens because it is void of E-cadherin, a host cell surface 

receptor that interacts with the virulent determinant internalin A protein (30, 81). 

Therefore, the lack of expression of E-cadherin and the absence of intercellular junctions 

on the syncytium is thought to be the main defensive mechanism by which adherence and 

internalization of Listeria monocytogens is thwarted (30, 47, 81). Additionally, invasion 

of host cells by Listeria monocytogens has been linked to abundant fused mitochondria 

(62, 81) which is unusually fragmented in the syncytium (68, 81). Thus, multiple unique 

biological properties make the syncytium an effective barrier to infection and the 

presence of a syncytium in placentas could be an evolutionary protective mechanism 

against blood-borne microbes and the transmigration of maternal leukocytes (11, 81). 
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Evidence of Placental HPV Infection 

The high risk human papillomavirus type 16 has been shown to infect and productively 

replicate in 3A trophoblasts in tissue culture (77) and there is evidence to show that 

multiple HPV types 11, 18 and 31 can also replicate in these cells in vivo (78). Infection 

of embryonic trophoblast cells with HPV16 has been shown to result in spontaneous 

abortions (24). This occurs because HPV infection of extravillous trophoblasts induces 

cell death and may reduce placental invasion into the uterine wall (21).  Prior work by 

Chan and colleagues showed that oocytes were capable of absorbing foreign DNA in the 

absence of sperm and that the zona pellucida had no barrier effect to the absorption of 

small DNA fragments by oocytes (6). This finding was supported by a subsequent study 

in which it was shown that mouse embryos at the blastocyst stage could passively and 

differentially take up exogenous human papillomavirus (HPV) DNA derived from the 

different HPV types 6b/11, 16 and 18 (7).  

In vitro studies on mouse blastocysts after 24-hour exposure to HPV16 DNA have shown 

that DNA fragmentation occurs. This finding suggests that HPV type 16 may initiate 

apoptosis by disrupting DNA in the embryo (3) which might be one of the factors that 

lead to spontaneous preterm delivery (24). 

Transplacental transmission of human papillomaviruses (HPVs) is well documented, with 

type–specific HPV concordance occurring between the mother, the placenta and the 

newborn or the mother and cord blood (50).  A recent study showed that HPV DNA 

could be detected in 5% of neonates born to healthy women and that the HPV DNA could 

be associated with detection of HPV in mothers not only in the third, but also the first or 
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second trimester of pregnancy. There is a lot of controversy surrounding maternal-to-fetal 

transmission of HPV (31). This is because placental contamination with cervical cells 

from an infected birth canal cannot be ruled out. However, placental samples obtained 

from women undergoing trans-abdominal chorionic villous sampling have revealed the 

presence of HPV16 and HPV62 in a couple of placentas (71). Other studies have 

confirmed detecting HPV type 18 in both placental tissue samples and the cervix in 

pregnant women, with placental HPV infection being unrelated to the mode of child 

delivery (66). Further evidence by In Situ Hybridization has shown that HPV DNA can 

be localized in placental trophoblasts (52). 
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Introduction 

Human papillomaviruses are small, non-enveloped double-stranded DNA viruses that 

infect squamous epithelial cells via micro-abrasions which may occur on genitalia the 

(60). To date, approximately 200 different genotypes of HPVs have been identified (2, 

61). Two-thirds of these infect cutaneous membranes and one-third infects mucosal 

membranes. Based on their ability to cause malignant carcinomas, the HPVs that target 

the mucosa can be categorized into the  high-risk (HPV16,18,31) and the low-risk types 

(HPV6,11) (27). Infection with the low-risk HPVs usually result in benign epithelial 

warts, while infection with the High-risk HPVs leads to anogenital malignancies, 

including cervical cancer (58).  

It has been shown previously that HPV16 and 31b  can infect and replicate in 3A 

trophoblasts (33, 76).  

Besides mediating nutrient and gas exchange between the fetus and mother, the fetal 

trophoblast cells are in direct contact with the maternal tissues and play a crucial role in 

placentation (32). Based on this intimate contact and communication between the 

maternal and fetal sides of the placenta, it is thought that infection with HPV16 may 

result in the death of placental trophoblasts, malfunction in the recognition capability of 

endometrial cells or malignancy. These changes may consequently disrupt the integrity of 

the trophoblast layer and cause spontaneous abortions or preterm delivery (32, 80). 

The Human Immunodeficiency Virus (HIV) has been previously reported to decrease the 

cellular mediated immune response (42) and increase the incidence of HPV (56, 59). 

However, there is a dearth of information on the role of HIV on HPV genotype 

distribution and pathogenesis in the placental compartment. To this end, the present study 
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is aimed at understanding the extent to which HIV infection influences HPV infection 

and genotype distribution within the placental compartment. In regard to our main study 

objective, we determined the HPV genotypes harbored by placentas from HIV+ and HIV- 

women. We also determined the p16 and the HPV16 L1 major capsid protein levels in 

placental lesions from HIV-/HPV16+ and HIV+/HPV16+ samples. Finally, we 

determined sites of HPV infection by probing for HPV DNA in placental tissues.  

Understanding the pathogenesis of HPV infection in the context of HIV infection within 

the placental compartment will provide insights into developing methods that can help 

prevent co-transmission of the two viruses from the mother to the child. This will be of 

particular importance in low income Sub-Saharan countries such as Zambia which are 

endemic to both HIV and HPV. 

                                                    

 

 

 

 

 

 

 

 

 

 

 



14 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER III 

PLACENTAL HPV INFECTION IN HIV NEGATIVE AND HIV POSITIVE 

ZAMBIAN WOMEN 

 

 

 

 

 

 

 

 

 

 



15 
 

Study Design 

This was a Retrospective Cohort study in which the influence of HIV on HPV infection 

in the placenta was assessed.   

 

 

 

 

                                                                                                                                                                                                                                                                                                                                               

 

                                                                                                                                      

 

Figure 3.1 Placental HPV Infection Study Design 

A cohort of 200 HIV+ and HIV- Paraffin Embedded Placental Tissues (PEPTs) was used 

in the study. Initially, genomic DNA was extracted and PCR amplified using GP5+/GP6+ 

and CPI/II primers. Beta (β)-actin primers were also used as controls. The expected 

150bp PCR product was cloned into the pGEM-T Easy Vector System I followed by 

direct sequencing.  Genotyping was achieved by aligning the sequences and blasting 

against the NCBI data base. Histological analysis of HPV16 in the tissues was done using 

immunohistochemistry (IHC)  
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Study Participants 

The study participants were previously recruited at the University Teaching Hospital-

Lusaka, Zambia. Informed consent of the patients was sought before the placental tissue 

samples were used in research study. 

 

Sample Collection 

A total of 200 Paraffin Embedded Placental Tissues (PEPTs) were obtained from Dr. 

Charles Wood’s Laboratory Placental Tissue Bank. These tissues were obtained with 

informed consent from HIV negative and HIV positive Zambian women at the time of 

delivery. The samples were fixed in formalin and embedded in paraffin prior to being 

shipped to Nebraska Center for Virology (NCV) at University of Nebraska-Lincoln 

(UNL). To be included in the study, the placental tissue sample of the index patient had 

to be either HIV positive or HIV negative.  

 

Genomic DNA Extraction 

Genomic DNA was extracted from 200 paraffin embedded placental tissue samples using 

the Phenol-Chloroform extraction protocol as described by Pikor et al (43). Each of the 

paraffin embedded placental tissues was micro-sectioned and treated with 800 µl of 

xylene, to dissolve the paraffin wax from the tissues, followed by rehydration using a 

series of 800 µl ethanol (100%, 70% and 50%) washes. Tissue digestion was achieved by 

using 20 µl (20 mg/ml) of proteinase K, which was added in the morning and evening 

followed by incubation at 56⁰C in a heating block (Incublock™, Denville Scientific Inc,)  

for three consecutive days. This ensured that the tissue dissolved completely. The DNA 



17 
 

was cleaned up by the phenol-chloroform extraction method after which it was treated 

with 100 µg/ml of RNase A to remove any contaminating cellular RNA. Finally, the 

purified DNA was eluted in 50 µl nuclease free water and quantified by the Nano Drop 

Spectrophotometer (ND-1000). 

Beta (β)-actin and HPV Amplification 

The DNA extracted from placental tissue samples were amplified using regular PCR. 

Two redundant primers, (GP5+:5’-TTT GTT ACT GTG GTA GAT ACT AC-3’ and 

GP6+:5’-GAA AAA TAA ATG TAA ATC ATA TTC-3’) that amplify 150 bp of the L1 

region (nt 6624-6746) of the HPV genome was used to detect HPV (40) in the samples. 

Another pair of redundant primers (CPI: 5’-TTA TCWTAT GCC CAY TGT ACC AT-

3’-and CPII: 5’-ATG TTA ATW SAG CCW CCA AAA TT-3’) which are targeted to 

the E1 region (nt 1777-1964) and amplify 188 bp of the HPV genome was also used to 

detect HPV in the samples. We also used β-Actin primers (Forward Primer: 5’-GCC 

ATG TAC GTT GCT ATC C-3’ and Reverse Primer: 5’CCG CGC TCG GTG AGG 

ATC-3’). The use of these sets of primers on our samples and the simultaneous detection 

of HPV with both sets of primers provided a robust set of results for our analysis. The 

thermal cycler model, TECHNE, TC-412, was used for amplification. The parameters for 

denaturation, hybridization and extension were as follows: 94⁰C for 1 minute, followed 

by 30 cycles of 95 ⁰C for 30 seconds, 55 ⁰C for 1 minute, 72 ⁰C for 10 minutes and final 

hold at 4 ⁰C. The positive control constituted the HPV16 Plasmid DNA (pEF399), 

whereas the negative control was nuclease free water. To determine the presence or 

absence of HPV fragments and of Beta (β)-actin amplified from the oligonucleotides, 

30µl of the PCR product from each sample was pre-mixed with 1.5 µl 6X loading dye 
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and separated by gel electrophoresis on 2% (w/v) agarose gel, in 1X TAE buffer. At the 

end of electrophoresis, the gel was stained with 0.3% ethidium bromide (0.1 mg/ µl 

solution) for 30 minutes and visualization of the DNA fragments was performed under 

ultraviolet light. 

Cloning of the PCR Products 

Following PCR amplification of genomic DNA, the 150 bp amplicon was excised and 

purified from the 2% (w/v) agarose gel using the Qiaquik gel extraction kit (Qiagen) after 

which 1 µl of the pcr product was cloned into the pGEMT-Easy Vector system I 

(Promega Corporation. WI, USA) and incubated at 4 ⁰C overnight. The clones were then 

transformed into DH5-alpha (α) competent cells (100 µl/plate), followed by incubation at 

37⁰C overnight on Luria Broth (LB) plates pretreated with 40µl (20mg/ml) of 5-bromo-

4-chloro-3-indolyl-be-ta-D-galactopyranoside (XGAL) and 100 µl (20mg/ml) of 

isopropyl-beta-D-thiogalactopyranoside (IPTG).  Based on the Blue-white colony 

selection principle, two single white colonies from each plate were then isolated, cultured 

in 3ml LB containing 5 µl of 50mg/ml Ampicillin and incubated at 37⁰C for 12 hours in a 

shaking incubator. The plasmid DNA samples were then purified using the QIAprep Spin 

Mini-Prep Kit (Qiagen Inc. CA, USA) after which EcoR I Restriction Digestion of at 

least 1.5 µg of Plasmid DNA was performed in a 20 µl reaction volume to ensure that the 

plasmids had the correct 150 bp insert. 
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Sequencing of the HPV Clones 

All the plasmid DNA samples containing the 150 bp insert were analyzed by Direct 

Sequencing using the ABI Prism Big Dye Terminator v3.1 Cycle Sequencing. The Direct 

Sequencing PCR Master Mix was performed in a 10ul reaction mixture containing 1.0 ul 

of 2pmol/ul GP5+ Forward Primer, 1.0 ul of 150ng/ul Plasmid DNA, 4.0ul Big Dye Mix 

and 4.0 ul of nuclease free water with the following PCR thermal profile reaction 

conditions: Hot start at 95⁰C for 5 m; 35 cycles of 95⁰C for 30s, annealing at 55⁰C for 

15s, followed by extension at 60⁰C for 4 m and final hold at 4⁰C. This was followed by 

precipitation of the PCR product as recommended by the manufacturer. The HPV 

genotypes were determined by comparison with the NCBI GenBank database. 

Immunohistochemistry (IHC) Staining 

(a) Trophoblast Marker (HSD3B1)  Immunohistochemistry 

For this purpose, we raised a monoclonal antibody against hydroxyl-delta-5-steroid 

dehydrogenase (HSD3B1) as recommended by Mao et al (35).  The slides containing the 

sectioned tissues were baked for an hour at 60⁰C in an incubator and allowed to cool for 

30 minutes at room temperature before rehydrating with 5 minute incubations in Xylene 

1 and 2,  Absolute alcohol 1 and 2, 85% Alcohol and 75% Alcohol. Endogenous 

peroxidase in the tissues was blocked for 20 minutes with 2 mL 30% Hydrogen peroxide 

per 200 mL methanol, followed by rinsing in distilled water three times for three minutes. 

Next, the slides were treated in 0.02% Sodium citrate (v/v) and cooked for 20 minutes at 

95⁰C to unmask the epitopes, after which they were cooled for 20 minutes at room 

temperature, while still immersed in the sodium citrate solution. This was followed by 
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rinsing in Phosphate Buffered Saline (PBS) for 5 minutes and rimming the tissue sections 

with a pap pen, carefully making sure that the slides did not dry. Blocking was achieved 

by incubating the slides in 150 µL 10% Normal Goat Serum (10% NGS in PBS) for 30 

minutes in a humidity chamber containing a little water. Next, the blocking solution was 

flicked off the slides and 150 µL of the Monoclonal anti-HSD3B1 produced in mouse 

[SIGMA-ALDRICH] was added at a dilution of 1:2000. The primary antibody was, 

however, not added to the negative control slide. This was followed by an hour of 

incubation in a humidity chamber. Next, the slides were rinsed in PBS; three changes, 

three minutes each followed by addition of three drops of anti-mouse DAKO Envision + 

Horseradish Peroxidase (HRP) labeled Polymer (REF: K4001) and incubation in a 

humidity chamber for 30 minutes at room temperature. The slides were again rinsed in 

PBS; three changes; three minutes each. Using one slide, 200 µL 2, 3-

Diaminobenzidamine (DAB) solution (1 drop of DAKO DAB+ Chromogen –REF: 

K3468 and 1 ml per 1mL of DAKO DAB+ substrate buffer- REF: K3468) was added and 

stain development was observed under the microscope, taking note of the time for 

optimal intensity. The rest of the slides were then developed using the same time that the 

DAB solution on the trial slide took to develop to the desired intensity. The slides were 

then washed in 200 mL of distilled water using two changes for five minutes each, 

followed by dipping them in undiluted hematoxylin for 20 seconds. The hematoxylin was 

washed off by letting the slides sit in running tap water for two minutes and then dipping 

them in ammonia water (500 µL ammonia + 1000 mL of water) for 12 seconds, followed 

by dehydration sequentially as follows: 70% Alcohol; 85% Alcohol; 100% Alcohol; 

100% Alcohol for five minutes each and two changes of Xylene for five minutes each. 
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Finally, cytoseal was used to coverslip the slides, leaving them overnight to dry before 

microscopic examination the following day. 

(b) p16 Immunohistochemistry Staining 

The same IHC protocol was used except that 150 µL of the p16 primary antibody 

solution (1:20 dilution) was added, followed by 1 hour incubation in a humidity chamber 

containing a little water. The primary antibody used was p16 (JC8): sc-56330 purchased 

from SANTA CRUZ Biotechnology, Inc. This is a mouse monoclonal antibody raised 

against full length recombinant p16 of human origin. The negative control slide was 

stained in the absence of the primary antibody whereas the test samples were treated with 

both primary and secondary antibodies. 

(c) p16 Quantification 

For this purpose, two slides of each sample were used. Quantification of the p16 protein 

in both HIV positive and HIV negative tissue sections was performed using Image- Pro 

Version 9.0.  The average p16 expression in each sample was normalized to the tissue 

area. We also quantified p16 expression in the HPV negative tissues. Statistical analysis 

to compare how the relative p16 expression varied across the groups was performed 

using the Kruskal- Wallis of GraphPad Prism 5. Further comparisons to determine 

differences, if any, in  the relative p16 signal between the HIV-/HPV16- and 

HIV+/HPV16- as well as between the HIV-/HPV16+ and HIV+/HPV16+ groups were 

compared using the Mann-Whitney test. 

(d) HPV16 L1 Immunohistochemistry Staining 

Using the same IHC protocol we used an anti-V5 L1 monoclonal antibody (mAb) to 

probe for the HPV16 L1 protein in the placental trophoblasts. The mouse monoclonal 
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anti-V5L1 mAb is a type-specific neutralizing antibody which had been previously raised 

against human papillomavirus (HPV) type 16 L1 and was able to block more than 75% 

infectivity (67). In our study, a 1:250 dilution of the mouse monoclonal anti-L1 gave the 

best staining results for the L1 protein. 

(e) HPV16 L1 Quantification 

For this purpose, two slides of each sample were quantified and averaged. Quantification 

of the HPV16 L1 protein levels in both HIV negative and HIV positive tissue sections 

was performed using Image- Pro Version 9.0.  The average HPV16 L1 protein expression 

in each sample was normalized to the tissue area. We also quantified HPV16 L1 

expression in the HPV negative tissues to determine the baseline. As in the case of p16 

quantification, statistical analysis to compare how the relative HPV16 L1 expression 

varied among groups was performed using the Kruskal-Wallis of GraphPad Prism 5. 

Further comparisons to determine differences, if any, in  the relative HPV16 L1 signal 

between the HIV-/HPV16+ and HIV+/HPV16+ groups were compared using the Mann-

Whitney test. 
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 RESULTS  

Patient Samples 

Our study samples were composed of paraffin embedded placental tissues which were 

obtained from HIV positive and HIV negative women who had been admitted to the 

University Teaching Hospital (UTH), Lusaka, Zambia for delivery of their babies. These 

samples were then shipped to Nebraska Center for Virology (NCV) and stored in the 

Tissue Bank of Dr. Charles Wood, who kindly provided them for our HPV analyses.  We 

chose to analyze these samples in order to determine if HPV infection was influenced by 

HIV. Very little is currently known about HPV infection in the placenta or the effect of 

HIV on those infections. Two-hundred samples, (100 HIV negative and 100 HIV 

positive) were analyzed.  

Detection of HPV in Placental Tissues 

HIV and HPV are endemic in Zambia. The prevalence rates for HPV as high as 97.2% 

have been previously reported among HIV positive Zambian women (51). Based on 

recent studies that suggest that HPV can infect epithelial linings of the placenta (53, 72), 

we decided to probe for the presence of HPV DNA in placental tissues of both HIV 

positive and HIV negative Zambian women. This goal of this study was to determine the 

effect of HIV upon HPV infection and pathogenesis in the placenta. For this purpose, we 

used a cohort of 200 placental tissue samples from which we extracted genomic DNA 

and PCR amplified HPV DNAs using GP5+/6+ and CPI/II primers. These redundant 

primers can amplify up to 40 different types of HPVs. The status of the cellular DNA in 

the samples was monitored by β-Actin PCR and any samples that did not test positive for 
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β-Actin PCR were excluded from the study. To this end, we excluded 4 samples from the 

100 HIV negative samples based on their poor cellular DNA status. To make up for this 

decrease in the number of HIV negative samples, we added 4 more samples to the 100 

HIV positive samples. Therefore, we finally had 96 HIV negative samples and 104 HIV 

positive genomic DNA samples for HPV analysis. 

Figure 3.2 shows representative PCR results that were obtained by amplification of the 

L1 (nt 6624-6746) and E1 (nt 1777-1964) regions of the HPV genomes using GP5+/6+ 

and CPI/II primers, respectively. HPV DNAs were detectable in both HIV positive and 

HIV negative samples. A plasmid containing the entire HPV16 genome (pEF399) was 

used as a positive control. 

 

 

            

Figure 3.2 HPV PCR results obtained after amplification. (A) A 150bp PCR product from  

the HPV L1 region of HIV negative DNA using GP5+/6+ primers (B) 188bp of the HPV E1 

region of HIV negative DNA using CPI/II primers. The cellular DNA status was assessed by 

β-Actin polymerase chain reaction. Nuclease free water was used as a negative (-) control, 

while pEF399 was used as a positive (+) control in GP5+/6+ PCR amplified samples, whereas 

gDNA for extracted from a B cell line was used as a positive control in  β-Actin PCR 

amplified samples. The test samples were numbered as shown in Figures 3.2 (A) and (B). The 

HIV positive DNA samples were also PCR amplified in the same way (Results not shown). 

“M” is the marker. 

 

 



25 
 

            Determination of HPV Prevalence 

After detection of HPV in the DNA samples by PCR, the prevalence rate was determined. 

Figure 3.3 shows the prevalence of HPV in the study population. The overall HPV 

prevalence rate was 85.0%, with the HIV negative group accounting for 86(43.0%), and 

the HIV positive group accounting for 84(42.0%). Statistical analysis showed no 

significant difference (Fischer’s Exact test: p>0.5; p=0.112) in the prevalence of HPV 

between these two groups. 

  

 

 

       HPV Genotype Distribution 

Having determined the prevalence of HPV in the placental samples (Figure 3.3), we 

sought to clone and sequence the PCR products in order to determine their HPV 

genotypes.  

BLAST analysis of the sequences against the NCBI database revealed three types of 

HPVs in our cohort study. These were the Low-Risk (LR) HPV6, the High-Risk (HR) 

Figure 3.3 Prevalence of HPV in HIV- and HIV+ placental tissues  

The prevalence of HPV in the HIV- placental tissues 86(89.6%) was higher than that of the 

HIV+ ones 84(80.8%). Comparison of the prevalence of HPV between the HIV+ and HIV- 

placental tissues using Fisher’s Exact test showed no significant (ns) difference (p>0.05; 

p=0.112).  
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HPV16 and the rarely reported HPV90.  Eighty six (89.6%) HIV negative samples tested 

positive for HPV and 83(96.5%) of these were genotyped whereas the HPV genotype 

status of the remaining 3(3.5%) samples could not be determined. The HIV negative 

group harbored HPV90 which accounted for 4(5.0%) whereas the LR-HPV6 and HR-

HPV16 accounted for 57(69.0%), and 22(26.0), respectively.  

Of the 84(80.8%) HIV positive samples that tested positive for HPV, 83(98.8%) were 

genotyped while the HPV genotype status of 1(1.2%) sample could not be determined. 

The HPV positive group had the same HPV90 distribution 4(5.0%) as the HIV negative 

group. However, the HPV6 distribution in this group was 44(53%) and that of HPV16 

was 35(42%). Comparison of the HPV16 distribution between the HIV+ (42%) and the 

HIV- (26%) groups using Fisher’s exact test showed a statistically significant difference 

(p<0.05; p=0.0241) with a 2.1 odds ratio. We did not find a significant difference 

(p>0.05; p=0.0864) in the distribution of HPV6 between the two groups.    
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          Socio-Demographic Characteristics of Women by HPV Status and Genotype  

Distribution 

 

We wanted to know whether the socio-demographic characteristics of women (from 

whom the samples had been obtained) were related to the prevalence of particular HPV 

genotypes present in placental tissues.  

Figure 3.4 The distribution of HPV in HIV-negative and HIV-positive placental samples. 

 

Three types of HPVs were isolated including the low risk (LR)-HPV6, high-risk (HR)-HPV16 and 

the rarely reported HPV90. (A) The pie-chart on the left side shows the distribution of HPV 

genotypes in HIV negative placental tissues and; (B) The pie-chart on the right side shows the 

distribution of HPV genotypes in HIV positive placental tissues. To determine the HPV 

genotypes, the PCR products were cloned into the pGMET-Easy Vector System I followed by 

EcoRI restriction digestion. The clones were subjected to Prism ABI Direct sequencing and the 

sequences were compared to the NCBI database for genotype identification. There was a 

significant difference (p<0.05; p=0.0241) in the distribution of HPV16 between the HIV-/HPV16+ 

and the HIV+/HPV16+ groups, with an odds ratio of 2.1. There was no significant difference 

(p>0.05; p=0.0864) in the distribution of HPV6 between the HIV-/HPV16+ and the 

HIV+/HPV16+ groups. 
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Table 1 shows the socio-demographic characteristics of the women by HPV status and 

genotype distribution and HIV status. The data shows that overall; the most significant 

effects were in HIV-dependent effects on HPV genotype distribution. We found a 

significant difference (Fischer’s Exact test: p<0.05; p=0.0241) in HPV16 genotype 

distribution between the HIV+ and HIV- women. There was no significant difference in 

HPV6 (Fischer’s Exact test: P>0.05; p=0.0864) distribution between the two groups.  

Furthermore comparison of age, years of education and household size between the HIV 

positive  and HIV negative women did not reveal any significant difference (Fishers’ 

Exact test: p>0.05) in HPV genotype distribution. 

          Table 1: HIV Negative and HIV Positive Women 

Table 1 shows the socio-demographic characteristics of HIV negative and HIV positive 

women by HPV status and genotype distribution. The HPV status and genotype 

distribution were compared with the marital status, age, and years of education. We also 

analyzed the effect of household size on HPV status and genotype distribution. 
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Comparison of Resident HPV Genotypes in the Vaginal and Placental 

Compartments 

Table 2 shows a comparison of the HPV genotypes resident in the vaginal and placental 

compartments of individual patients. The vaginal HPV study was previously conducted in 

our laboratory using lavage samples from same patients by the same PCR and genotyping 

methods as used for the present study. Twenty different types of HPVs were recovered 

from the vagina whereas only 3 HPV genotypes were recovered from the placenta.  

 

 Table 2: HPV Distribution in the Vagina and Placental Compartments 

             

 

  Compartment 

Sample 

ID 

HIV 

Status Vagina Placenta 

    

79 - None 6 

112 - None 90 

132 - None None 

919 - 6 6 

78 - None 6 

186 - 81/62 6 

1542 - None None 

1543 - None None 

107 + 45 6 

126 + None 6 

64 + None 16 

81 + 16 None 

133 + 51 None 

184 + 83 None 

984 + 53/6 None 
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Comparison of the vaginal lavage HPV types to those that we discovered in the placental 

compartment showed that the HPV genotypes resident in the two compartments were 

different, except for sample 919 which had a concordance of HPV6 in both 

compartments.  We also noted that the vaginal compartment had mixed HPV infections 

while the placental compartment had none. Furthermore, we noted that infections were 

often exclusive to a single compartment (10/15 samples). The results of the analysis of 

HPV genotypes in the vaginal versus the placental compartments suggest that tissue 

compartment specific distributions of HPVs exist within individuals.   

Trophoblast Marker (HSD3B1) Immunohistochemistry Staining 

To identify epithelial syncytiotrophoblast cells, we used antibody to hydroxyl-delta-5-

steroid dehydrogenase (HSD3B1) which exclusively expresses in terminally 

differentiated layer of trophoblasts cells. This marker has been shown to stain 

syncytiotrophoblasts in placental tissues with high specificity and sensitivity (35). 

Figure 3.5A is a negative control that was stained in the absence of the primary antibody, 

while Figure 3.5B is the positive control tissue stained with the primary antibody. While 

no staining was observed in the negative control slide, the Trophoblast marker 

specifically stained the syncytiotrophoblastic cells on the outer surface of trophoblasts. 

The cytotrophoblastic cells were negative for HSD3B1 staining.  
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Detection of p16 Protein 

The cyclin dependent kinase inhibitor (p16) is a cellular protein whose expression is 

elevated in infections with the high risk HPVs, such as HPV16. This occurs because the 

high risk HPVE7 oncogene binds the E2F-pRb complex and causes the release of the E2F 

transcription factors.  This facilitates the binding of E7 to pRb which causes an up-

regulation of p16. Therefore, p16 is a biomarker for the high risk HPVs (38, 46, 65) and 

to this end, we sought to determine the expression of p16 protein in HIV-/HPV16-, 

HIV+/HPV16-, HIV-/HPV16+ and HIV+/HPV16+ placental tissues. The expression of 

p16 protein was observed in all the four groups of placental tissues (Figure 3.5).  The 

control conditions without primary p16 antibody showed no background staining of the 

placental tissue (Figure 3.5 B). 

Figure 3.5 Immunoreactivity of HSD3B1 in fetal placenta. (A) HSD3B1 immunoreactivity in the 

presence of secondary antibody without primary antibody. (B) HSD3B1 immunoreactivity was 

detected in syncytiotrophoblasts. HSD3B1 was expressed as a brown pigment and 

characteristically stained trophoblastic columns. The cytotrophoblastic cells were negative for 

HSD3B1 immunoreactivity. 
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The p16 staining was observed both in cytotrophoblastic and syncytiotrophoblastic cells 

of the tissues whose genomic DNA had previously tested positive for HPV16 PCR. The 

expression of p16 in the HIV+/HPV16+ placental tissue (Figure 3.6E) appeared to be 

more disseminated and intense than in the HIV-/HPV16+ tissue (Figure 3.6D). The p16 

staining was also observed in HPV negative tissues (Figure 3.6C). In all the tissue 

sections examined, p16 staining was both nuclear and cytoplasmic.  

Since p16 expression is upregulated during high-risk HPV infections (38, 46, 65), we 

sought to determine whether this expression was augmented by the presence of HIV 

(Figure 3.6F). For this purpose, we used Image-Pro Premier Offline 9.0 to quantify the 

expression of p16 in HIV+/HPV16+ and HIV-/HPV16+ tissues.  The expression of p16 

signal was normalized to the tissue area and the relative p16 expression levels in the four 

groups were compared using Kruskal Wallis test. The medians for the relative p16 signal 

across the four groups varied significantly (p<0.05; p=0.0367). Comparison of the 

relative p16 signal between the HIV+/HPV16+ and the HIV-/HPV16+ placenta tissues 

showed a statistically significant difference (p<0.05; p=0.0142). However, there was no 

significant difference in relative p16 signal between the HIV-/HPV16- and the 

HIV+/HPV16- placental tissues (p>0.05; p=0.4836).  
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Detection of HPV16 L1 Protein 

The productive infection by human papillomavirus is characterized by the expression of 

the late capsid protein (L1) which by itself can assemble into virus like particles (VLPs) 

(17, 28). Our PCR results (Figure 3.2) showed that both HIV positive and HIV negative 

placental tissues were positive for HPV16 by PCR of the L1 region. We therefore sought 

to determine whether L1 protein expression could be detected in placental trophoblasts. 

For this purpose we used a Mouse monoclonal anti-HPV16 L1 (H16.V5) antibody (49).    

The trophoblast marker slide (Figure 3.7A) served as a reference for the location of the 

syncytiotrophoblast cells. To control for background staining due to non-specific binding, 

we used normal serum derived IgG4 isotype antibody. As expected, we did not observe 

any background staining (Figure 3.7B).  Using an HIV-/HPV+ placental tissue, we also 

stained for L1 in the absence of the primary antibody and again, observed no detectable 

background signal (Figure 3.7B). There was no detectable L1 signal in the HIV-/HPV- 

placental tissue, (Figure 3.7D).    

Figure 3.6 p16 immunohistochemistry staining. The p16 immunoreactivity was determined in the 

sectioned tissues (A) HSD3B1 trophoblast marker (B) Negative control in the absence of primary 

antibody. (C) p16 staining in an HIV-/HPV16- tissue. (D) p16 staining in an HIV-/HPV16+ tissue (E) 

p16 staining in an HIV+/HPV16+ tissue (F) Quantification of p16 protein in HIV-/HPV16+ and 

HIV+/HPV16+ sectioned placental tissues. Image Pro-Premier offline 9.0 was used to determine the 

p16 levels in HIV-/HPV16+ and HIV+/HPV16+ sectioned placental tissues. The p16 in levels both 

groups were determined in duplicate (Results not shown) and the average p16 values, normalized to 

the tissue areas, were compared using Kruskal-Wallis test. The bars represent the median p16 signal. 

The median p16 signal varied significantly (p<0.05; p=0.0367) across all the groups. Using the Mann-

Whitney test, we found that there was a significant difference in the p16 signal (p<0.05; p=0.0142) 

between the HIV-/HPV16+ and HIV+/HPV16+ groups. We observed an HIV dependent effect on the 

expression of p16 in placental trophoblasts. 
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The HPV16 L1 protein was detected in HIV+/HPV16+ and HIV-/HPV16+ fetal placental 

trophoblasts (Figures 3.7E and F). Both cytotrophoblasts and syncytiotrophoblasts 

stained positive for the L1 protein, with most of the staining occurring along columns of 

syncytiotrophoblasts which are the terminally differentiated trophoblast cells. The L1 

protein expression was also observed in the decidual cells of the maternal side of the 

placenta (Results not shown).  

It has been postulated that the HIV-1 tat protein can transactivate the Long Control 

Region (LCR) of the HPV genome and upregulate the expression of E6 and E7 genes. 

Therefore, we chose to assess whether HIV could have an indirect effect on HPV16 L1 

expression. We quantified the relative expression of L1 protein presence in placental 

tissue samples (Figure 3.7G). To achieve this, we used Image-Pro Premier Offline 9.0 

which is software that we trained to discriminate between background signal and the 

actual HPV16 L1 signal. Subtraction of background signal gave the relative L1 signal per 

tissue area. The HPV16 L1 protein levels in all groups were determined in duplicate and 

the average L1 values, normalized to the tissue areas, were compared statistically. The 

median HPV16 L1 signal varied significantly (Kruskal Wallis: p<0.05; p=0.0001) across 

all the groups. The expression of the L1 protein was significantly different (p<0.05; 

p=0.0231) between the HIV-/HPV16+ and HIV+/HPV16+ groups. We concluded that 

expression of the L1 protein was clearly influenced by HIV status.  
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Figure 3.7 HPV16 L1 immunohistochemistry staining. (A) HSD3B1 trophoblast marker (B) Placental 

trophoblasts stained with a Mouse monoclonal anti-IgG isotype control. (C) Placental trophoblasts 

stained without a primary antibody.  (D)Placental trophoblasts of an HIV-/HPV- tissue stained with 

anti-V5L1 antibody. (E) Placental trophoblasts of an HIV+/HPV16+ tissue stained with anti-V5L1 

antibody (F) Placental trophoblasts of an HIV-/HPV16+ tissue stained with anti-V5L1 antibody (G) 

Quantification of HPV16 L1 protein in HIV-/HPV16+ and HIV+/HPV16+ sectioned placental tissues. 

Image Pro-Premier offline 9.0 was used to determine the HPV16 L1 relative levels in HIV-/HPV16+ 

and HIV+/HPV16+ sectioned placental tissues. The HPV16 L1 protein levels in all groups were 

determined in duplicate (Results not shown). The average HPV16 L1 values, normalized to the tissue 

areas, were compared using Kruskal-Wallis test. The bars represent the medians of the HPV16 L1 

signal. The median HPV16 L1 signal varied significantly (p<0.05; p=0.0001) across all the groups. The 

expression of the L1 protein was significantly different (p<0.05; p=0.0231) between the HIV-/HPV16+ 

and HIV+/HPV16+ groups.  We observed an HIV dependent effect on the expression of the L1 

protein. As expected, all the HIV-/HPV16- and HIV+/HPV16- samples were negative for HPV16 L1 

staining. 
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Discussion 

Recent studies have demonstrated that HPV can infect epithelial trophoblast cells of the 

placenta (76) and HPV DNA has also been detected by PCR in placentas obtained trans-

abdominally from women undergoing amniocentesis (71). These and other studies led us 

to explore the prevalence of HPV and the effect of HIV on HPV genotype distribution 

within the placental compartment. 

To the best of our knowledge, we are the first group to study HPV infection of the 

placenta in the context of HIV infection. Using GP5+/6+ PCR as well as CPI/CPII 

primers, (Figure 3.2) we were able to detect HPV DNA in both HIV negative and HIV 

positive placental tissues.  

Married HIV negative women were found to be placenta positive for HPV 

[73/81(90.1%)] as were married HIV positive women [75/95(78.9%)] as shown in Table 

1. The high incidence of HPV infections among HIV+ and HIV- married women in this 

population could be explained in part by multiple sexual partners that they may have had 

by the time they were married as most of them are between 15 and 25 years. In low 

income countries such as Zambia, young women engage in sex earlier than do women in 

more affluent countries.  Furthermore, there is a greater rate of women engaging in sex 

for monetary benefit, at a young age, which puts them at greater risk of contracting STDs, 

such as HPV and HIV. Placental samples were HPV6 positive at high rates, HIV+ (53%) 

and HIV- (69%), yet there was no significant difference (p>0.05) between the two groups 

(Figure3.4). We did not observe any significant differences between married HIV+ and 

HIV- women in most socio demographic status (Years of education and Household size) 

as a function of HPV genotype. Nevertheless, we observed a significant difference 
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(Fishers’ Exact test: p<0.05; p<0.0001; 2-tailed) in HIV positive women aged 15-25 and 

26-36 years [OR 0.0057, 95% CI, 0.000323-0.0992] when age was used as function of 

testing positive for HPV. HIV+ women aged 26-36 years were more at risk of testing 

positive for HPV than those aged 15-25 years. One plausible explanation for this 

observation is that women in this age group are most likely to have had multiple sexual 

partners, which put them at risk of being infected with both HIV and HPV.  

The observed high HPV prevalence rate (Figure 3.3) in our study was not surprising 

because Zambia is endemic for both HIV and HPV (41).  HPV prevalence rates as high 

as 97.2% have been previously reported among HIV positive Zambian women (51). To 

our surprise, we found that the prevalence of HPV in the HIV positive placental tissues 

[84/104(80.8%)] was slightly lower than that of the HIV negative ones [86/96(89.6%)], 

differing from previous studies (13, 23, 63). However, this difference in HPV prevalence 

between the HIV positive and HIV negative placental tissues was not significant (Fisher’s 

exact test; p>0.05; p=0.112). Additionally, the prevalence rates for the two groups of 

placental tissues were calculated from different total numbers; that is, 86 out of 96 for the 

HIV negative group and 84 out of 104 for the HIV positive group.  

In assessing the effect of HIV on HPV genotype distribution in the placental 

compartment, we found only three different types of HPV, namely the low risk HPV6, 

the high risk HPV16 and the rarely isolated HPV90 (Figure 3.4). We discovered that the 

incidence of the high-risk HPV16 in HIV positive placental tissues was greater than that 

in HIV negative tissues. There was a significant difference (p<0.05; p=0.0241) in the 

incidence of HPV16 between the two groups of placental tissues (Figure 3.4). We found 

that HIV positive placental tissues were two times more likely to harbor the high-risk 
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HPV16 than the HIV negative placental tissues. This result was in agreement with that 

obtained in a study conducted by Ng’andwe and colleagues in which they found a nine-

fold increase in the incidence of the high risk HPV18 in HIV positive versus HIV 

negative vaginal lavage samples of Zambian women. It appears that the replication 

efficiency of the high risk HPVs is increased in patients whose immune system is 

compromised (41).  

Interestingly, our placental HPV genotyping distribution differed from the vaginal lavage 

results that Ng’andwe et al had previously obtained from the same patients. This 

observation suggests that different HPVs could prefer different compartments (Table 3).  

In the previous vaginal lavage study by Ng’andwe and colleagues in our laboratory on the 

same patient samples (40) HPV16 and HPV18 were recovered in high abundance. This is 

in contrast to our present placental study in which HPV6 and 16 were the main genotypes 

isolated. Whereas in our study of the vaginal HPV distribution, we recovered 20 different 

HPV genotypes, the placental compartment was limited to only 3, suggesting very 

selective growth conditions in that tissue. Arguably, HPV6 appears to be the most 

successful at exploiting the placental compartment. It is important to acknowledge that 

differences in the rate of PCR detection of HPVs in different compartments could 

influence these results. The analysis of HPV in the vaginal and placental compartments 

was performed under exactly the same conditions using the same protocols. Second 

rounds of PCR for samples that tested negative for HPV was used to ensure that we did 

not leave out HPV positive samples.  

 Although HPV90 has been previously reported in an underserved population in United 

States, there is dearth of information to determine its prevalence, distribution and disease 
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association (44). The presence of HPV90 in cervical lesions as previously reported and 

now in placental tissues of our study samples may imply that this genotype has the 

potential to replicate in various epithelial compartments. To the best of our knowledge, 

we are the first group to report the presence of HPV90 in Zambian specimens and this 

finding suggests that unique HPV isolates may be present in this population.  

We used p16 as a biomarker for HPV16 infection (38, 46, 65). To study the effect of HIV 

on p16 expression in HPV16+ and HPV16- tissues, we performed immunohistochemistry 

on tissue sections and stained them with a monoclonal anti-p16 antibody. 

Immunohistochemistry results from studies previously conducted on normal cervical 

tissues showed absence of p16 expression (65). In contrast, our p16 IHC trophoblastic 

results showed moderate expression of p16 both in the HIV-/HPV16- tissue (Figure 

3.6C). One plausible explanation for this has been advanced by Tringler et al., 2004, who 

have previously demonstrated that p16 is expressed in normal villous cytotrophoblasts 

(CTB) between weeks 8 and 10; 15 and 18 as well as 37 and 39 of the gestational period. 

In their study, Tringler et al., 2004, observed a high p16 protein expression in the nuclei 

of normal CTB and extravillous (ETV) cells at 17 weeks of the gestational period. The 

high p16 expression kinetics was in tandem with the reshaping of the villous and was 

attributed to death of luminal epithelial cells and the decidua. The net effect of this has 

been observed, in a mouse model, to be decidualization of the endometrium and invasion 

of trophoblastic cells (65, 75). It is thought that p16 expression occurs in normal villous 

CTB in order to suppress villous proliferation and consequently promote the invasion 

process (65). Overall, the relative p16 expression median across all the 4 groups varied 

significantly (Kruskal-Wallis: p<0.05; p=0.0367) as shown in Figure 3.6F. We observed 
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a small difference in p16 expression between the HIV-/HPV16- and HIV+/HPV16- 

tissues , however, it was not significant (Mann-Whitney: p>0.05; p=0.4836; Figure 3.6F). 

This result suggests that HIV may have a mild effect on the expression of p16 in HPV- 

tissues. On the other hand, we observed a significant difference (Mann-Whitney: p<0.05; 

p=0.0142) in relative p16 expression between the HIV+/HPV16+ and HIV-/HPV16+ 

tissues (Figure 3.6F). This HIV-dependent effect on p16 expression could be attributed to  

a number of different indirect effects: that HIV can attenuate the cellular mediated 

immune responses (42) and also that the HIV-1 tat protein transactivates the HPV Long 

Control Region (LCR) causing an upregulation in the expression of the HPV18 E7 

oncogene (64). The elevated E7 oncoprotein in turn binds to the E2F-pRb complex, 

causing the release of E2F and binds to pRb, which leads to induction of overexpression 

of p16 (38, 46, 65). Thus, the HIV-1 tat protein may influence HPV infection and 

increase p16 protein expression in trophoblastic cells. To determine whether this is 

possible in vivo, there is need to perform dual staining for HIV-1 tat and the HPV16 

LCR.  

In vitro studies have shown that the human papillomavirus can replicate productively in 

placental trophoblasts. In our study, we performed immunohistochemistry staining for the 

HPV16 L1 protein  (Figure 3.7) using a monoclonal anti-HPV16 V5 L1 antibody (67) on 

patient-derived placental samples. The L1 protein is the major viral capsid protein that is 

expressed during the late phase of the HPV life cycle and can by itself spontaneously 

assemble into virus like particles (17, 28). Neither the HIV-/HPV- negative control 

(Figure 3.7D) nor did the anti-IgG4 isotype control (Figure 3.7B) give a positive signal 

for HPV16 L1. Additionally, the HIV+/HPV16+ tissue section stained without anti-L1 
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(Figure 3.7C) gave no detectable signal for HPV16 L1. We observed positive staining for 

L1 protein expression in HIV+/HPV16+ (Figure 3.7E) and HIV-/HPV16+ (Figure 3.7F) 

placental trophoblasts. The staining was observed both in cytotrophoblast and 

syncytiotrophoblast cells. It appears that HPV16 establishes its productive infection in 

these cells. To further elucidate this assertion, we wanted to perform electron Microscopy 

on the placental samples so that we could show the presence of HPV16 virion particles in 

these cells. This was however not possible because the membranes were disrupted during 

paraffin embedding of the placental tissues.  Therefore as an alternative to this method, 

we intend to show evidence of the HPV16E1^E4 splicing product in trophoblastic cells in 

our follow up study.  Having identified the cells that were positive for HPV16 L1 

staining, we quantified the relative HPV16 L1 protein using Pro-Premier Offline 9.0.  We 

observed that the relative HPV16 L1 median signal varied significantly (Kruskal-Wallis: 

p<0.05; p=0.0001) across all the 4 groups (Figure 3.7G). The elevated expression of 

HPV16+ L1 in HIV+/HPV16+ trophoblastic cells in comparison to the HIV-/HPV16+ 

suggests that HIV has an effect on HPV16 L1 protein expression. To further explore this, 

we compared the HPV16 L1 relative signal between the HIV+/HPV16+ and HIV-

/HPV16+ tissue samples (Figure 3.7G) and observed that there was a significant 

difference (Mann-Whitney: p<0.05; p=0.0231). The HIV dependent effect on HPV16 L1 

expression in placental trophoblasts could be attributed to the ability of HIV-1 tat to 

transactivate the HPV LCR as alluded to earlier in the case of p16 expression (13, 64). 

Thus, our HP16 L1 immunohistochemistry result corroborates the in vitro report that 

HPV can replicate productively in 3A trophoblasts in tissue culture (79). 
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Infection of the cervix with the HR-HPVs such as HPV16 and 18 are associated with 

cervical dysplasia (16, 83).  Interestingly, we did not find obvious pathology in placental 

trophoblasts related to the presence of HR-HPV16.  One plausible explanation for the 

absence of pathology in trophoblastic cells is that extravillous trophoblast cells express 

neither Major Histocompatibility Complex (MHC) class I nor class II molecules (22, 45). 

The lack of MHC classes I and II expression implies that the HPV virus can freely 

replicate without inducing an immune response. 

Finally, in this study, we have shown the presence of HPV in placental trophoblasts using 

both polymerase chain reaction and HPV16 L1 immunohistochemistry methods. We have 

also shown, for the first time, the effect of HIV on HPV infection in placental 

trophoblasts. 

In our follow up studies, we are determining the presence of HPV DNA in placental 

trophoblasts by in situ hybridization. Further corroboration of HPV infection of placental 

trophoblastic cells is being done by reverse transcription PCR for the E1^E4 spliced 

product, which is the most highly expressed protein in productive infection by the human 

papillomaviruses. Additionally, we intend to perform HIV-1 p24 IHC using a polyclonal 

rabbit anti-p24 with a view to determining whether HIV is present in the placental cells. 

We further want to perform p24 staining using a monoclonal antibody in order to 

corroborate our results. This will be followed by dual-staining for HIV-1 p24 vs the cell 

markers, HIV-1 p24 vs HPV16 L1 and HIV-1 p24 vs HPVE1^E4. This will help us 

determine which cells are infected by HIV and HPV.  

Finally, our main focus for this study was to determine the effect of HIV on high risk 

HPV16 infection of placental trophoblasts. We therefore now intend to perform 
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immunohistochemistry analysis for the low risk HPV6 and compare the results with those 

of HPV16 IHC.   Overall, our results support the conclusion that a subset of HPVs infects 

the placenta and their prevalence is influenced by HIV status.   
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