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Abstract

Several new results of a general algebraic scope are developed in an effort to build

tools for use in finite basis proofs. Many recent finite basis theorems have involved

assumption of a finite residual bound, with the broadest result concerning varieties

with a difference term (Kearnes, Szendrei, and Willard (2013+)). However, in vari-

eties with a difference term, the finite residual bound hypothesis is known to strongly

limit the degree of nilpotence observable in a variety, while, on the other hand, there

is another, older series of results in which nilpotence plays a key role (beginning with

those of Lyndon (1952) and Oates and Powell (1964).) Thus, we have chosen to

further study nilpotence, commutator theory, and related matters in fairly general

settings. Among other results, we have been able to establish the following:

• If variety V has a finite signature, is generated by a nilpotent algebra and

possesses a finite 2-freely generated algebra, then for all large enough N , the

variety based on the N -variable laws true in V is locally finite and has a finite

bound on the index of the annihilator of any chief factor of its algebras.

• If variety V has a finite signature, is congruence permutable, locally finite and

generated by a supernilpotent algebra, then V is finitely based.

We have also established several new results concerning the commutator in varieties

with a difference term, including an order-theoretic property, a “homomorphism”

property, a property concerning affine behavior, and new characterizations of nilpo-

tence in such a setting—extending work of Smith (1976), Freese and McKenzie (1987),

Lipparini (1994), and Kearnes (1995).
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Chapter 1

Introduction

This thesis is concerned with the study of abstract algebraic systems of a general

type: sets endowed with operations—all of which we shall assume to be of finite

arity (or rank). These given operations—which we shall call fundamental operations

can (of course) be composed to form new ones, which we shall call term operations,

and it sometimes happens that a pair of term operations so formed are identical.

We associate this coincidence with a syntactical object—namely, an equation—in

a natural way. To describe this a bit further, consider a class of algebras each of

which is endowed with a set of fundamental operations, which is indexed by some

set of symbols—which we call the set of fundamental operation symbols—with each

of which an intended rank is associated; this enhanced indexing is referred to as the

signature of the class. We refer to such a class of algebras as a similarity class. By

supplying an adequate supply of symbols for variables, we can also use the signature

to index all term operations formed across the class, forming syntactical terms to

parallel various possible compositions. Unofficially, the use of parentheses is also

used to clarify presentation; for instance, the term x · (y · z) is the familiar way to

represent one side of the associative property, whether one is viewing this within the

context of group theory, monoid theory, or even, a bit unnaturally—if ‘·’ is interpreted

in the usual manner of ‘+’—addition over the natural numbers (and so forth.) An

equation, then, is simply a pair of terms; we usually use a formal symbol for equality

to denote this pair, writing, for example x · (y ·z) ≈ (x ·y) ·z to denote the associative

law, with ‘·’ simply a symbol awaiting interpretation as some binary operation in
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whatever algebraic context we care to consider. (Consult Appendix A for a more

rigorous treatment of all the relevant background material.)

Our primary goal with this work is to further the understanding of a class of

problems concerned with the set of equations that holds in a given system or sys-

tems. However, we have generally pursued strategies concerned with the algebraic

structures themselves (rather than more syntactically-minded considerations). On

the other hand, there are numerous examples of a class of algebras that are natural

to study due, first of all, to some structural property shared among its constituent

algebras, but which turn out also to be characterizable by its satisfaction of some set

of equations. Thus, most of our results are concerned with the study of some such

classes of structures, and while some of the results below are more clearly connected

with the primary goal as stated above, others are less clearly so; nevertheless, it seems

useful to state at the outset, as we have, what our particular motivation has been.

We shall call a class of algebras defined by its satisfaction of a set of equations, a

variety. We shall call the set of all equations that hold in a given system its equational

theory. Given a particular algebra A, the variety based on the equational theory of A

is called the variety generated by A. A problem which began with the earliest work

in this field is to determine whether and which algebraic systems—or, as we shall

say, algebras—have equational theories that are axiomatizable by a finite subset of

these equations. We shall refer to this body of problems as finite basis problems. Any

equational theory that may be axiomatized by a finite set of equations we shall call

finitely based.

An early result of this type was got by Roger Lyndon in 1952, when he showed

that every nilpotent group has a finitely based equational theory. Generalizing this

result (as well as a subsequent stronger result obtained M.R. Vaughan-Lee (1983)

and Ralph Freese (1987)) has been one of our primary motivators. Nilpotence and

a related concept, solvability, are group-theoretic concepts, which can be viewed as
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generalizations of abelianness. Both concepts are typically defined in terms of a two-

place operation—the commutator—defined on the set of normal subgroups of a given

group, though, nilpotence has other very useful characterizations as well.

A notion of commutator can also be developed for rings; indeed, beginning in the

early Nineteen-Seventies and continuing since then, a rather general theory of the

commutator has been developed—one which necessarily swaps the group-theoretic

study of normal subgroups with the study of congruences—that is, those equiva-

lence relations that are closed under the operations of a given algebra when applied

coordinatewise—with which every group-homomorphism and hence every normal sub-

group can be associated. Furthermore, the presence of this concept can be noted in

most of the existing finite basis results, from Lyndon’s to the present day—some

of these in a retrospective sense, in view of the fact that the commutator was not

available at the time of their initial discovery. For instance, nilpotence plays a crucial

role in another result the proof of which has been another of our primary interests,

that of Oates and Powell (1964), who proved that every finite group has a finitely

based equational theory. It is also known that each finite lattice has a finitely based

equational theory, and while the original proof of this fact, supplied by McKenzie

(1970) does not refer to the commutator, there was subsequently developed a proof

of his result which one can view as concerning the commutator. Indeed, by 2013+,

Kearnes, Szendrei, and Willard had managed a proof of a rather broad result that

generalizes McKenzie’s result as well as—in small part—the theorem of Oates and

Powell; their work very explicitly relies on analysis of the commutator. The result of

Kearnes, Szendrei, and Willard concerns algebras possessing what is called a “differ-

ence term,” a ternary term function, which is available in groups, quasigroups, rings,

modules, vector spaces, Lie algebras and the like, semi-lattices, and more: a majority

of algebraic objects common to mathematical practice. (However, they also adopted

a second, strongly limiting assumption.) In groups, for example, the ternary func-
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tion d(x, y, z) = xy−1z represents the difference term available there; in general, it is

rather a technical thing, and so we leave its definition to Appendix A. In Chapter 4,

we further the understanding of the commutator in varieties of algebras possessing

this ubiquitous term, building on the work of Smith (1976), Freese and McKenzie

(1987), Lipparini (1994), and Kearnes (1995).

On the other hand, many algebras have been found with equational theories that

are not finitely based. Indeed, the seemingly natural conjecture that perhaps all

finite algebras have a finitely based equational theory was proved false early on by

Roger Lyndon, when in 1954 he found a 7-element counterexample—not long after

the appearance of his 1951 paper, in which he established that all 2-element algebras

generate a finitely based variety. Murskĭı (1965) later provided a 3-element algebra

that generates a variety without a finite basis. Thus, the task has shifted to an

attempt at characterizing those algebras that do boast a finitely based equational

theory. Knowing these results of Lyndon, Tarski asked whether there is an algorithm

for deciding, on the input of a finite algebra A of finite signature, whether A generates

a finitely based variety. In (1996), Ralph McKenzie answered Tarski’s longstanding

question in the negative. Yet, this does not mean it is out of the question that

something of mathematical interest can be said about the body of algebras with a

finitely based equational theory. Building tools to tell us more is the purpose of this

thesis.

While a certain strong assumption has been employed in the recent result of

Kearnes, Szendrei, and Willard, (and those of their predecessors, which they have

generalized) we have sought to try to understand further what can be said regarding

the finite basis question without the luxury of their strong, secondary assumption

(in brief, their secondary assumption entails the availability of a representation of

any algebra in terms of a product of some of its finite quotients or residues, a very

useful tool). We have pursued a line of research which is in some sense orthogonal
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to that result. Specifically, we have undertaken a further study of the methods first

employed by Lyndon in his result concerning nilpotent groups and by Oates and

Powell in their result, in order to resolve the open question of the extent to which

Lyndon’s result on nilpotent groups can be generalized—thus, pursuing knowledge

of a class of algebras not well-covered by the recent result of Kearnes, Szendrei,

and Willard, whose assumptions strongly limit the type of nilpotence possible in the

algebras under their consideration: In fact, the only nilpotent algebras considered

under their assumptions are abelian.

However, we are not the first to press with this line of inquiry. M.R. Vaughan-

Lee (1983) and, subsequently, Ralph Freese (1987) were able to generalize a part of

the result of Lyndon concerning nilpotent groups—that is, that part that concerns

finite, nilpotent groups—with these latter researchers working under the auspices of

a stronger assumption than the availability of a difference term, but one still weak

enough to specialize to Lyndon’s result in the group setting. Their assumptions

are known to force a certain property on the set of congruences of each algebra

under their consideration, namely that of congruence permutability. For an intuitive

picture of what is meant by this, recall from group theory that a product can be

imposed on the set of normal subgroups of a group G and, indeed, for any pair of

normal subgroups H and K of G, we have that HK = KH—that is, this product is

commutative; furthermore, related computations demonstrate that whenever we have

that HK = G and H ∩K is the trivial subgroup, G factors as the direct product of

H and K. Facts very much parallel hold in any variety of algebras each of which is

congruence permutable, which we define now.

Observe that any binary relations, say R and S can be composed in a natural

way; we let R ◦S denote the set of all pairs 〈x, z〉 for which there is some y such that

x R y S z—that is, so that x is R-related to y and y is R-related to z. To say that

a given algebra A is congruence permutable means precisely that this composition
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operation permutes (or commutes) on the set of congruences of A—that is, so that

for any congruences α and β on A, we have that α ◦ β = β ◦ α. This property is

equivalent to the one just cited for groups—if translated in the appropriate way from

the context of normal subgroups into that of congruences—but it also holds in rings,

modules, Lie algebras, vector spaces, loops, quasigroups, and more. In fact, in 1954

Anatoli Mal’cev established that

A variety V is congruence permutable if and only if there is a ternary term

p supplied by the signature of V such that, for any algebra A ∈ V and

any a, b ∈ A, we have that p(a, b, b) = a = p(b, b, a) (or, put another way,

A satisfies the equations p(x, y, y) ≈ x ≈ p(y, y, x).)

Such a term is called a Mal’cev term, and any variety the algebras of which are

each congruence permutable we shall either call congruence permutable or Mal’cev.

In particular, as we shall see, every Mal’cev term is a difference term. In fact, the

example given above for the difference term in groups is also a Mal’cev term.

A more exotic and involved example of a Mal’cev term occurs in quasigroups.

Recall first that quasigroups are endowed with three binary operations symbolized

by ·, /, and \ with which we may express the axioms of this class: (x · y)/y ≈ x,

(x/y) · y ≈ x, y\(y · x) ≈ x, and y · (y\x) ≈ x. One can then check that the ternary

term p defined in the signature of quasigroups by p(x, y, z) ≈ (x/(y\y))·(y\z) satisfies

Mal’cev’s equations, given in the display above.

In their finite basis result, Freese and Vaughan-Lee also assumed further a property

that is got for free in the case of finite, nilpotent groups, but which is not a property

of all nilpotent algebras: that of being representable as a direct product of algebras

of prime power order. They found the following (which, however, can be stated more

broadly; see Theorem 4.2).
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Theorem 1.1. Let A be a finite, nilpotent algebra with finitely many fundamental

operations that generates a congruence permutable variety. Suppose also that A fac-

tors as the direct product of algebras of prime power order. Then A has a finitely

based equational theory.

We have been able to broaden this result. It turns out that, in a congruence

permutable variety, the property of being nilpotent and a direct product of algebras

of prime power cardinality is necessarily associated with the satisfaction of a set of

equations. Algebras in a variety that satisfy one such set of equations—depending on

the natural number parameter n—we shall call “supernilpotent of class n.” We have

been able to show the following.

Theorem 1.2. Let n be a natural number. Let V be a locally finite, Mal’cev variety

of finite signature consisting solely of algebras supernilpotent of class n. Then V has

a finitely based equational theory.

This comes as a trivial consequence of another new result we have been able to

obtain: For any natural number n and any locally finite, Mal’cev variety V consisting

solely of algebras of supernilpotence class n, we have that V is generated by a finite

algebra. We have several other contributions to this relatively new study of the

concept of supernilpotence, which we give in the next chapter.

We also have many results inspired by the techniques employed in the Oates-

Powell proof. Our results add steam to the following open problem, which has been

our primary focus.

Problem 1.3. Let A be a finite nilpotent algebra in a congruence permutable variety

of finite signature. Is the variety generated by A finitely based?

We have pursued the strategy of the Oates-Powell proof and have generalized

many of the incremental results feeding into their proof to the setting of our interest
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(and sometimes broader.) We hope that a few of the results (and questions raised)

here concerning this topic may point the way to a solution of this problem.

It is convenient to briefly outline the strategy of the Oates and Powell proof, which

is concerned primarily with the concept of critical groups. We have defined (some-

what novelly) a critical algebra to be any that is not found in the variety generated

by its proper factors, where its proper factors are any subalgebra or homomorphic

image thereof of cardinality strictly less than the original algebra (see the discussion

preceding Theorem A.5 in the appendix). The Oates and Powell proof, then, exploits

the fact that if V is any variety such that all of its finitely generated algebras are

finite (a property which we shall refer to as local finiteness, moving forward), then

V is generated by its critical algebras. Now, Birkhoff (1935) showed that if V is any

locally finite variety of algebras each of which is endowed with only finitely many

fundamental operations, and n is a natural number, then the set of equations that

hold across V and that involve only terms in n or fewer variables has a finite basis

(which he provided.)

For a given variety V , let us denote by V(n) the variety of algebras that satisfy

the n-variable equations true in V . It turns out that if for some natural number n

we have that V(n) is locally finite and has a finite bound on the size of its critical

algebras, then the same must be true of V . Oates and Powell make use of this along

with the fact that if V is the variety generated by any finite group, then there are

natural numbers n, e,m, and c such that V(n) is locally finite and composed only of

algebras of exponent e, the chief factors of which have cardinality at most m, and

the nilpotent factors of which are of nilpotence class at most c. (A chief factor of

a given group G is the factor group H/K, where H and K are normal subgroups

of G such that K ≤ H and so that H/K is minimal in G/K.) They show, using

these parameters, which hold across V but which can also be “lifted” to V(n), that for

high enough n, V(n) has only finitely many non-isomorphic critical groups. We have
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sought to use a similar approach applied to Problem 1.3. In fact, we have been able

to show the following.

Theorem 1.4. If A is any nilpotent algebra of finite signature that generates a locally

finite congruence permutable variety V, then for high enough n, V(n) is locally finite

and has a bound on its chief factors, depending only on the nilpotence class of A.

By “chief factors” here, we mean something very much parallel to the group-

theoretic definition given above, only concerning congruences rather than normal

subgroups. (We have also employed what appears to be the natural generalization

of the group-theoretic concept of “exponent” in our proofs.) We achieve this result

by identifying a set vn of equations for a fixed congruence modular1 variety V that

is satisfied in any algebra in V of cardinality strictly less than n lying in V and so

that, conversely, if A ∈ V satisfies vn, then the annihilator of any chief factor of A

is strictly less than n. (The annihilator of a chief factor can be defined in terms in

the commutator of congruences.) Furthermore, the law vn is satisfied by a nilpotent

algebra in V if it is of a certain class depending on n. This result is a generalization

of one that holds in groups, given as Theorem 52.32 in Neumann (1967), in whose

work vn is called the “chief centralizer law.” Using it, we draw several results, giving

new proofs of some older results as well as some apparently novel observations.

Now, Freese and McKenzie (1987) give a set Σ of equations that characterize

nilpotence of a given class c within a given class K of algebras, with Σ turning

out to be finite if, for instance, K is locally finite and of finite signature. For this

reason, if A is again taken to be a nilpotent algebra that generates a congruence

permutable variety V , “lifting” the nilpotence class of A to V(n), for high enough n,

is not a problem. However, there are several good reasons for supposing that this

1Congruence modularity is defined in the appendix below in terms of the satisfaction of a certain
implication (or, equivalently, a certain equation) on the congruence lattices of the algebras in a given
variety.
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may not supply sufficient data to establish, too, a finite bound on the size of the

critical algebras of such a V(n); rather, we suggest that, as a preliminary heuristic,

replacing many of the occurrences of the concept of nilpotence in the Oates-Powell

proof with that of supernilpotence may yield an affirmative solution to Problem 1.3.

In the Oates-Powell proof, a key theorem provides a consequence of criticality in

an arbitrary group, which has implications concerning the structure of certain of its

nilpotent factors (we have in mind here Theorem 51.37 from Neumann (1967).) We

have found what seems to be a natural generalization of this result, but it concerns

instead the notion of supernilpotence. On the other hand, in group theory, nilpotence

and supernilpotence coincide. Indeed, it has been established via Aichinger and

Mudrinski (2010) and Kearnes (1999) that a given nilpotent algebra in a congruence

permutable variety is supernilpotent if and only if it is the direct product of algebras

of prime power order, which, as is well known, characterizes nilpotence in the group

setting. Furthermore, one can observe in the proof of the Oates-Powell result that this

feature of nilpotent groups—that is, that each such is the direct product of its Sylow

subgroups—appears to play an apparently indispensable role in their analysis. For

this reasons, we suggest further study of the concept of supernilpotence, supplemented

by the results of Aichinger and Mudrinski (2010), Kearnes (1999), and what we

have been able to establish below may finish the work started here in answering

Problem 1.3. In particular, we ask whether some fragments of Sylow theory might

extend to quasigroups with operators; work in this direction seems to very new,

judging by a recent, relevant paper of Smith (2015), but which may have some useful

antecedents and groundwork provided in Kearnes (1999) and others.

Taken as a whole, this thesis can be viewed as a collection of new results in

the study of the commutator, nilpotence, and related phenomena in algebras of a

fairly general nature. In Chapter 2, we define the higher commutator of Bulatov

(2001), via which the concept of supernilpotence is defined. Then, building on the
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work of Aichinger and Mudrinski (2010) and the very insightful contributions of

Opršal (2014+), we establish the results concerning supernilpotence in congruence

permutable varieties mentioned above, while, on the way, noting some new results

concerning the higher commutator and, employing a slightly modified perspective rel-

ative to Opršal’s, some new proofs of existing results, which we hope only continue the

useful simplifications of Aichinger and Mudrinski’s theorems offered by Opršal. We

would like to note here, however, that the work we pursued concerning supernilpo-

tence was driven out of a desire to generalize Theorem 51.37, Lemma 33.44, and

Lemma 33.37 in Neumann (1967). Indeed, where certain of our results (especially

Theorem 2.24) can be viewed as a gloss on Opršal (2014+) they can also be viewed

as a close generalization of some work of Graham Higman, as presented in Neumann

(1967), p. 88 (especially Lemma 33.44).

In Chapter 3, in addition to establishing Theorem 1.4 and some of its interesting

consequences (as well as generalizing other of the results relevant to the Oates-Powell

result, as presented in Neumann (1967)) we conduct further analysis of a Frattini

congruence, given first by Kiss and Vovsi (1995), while introducing another, as well,

which together seem to lend further legitimacy to the claim that such generalizes the

group-theoretic concept of Frattini subalgebra. We conclude that chapter by offering

a handful of relatively narrow questions the resolution of any of which would resolve

Problem 1.3.

In Chapter 4, we publicize an apparently known fact which seems to have mostly

been consigned to the folkloric background of the field: that any solvable algebra

in a variety with a difference term—and, indeed, with a so-called “weak difference

term”—generates a congruence permutable variety. Thus, the result of Freese and

Vaughan-Lee, given above as Theorem 1.1, can be more strongly stated (owing also to

the fact that nilpotence entails solvability). However, in Chapter 4, we also undertake

a novel study of this fact, revealing it to be the consequence of a new “homomorphism”
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property of the commutator in varieties with a difference term, which we argue might

be as sharp a result as can be expected. We obtain this property by first noting two

other new results that may be of independent interest: We offer a new (apparently

sharp) order-theoretic property of the commutator in difference term varieties and a

new result concerning affine behavior in varieties with a difference term. This latter

result also enables us to show that the same set of equations given by Freese and

McKenzie to characterize nilpotence of fixed class in congruence modular varieties

holds also in varieties with a difference term. We do this by newly demonstrating that

the natural generalization of nilpotence with reference to the “upward central series”

from group theory is equivalent to nilpotence as traditionally defined, provided one is

working in a variety with a difference term. (That this last result holds in congruence

modular varieties is implicitly given in Freese and McKenzie (1987), but, apparently,

has not been previously noted to hold under the weaker assumption of the presence

of a difference term.)

We conclude with a selection of questions and problems generated in the course of

producing the work in this thesis. We also offer in the appendix a fairly comprehensive

presentation of the background material necessary to digest the work to which we now

turn.
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Chapter 2

On centralizers and commutators of higher

order

The following concerns the “higher centralizer” and commutator and the accompany-

ing notion of supernilpotence, concepts first developed by Bulatov (2001), later ap-

plied by Aichinger and Mudrinski (2010), and simplified by Opršal (2014+).1 Building

on the work of these authors as well as that of Ralph Freese (1987) and Vaughan-Lee

(1983) we obtain a broadening of the finite basis result of Freese and Vaughan-Lee,

which shall be given below as Theorem 2.30. In the process, we derive a few other

overlooked (or previously unneeded) results concerning the higher centralizer, com-

mutator, and supernilpotence. Furthermore, the technology we develop also lends

itself to establishing a “finiteness condition” for critical algebras resembling one got

through techniques of Graham Higman (when he supplied a second proof of Lyndon’s

finite basis result for nilpotent groups) and which is key in the proof of the Oates-

Powell result. (It is our hope that this finiteness condition may find a role in an

Oates-Powell-style proof of a finite basis result for finite, nilpotent algebras.) We also

point out that results concerning supernilpotence lend themselves to a very exact

generalization of Higman’s Lemma, as given in Neumann (1967) as Corollary 33.44.

Building on the work of Opršal, we are able to give simpler proofs for the results we

shall require from Aichinger and Mudrinski, making this exposition fairly independent

of these latter researchers (but very close to that of Opršal.)

1Thank you to Jakub Opršal, who was game for my bouncing various ideas off of him this spring
regarding his December 2014 submission to ArXiv.org.
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We begin with the definition of the “higher centralizer” given by Bulatov and

others. (See Aichinger and Mudrinski (2010), Definition 3.1.) Below, for a given

binary relation R over set A and any natural number `, we shall use R` to denote

{〈a,b〉 ∈ A` × A` | a(i)R b(i)}.

Definition 2.1. For any algebra A and congruences θ0, . . . , θn−1, γ on A, we define

an (n + 1)-ary relation on Con A, denoted by Cn(θ0, . . . , θn−1; γ). We say that this

relation is satisfied by θ0, . . . , θn−1; γ according to the following conditions.

Let `0, . . . , `n−1 be natural numbers. For each i < n, let 〈ai,bi〉 ∈ θ`ii . Let t be

a term operation (or, without loss of generality, polynomial) for A of rank ∑i<n `i.

Then whenever

t(x0, . . . ,xn−2, an−1) γ t(x0, . . . ,xn−2,bn−1),

for all choices of

〈x0, . . . ,xn−2〉 ∈ {a0,b0} × · · · × {an−2,bn−2} \ {〈b0, . . . ,bn−2〉},

we must also have that

t(b0, . . . ,bn−2,bn−1) γ t(b0, . . . ,bn−2,bn−1).

Let us call this the n-rank term condition. We shall usually drop the superscript (n)

decorating its symbol, but its availability is sometimes convenient.

Proposition 2.2. Let n be a natural number. Let A be any algebra. Let θ0, . . . , θn−1, γ

be congruences of A. Let σ be any permutation of the set {0, . . . , n − 2}. Then

C(θ0, . . . , θn−1; γ) holds if and only if C(θσ(0), . . . , θσ(n−2), θn−1; γ) holds.

Proof. This is evident from the definition above, using also the fact that any term

algebra is closed under permutations of its variables.

It is convenient to frame the rank-n term condition in some other ways as well.

But, to do so, we need to build some notation for the manipulation of natural number

indices.
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For any natural number n, let βn be the binary ω-tuple associated with the binary

expansion of n. That is, for example, we have β5 = 〈1, 0, 1, 0, 0, . . . 〉, while β8 =

〈0, 0, 1, 0, . . . 〉. Let B be the set of all βn, for n ∈ ω. Let 2 = {0, 1}. We endow 2

with the boolean operations, a join, meet, and complement, plus the usual binary

addition, denoting them, respectively, ∨, ∧, ′, and ⊕. Write 2 = 〈2,∧,∨,′ ,⊕〉. Note

that B is a subset of 2ω and, furthermore, that it is closed under the operations just

provided.

Now, we let ω inherit the operations on B via the bijection β : ω → B defined by

β(n) = βn. For instance, for any n,m ∈ ω, we set n ∨m = β−1 (βn ∨ βm) . By way

of example and using an abbreviated form, note that β3 = 〈1, 1, 0〉 and β5 = 〈1, 0, 1〉,

and so we have that

3 ∨ 5 = β−1〈1, 1, 1〉 = 7,

3 ∧ 5 = β−1〈1, 0, 0〉 = 1, and

3⊕ 5 = β−1〈0, 1, 1〉 = 6.

For any power indexed by ω, say P = Sω, for a given set S, we use the structure

given to ω above to define three classes of useful maps on P . Let r ∈ ω and f ∈ P .

We set

ρPr f = ρPr 〈f(n) | n ∈ ω〉 = 〈f(n ∨ r) | n ∈ ω〉;

we let

εPr f = 〈f(n ∧ r) | n ∈ ω〉;

and we set

πPr f = 〈f(n⊕ r) | n ∈ ω〉.

Of course, it is also possible to define these sorts of maps on a given set—rather than

a direct power—indexed by ω; we shall do so below for the standard set of variables.

Furthermore, for any natural number n and any direct power P indexed by n, we can

define a similar set of maps for P .
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The following is clear from the nature of the operations for 2ω.

Proposition 2.3. Let n be a natural number. Let P be any power indexed by 2n.

The sets {ρPr | r < 2n} and {πPr | r < 2n} are generated by maps of the form ρPr and

πPr , respectively, where r < 2n and βr(i) = 1 for at most one i ∈ ω—that is, so that

r = 2j for some j < n. The set {εPr | r < 2n} is generated by maps of the form εPr

with r < 2n and βr(i) = 0 for at most one i ∈ ω— that is, so that r = 2n− 1− 2j for

some j < n.

Definition 2.4. Let A be an algebra, and let n be a natural number. Let θ0, . . . , θn−1

be congruences on A. For n > 0, we let P (θ0, . . . , θn−1) be the set of all 2n-tuples, a,

of the form

a = 〈〈a, b〉(βr(i)) | r < 2n〉,

such that i < n and 〈a, b〉 ∈ θi. (Note that 〈a, b〉(0) = a, while 〈a, b〉(1) = b.) Now,

let Q(θ0, . . . , θn−1) be the subalgebra of A2n generated by P (θ0, . . . , θn−1). Also, for

any e ∈ Q(θ0, . . . , θn−1), write e◦ for its projection onto its first 2n − 1 coordinates;

similarly, let Q◦(θ0, . . . , θn−1) be the projection of Q(θ0, . . . , θn−1) onto its first 2n−1

coordinates.2

It is helpful to view an example of a P and Q. Let A be an algebra with con-

gruences θ0, θ1, θ2. Let 〈ai, bi〉 ∈ θi, for each i < 3. Typical elements of P (θ0, θ1, θ2)

are

a0 = 〈a0, b0, a0, b0, a0, b0, a0, b0〉,

a1 = 〈a1, a1, b1, b1, a1, a1, b1, b1〉, and

a2 = 〈a2, a2, a2, a2, b2, b2, b2, b2〉.

2Q(θ0, . . . , θn−1) is defined also in Opršal; however, it is called ∆(θ0, . . . , θn−1), there. See
Definition 3.1 in Opršal (2014+).
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Let t be a ternary term operation for A; consider

t(a0, a1, a2) = 〈t(a0, a1, a2), t(b0, a0, a2), t(a0, b1, a2), t(b0, b1, a2)

t(a0, a1, b2), t(b0, a1, b2), t(a0, b1, b2), t(b0, b1, b2)〉

as an illustrative example of an element of Q(θ0, θ1, θ2).

The following is evident from the definitions, together with Proposition 2.2. (See

also Lemmas 3.2 and 3.3 from Opršal (2014+).)

Proposition 2.5. Let A be an algebra with congruences θ0, . . . , θn−1. Then

C(θ0, . . . , θn−1; γ)

holds if and only if for all e ∈ Q(θ0, . . . , θn−1), for all i < 2n−1, whenever, for

each j < 2n−1 with j 6= i, we have that e(j) γ e(j + 2n−1), then we must have that

e(i) γ e(i+ 2n−1), as well.

Remark 2.6. For any natural number n, let νn be the natural projection of B ≤ A2n

onto A2n−1×A2n−1 . It is not difficult to show that for A ∈ V , Mal’cev, for any natural

number n, and any θ0, . . . , θn−1 ∈ Con A, ∆(θ0, . . . , θn−1) := νnQ(θ0, . . . , θn−1) is a

congruence on Q(θ0, . . . , θn−2); in fact, it turns out to be the least congruence on

Q(θ0, . . . , θn−2) to include the pairs νn〈〈a, b〉(βr(n − 1)) | r < 2n〉 such that a θn−1 b.

In particular, ∆(θ0, θ1) = ∆θ1
θ0 as given in Definition A.36. See Lemma 3.4, from

Opršal (2014+), for a related observation.

Proposition 2.7. Let n be a natural number. For any algebra A with congruences

θ0, . . . , θn−1 and for all r < 2n, we have that Q := Q(θ0, . . . , θn−1), is closed under

ρA
2n

r , εA2n

r , and πA2n

r .

Proof. Let r < 2n. Write ρr = ρA
2n

r , εr = εA
2n

r , and πr = πA
2n

r . Let a ∈ Q. Then, for

some term t of rank, say r, and tuples a0, . . . , ar−1 ∈ P ,

a = 〈tA(a0(s), . . . , ar−1(s)) | s < 2n〉.
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Thus, we have that ρra = 〈tA(a0(s ∨ r), . . . , ar−1(s ∨ r)) | s < 2n〉 (and similarly

for εr or πr substituted for ρr). Thus, it is apparent that we need only show that

P := P (θ0, . . . , θn−1) is closed under ρr, εr, and πr. To show that P is closed under

ρr, by Proposition 2.3, we need only show the case of r = 2i for some i < n. So,

suppose a ∈ P . Let 〈a, b〉 ∈ θj, for some j < n, witness this; that is, suppose that

a = 〈〈a, b〉(βs(j)) | s < 2n〉. Then ρ2ia = 〈〈a, b〉(βs∨2i(j)) | s < 2n〉. Now, note that

if j 6= i, then for any s < 2n, βs∨2i(j) = βs(j). On the other hand, for any s < 2n,

we have that βs∨2i(i) = 1. Thus, ρ2i either leaves a unchanged or maps it to the

constantly-b tuple. In either case, ρ2ia ∈ P , and thus, Q is closed under ρr.

That P is closed under εr involves a similar demonstration, and so we omit it.

We now show that P is closed under πr. Using the same a from above, we shall show

that πra ∈ P . Again, by Proposition 2.3, it is sufficient to show the case of r = 2i

for some i < n. We consider by cases. First suppose that j 6= i. Then we have that,

for any s < 2n− 1, βs⊕2i(j) = βs(j). Thus, in this case, πra = a. On the other hand,

we have that

βs⊕2i(i) =


0 if βs(i) = 1

1 if βs(i) = 0.

It follows that

πra = πr〈〈a, b〉(βs(i)) | s < 2n − 1〉

= 〈〈a, b〉(βs⊕r(i)) | s < 2n − 1〉

= 〈〈b, a〉(βs(i)) | s < 2n − 1〉.

From this it is clear that P (θ0, . . . , θn−1) is closed under πr.

The following is (nominally) new. I considered this first as a way to generalize

Theorem 51.37 from Neumann (1967). However, it is essentially the same as Opršal’s

“fork-description” of Bulatov’s higher centralizer, as given by Opršal (2014+), Propo-

sition 3.6.
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Definition 2.8. For any algebra A and congruences θ0, . . . , θn−1, γ on A, we define

an (n + 1)-ary relation on Con A, denoted by Cn
2 (θ0, . . . , θn−1; γ). We say that this

relation is satisfied by θ0, . . . , θn−1; γ whenever given n pairs of tuples (of any length

`i), such that 〈ai,bi〉 ∈ θ`ii and given term operations (or, without loss of generality,

polynomials) t and s over A of appropriate rank, if s(x0, . . . ,xn−1) γ t(x0, . . . ,xn−1),

for all choices of

〈x0, . . . ,xn−1〉 ∈ {a0,b0} × · · · × {an−1,bn−1} \ {〈b0, . . . ,bn−1〉},

then we must also have that s(b0, . . . ,bn−1) γ t(b0, . . . ,bn−1). Let us call this the

n-rank two-term condition. Again, we will most often drop the superscript (n) in its

notation.

Proposition 2.9. Let n be any natural number, and let σ be a permutation of

{0, . . . , n−1}. Let A be an algebra. Let θ0, . . . , θn−1, γ Con A. Then C2(θ0, . . . , θn−1; γ)

holds if and only if C2(θσ(0), . . . , θσ(n−1); γ) holds.

Proof. This is clear from the definition of Cn
2 above and the fact that, the set of terms

given by any signature is closed under permutations of the variables.

The following is also not difficult to see from the definitions.

Proposition 2.10. Let n be a natural number. Let A be an algebra with congruences

θ0, . . . , θn−1, γ. Then C2(θ0, . . . , θn−1; γ) holds if and only if for natural numbers r,

for all rank-r terms t and s given by the signature of A, and for all a0, . . . , ar−1 ∈

P (θ0, . . . , θn−1), we have that

sQ◦(a◦0, . . . , a◦r−1) γ2n−1 tQ
◦(a◦0, . . . , a◦r−1)

implies

sA(a0(2n − 1), . . . , ar−1(2n − 1)) γ tA(a0(2n − 1), . . . , ar−1(2n − 1)).
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Recall that a quasiequation φ is any first order formula of the form

φ = ε0 ∧ · · · ∧ εr−1 → εr,

where r is a natural number and, for each i < r, εi is an equation. It is well known

that (universal) satisfaction of quasiequations is preserved under the formation of

subalgebras and products.

Proposition 2.11. Let n be a natural number. Let A be any algebra. Then there is

a set Σ of (universally quantified) quasiequations such that Cn(1A, . . . , 1A; 0A) holds

if and only if A |= Σ. Similarly, there is a set Σ2 of quasiequations such that

Cn
2 (1A, . . . , 1A; 0A) holds if and only if A |= Σ2.

Proof. We will show the second claim, with the first being similar. We let Σ2 be the

set of all quasiequations φ of the form

φ = ε0 ∧ · · · ∧ ε2n−2 → ε2n−1,

where, for each r < 2n,

εr = δrt(x0, . . . ,xn−1) ≈ δrs(x0, . . . ,xn−1),

where t, s are any terms in the pairwise distinct tuples x0, . . . ,xn−1, of pairwise dis-

tinct variables, and δr is a substitution sending, for each i < n,

xi 7→


zi if βr(i) = 0

xi otherwise
,

with z0, . . . , zn−1 another list of pairwise distinct tuples of pairwise distinct variables,

each of which is assumed also not to appear as a variable in xi for any i < n. That

Σ2 has the desired property is immediate from Definition 2.8.

The following is easy, but—apparently—new. See also Proposition 3.6 in Opršal

(2014+) for a special case of this.
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Proposition 2.12. Let A be any algebra. Let θ0, . . . , θn−1, and γ be congruences on

A. Then C2(θ0, . . . , θn−1; γ)⇒ C(θ0, . . . , θn−1; γ).

Proof. Assume that C(θ0, . . . , θn−1; γ) holds. Let t be any term operation for A of

rank, say r. Let `0, . . . , `r−1 be natural numbers so that ∑ `i = r. For each for i < n,

take pairs 〈ai,bi〉 ∈ θ`ii . Suppose that

t(x0, . . . ,xn−1, an−1) γ t(x0, . . . ,xn−1,bn−1),

for all x0, . . . ,xn−2 with xi ∈ {ai,bi} and xi = ai for at least one i < n− 1. We need

to show that

t(b0, . . . ,bn−2, an−1) γ t(b0, . . . ,bn−2,bn−1).

Set L(x0, . . . ,xn−1) := t(x0, . . . ,xn−2, an−1) and R := t.

Observe that if xn−1 = an−1, then

L(x0, . . . ,xn−1) = t(x0, . . . ,xn−2, an−1)

= R(x0, . . . ,xn−1).

On the other hand, if xn−1 = bn−1 but xi = ai for some i < n−1, then, by assumption,

L(x0, . . . ,xn−1) = t(x0, . . . ,xn−2, an−1)

γ t(x0, . . . ,xn−2,bn−1)

= R(x0, . . . ,xn−1).

Thus, we see that whenever xi ∈ {ai,bi} for each i < n such that xi = ai for at least

one i < n, we get that L(x0, . . . ,xn−1)γR(x0, . . . ,xn−1). By C2(θ0, . . . , θn−1; γ), then,

we may conclude that

t(b0, . . . ,bn−2, an−1) = L(b0, . . . ,bn−1)

γ R(b0, . . . ,bn−1)

= t(b0, . . . ,bn−1),

as we wished.
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Proposition 2.13. Let n be a natural number. Let V be a variety so that for any

A ∈ V, Cn
2 (1A, . . . , 1A; 0A) holds. Then, for any critical algebra C ∈ V, we have that

|C| ≤ |FV(n)|. In particular, if FV(n) is finite, then V has a finite critical bound.

Proof. Let C be a critical algebra in V . Then there is an equation t ≈ s in the

language of V that fails to hold in C but that holds in all proper factors of C. Since

any witness of the failure of t ≈ s in C involves finitely many elements of C, we can

find a t ≈ s with a minimal such failure. Suppose that t ≈ s has a minimal witness

to its failure, say a = 〈a0, . . . , ak−1〉. We claim that k ≤ n. Suppose instead that

k > n. For each r < 2n, let δr be a substitution including, for each i < n,

δxi =


xn if βr(i) = 0 and i < n

xi otherwise.

Then, by the minimality of k, we have that, for all r < 2n − 1,

δrt
C(x0, . . . , xk−1)[a] = δrs

C(x0, . . . , xk−1)[a] :

after all, each of these equations involves at most k− 1 variables. On the other hand,

since Cn
2 (1C , . . . , 1C ; 0C) holds, we may conclude that

tC(a0, . . . , ak−1) = sC(a0, . . . , ak−1),

contrary to our assumptions. Thus, the claim is good. It follows that all critical

algebras in V are at most n-generated, and hence for critical C ∈ V , we get the

bound |C| ≤ |FV(n)|.

2.1 On cube terms and strong cube terms

The following definition is adapted from Berman, Idziak, Marković, McKenzie, Vale-

riote, and Willard (2010); see their Definition 2.5.
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Suppose that A is in a variety with a term q of rank 2n − 1 and for which the

equation

q(〈z, x〉(βj(i)) | j < 2n − 1) ≈ x, (2.1)

holds for every i < n. (Note that this implies that q is idempotent.) Thus, for

e = 〈〈a, b〉(βj(i)) | j < 2n〉 ∈ P , qA(e◦) = b. Consider the example of n = 3. We shall

call a q of this form an n-cube term, following Berman, Idziak, Marković, McKenzie,

Valeriote, and Willard (2010). Consider the case of n = 3; a 3-cube term q satisfies

the equations

q(z, x, z, x, z, x, z) ≈ x

q(z, z, x, x, z, z, x) ≈ x, and

q(z, z, z, z, x, x, x) ≈ x.

Lemma 2.14. Let n be a natural number. Let A be an algebra in a variety with

n-cube term, q. Let θ0, . . . , θn−1, γ be congruences on A. Let η be the natural quotient

map of A onto A/γ. Write Q = Q(θ0, . . . , θn−1). Then η ◦ qA : Q◦ → A/γ is a

homomorphism if and only if, for any e ∈ Q, qA(e◦) γ e(2n − 1).

Proof. First, suppose that η ◦ qA : Q◦ → A/γ is a homomorphism. Let e ∈ Q.

Then we can write e = tQ(a0, . . . , ar−1) for some term t of whatever rank s and

for a0, . . . , as−1 ∈ P . We need to show that η ◦ qA(e◦) = η(e(2n − 1)). We show

by inducting on the complexity of t. The basis step is done by noting first that

if t is a projection or a constant function, then e ∈ P : In this case, we have that

qA(e(0), . . . , e(2n−2)) = e(2n−1), owing simply to the fact that the n-cube equations

hold for q.

Now, for the inductive step, write

e = fQ(tQ0 (a0, . . . , as−1), . . . , tQr−1(a0, . . . , as−1)),

where f is some fundamental operation symbol of rank r and ti is a term for each

i < s. Write ei = tQi (a0, . . . , as−1) for each i < s. Then, by (the standard) inductive
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hypothesis and since η ◦ qA restricted to Q◦ is a homomorphism,

η ◦ qA(e◦) = η ◦ qA(fQ◦(e◦0, . . . , e◦r−1))

= fA/γ(η ◦ qA(e◦0), . . . , η ◦ qA(e◦r−1))

= fA/γ(η(e◦0(2n − 1)), . . . , η(e◦r−1(2n − 1)))

= η
(
fA(e◦0(2n − 1)), . . . , e◦r−1(2n − 1))

)
= η(e(2n − 1)).

Thus, the forward direction is completed by induction.

Now, suppose that, for any e ∈ Q, qA(e◦) γ e(2n − 1). Let f be a fundamental

operation symbol of arity, say, r. Let e0, . . . , er−1 ∈ Q. Write e = fQ(e0, . . . , er−1).

Then, by hypothesis,

η ◦ qA(fQ◦(e◦0, . . . , e◦r−1)) = η ◦ qA(e◦)

= η(e◦(2n − 1))

= η(fA(e0(2n − 1), . . . , er−1(2n − 1)))

= fA/γ(η(e0(2n − 1)), . . . , η(er−1(2n − 1)))

= fA/γ(η ◦ qA(e◦0), . . . , η ◦ qA(e◦r−1)).

Lemma 2.15. Let n be a natural number. Let A be an algebra in a variety with

n-cube term, q. Let θ0, . . . , θn−1, γ be congruences on A. Let η be the natural quo-

tient map of A onto A/γ. Write Q = Q(θ0, . . . , θn−1). If η ◦ qA : Q◦ → A/γ

is a homomorphism, then C2(θ0, . . . , θn−1; γ) holds (and hence, by Proposition 2.12,

C(θ0, . . . , θn−1; γ) holds, as well).

Proof. Let s and t be any terms of rank, say, r. Let a0, . . . , ar−1 ∈ P (θ0, . . . , θn−1). For

each i < n, we have a ji < n and 〈ai, bi〉 ∈ θji such that ai = 〈〈ai, bi〉(βs(ji)) | s < 2n〉.

Suppose that

sQ◦(a◦0, . . . , a◦r−1) γ2n−1 tQ
◦(a◦0, . . . , a◦r−1).
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But, then, by Lemma 2.14, we get that,

sA(b0, . . . , br−1) γ qA(sQ◦(a◦0, . . . , a◦r−1))

γ qA(tQ◦(a◦0, . . . , a◦r−1))

γ tA(b0, . . . , br−1).

Corollary 2.16. Let n be a natural number. Let V be a variety with an n-cube term.

Suppose also that, for all A ∈ V, the restriction of qA to Q◦ = Qn(1A, . . . , 1A)◦ is a

homomorphism. Then, for any critical algebra C ∈ V, we have that |C| ≤ |FV(n)|.

In particular, if FV(n) is finite, then V has a finite critical bound.

Proof. This is immediate from Proposition 2.13 and Lemma 2.15.

2.1.1 On strong cube terms and congruence permutability

Let V be a variety with a Mal’cev term, p. Let X = {xn | n ∈ ω} be the usual set of

variables.

For each r ∈ ω, we can define an endomorphism on F = FV(ω) by homomorphi-

cally extending the maps

ρXr xn = xn∨r.

Let ρ̄r stand for the endomorphism induced on F by ρXr . Note that these endomor-

phisms pairwise commute. (This follows from the fact that ∨ is commutative on

2ω.)

Similarly, for each natural number r, we let ε̄r stand for the endomorphisms got

by homomorphically extending the maps

εXr xn = xn∧r.

Again, we get that these maps commute.
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Now, we shall recursively build, for each natural number n > 0, a term qn for V

in the variables {xn | n < 2n − 1}. Set

q1(x0) = x0.

Now, for n > 1, define

qn(x0, . . . , x2n−2) = p(x2n−1−1, qn−1(x0, . . . , x2n−1−2), qn−1(x2n−1 , . . . , x2n−2)).

It is also useful to note that q2(x0, x1, x2) = p(x1, x0, x2) and that

qn(x0, . . . , x2n−2) = q2(qn−1(x0, . . . , x2n−1−2), x2n−1−1, qn−1(x2n−1,...,x2n−2))

= q2(qn−1(x0, . . . , x2n−1−2), x2n−1−1, ρ̄2n−1qn−1(x0, . . . , x2n−1−2)).

In Opršal (2014+) (see his p. 8), these terms qn are also defined; he calls them

strong cube terms there.

Proposition 2.17. For each n > 0, let qn be the term for variety V with Mal’cev

term p, as defined above. Then, for each n > 0 and any r : 0 < r < 2n,

V |= ρ̄rqn(x) ≈ x2n−1.

Proof. We will induct on n > 0. For the case n = 1, we have that 2n = 2 and so we

need to verify the claim for r = 1; in this case,

ρ̄rq1(x0) := ρ1x0 = x0∨1 = x1.

Now, suppose that the theorem has been verified for the case n = m − 1. Get

r : 0 < r < 2m. Note that

ρrqm(x) = p(x(2m−1−1)∨r,

ρrqm−1(x0, . . . , x2m−1−2),

ρ̄rρ̄2m−1qm−1(x0, . . . , x2m−1−2)).
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We show by cases, supposing first that r < 2m−1 (in particular, βr(m − 1) = 0, and

hence 2m−1 − 1 ∨ r = 2m−1 − 1). Then, by inductive hypothesis, we have that

V |= p(x(2m−1−1)∨r, ρ̄rqm−1(x0, . . . , x2m−1−2), ρ̄rρ̄2m−1qm−1(x0, . . . , x2m−1−2))

≈ p(x2m−1−1, x2m−1−1, ρ̄2m−1x2m−1−1)

= p(x2m−1−1, x2m−1−1, x2m−1)

≈ x2m−1.

Now suppose that ris such that 2m−1 ≤ r < 2m. Then, βr(m − 1) = 1 and so

r ∨ 2m−1 = r, while r ∨ (2m−1 − 1) = 2m − 1. In particular, ρ̄rρ̄2m−1 = ρ̄r, while

ρ̄rx2m−1−1 = x2m−1. Thus,

V |= p(x(2m−1−1)∨r, ρ̄rqm−1(x0, . . . , x2m−1−2), ρ̄rρ̄2m−1qm−1(x0, . . . , x2m−1−2))

≈ x2m−1.

The proposition follows by induction.

Next is a theorem equivalent to the previous, but which is worth stating in its

own right:

Proposition 2.18. Let n be a natural number. Let qn be the term for variety V with

Mal’cev term p, as defined above. Then, for any r < 2n − 1,

V |= ε̄rqn(x) ≈ ε̄rx2n−1 = xr.

Proof. We prove by induction on n. If n = 1, then r < 2n − 1 = 1 means that

r = 0. Thus, since q1(x0) = x0, this case is trivial. Now, suppose that the proposition

has been verified for the (n − 1)-case. Let r < 2n. By Proposition 2.7, we need

only consider the case of r such that βr(i) = 0 for just one i < n—that is, so that

r = 2n − 1− 2i for some i < n. We consider by cases, first supposing that i < n− 1.

Note, then, that ε̄rρ̄2n−1 = ρ̄2n−1 ε̄r. Using this and the inductive hypothesis, we
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calculate that

ε̄qn(x0, . . . , x2n−2) = ε̄rq2(qn−1(x0, . . . , x2n−1−2), x2n−1−1, ρ̄2n−1qn−1(x0, . . . , x2n−1−2))

≈ q2(xr, x2n−1−1−2i , ρ̄2n−1xr)

= q2(xr, xr, xr) ≈ xr.

Now, suppose that i = n − 1 and hence that r = 2n−1 − 1. Note, then, that

ε̄r leaves qn−1(x0, . . . , x2n−1−2) unchanged while mapping qn−1(x2n−1 , . . . , x2n−2) to

qn−1(x0, . . . , x2n−1−2). We thus get that

ε̄rqn(x0, . . . , x2n−2) = q2(ε̄rqn−1(x0, . . . , x2n−1−2), ε̄rx2n−1−1, ε̄rqn−1(x2n−1 , . . . , x2n−2))

≈ xr.

The result follows by induction.

It is worth noting that, for each natural number n, the term qn can be used to

“complete an n-dimensional hypercube” in the same way that the Mal’cev term—as

shown in Mal’cev’s classic result—“completes a parallelogram.” For instance, let A be

any algebra in a variety with a Mal’cev term, p, and congruences α, β. Let a, b, c ∈ A

such that if bαaβ c, then bβ pA(b, a, c)αc. In preparation to generalize this, consider

an overly-pedantic restatement of this fact: if θ0, θ1 ∈ Con A and a0, a1, a2 ∈ A such

that, for any i < 2, and r, s : 0 ≤ r < s < 3 with βr(i) 6= βs(i) and βr(j) = βs(j) for

j 6= i, we have ar θi , as, then, for each i < 2, q2(a0, a1, a2) θi a3−2i .

We can generalize this procedure and formalize the point we are trying to make.

Let n be a natural number. Let V be a variety. Let θ0, . . . , θn−1 ∈ Con A. Let

D(θ0, . . . , θn−1) be the set of all 〈a0, . . . , a2n−1〉 ∈ A2n such that, for all s, r with

0 ≤ s ≤ r < 2n, asθiar whenever, βs(j) = βr(j) for all j 6= i (that is, when their binary

expansions differ at most in the ith coordinate). We denote by D◦(θ0, . . . , θn−1) the

projection of D(θ0, . . . , θn−1) onto its first 2n−1 coordinates and denote by a◦ the im-

age of a given element a ∈ A2n under this same sort of projection. We say that A has
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the n-dimensional hyper-parallelogram completion property—abbreviated HA(n)—

provided for any θ0, . . . , θn−1 ∈ Con A, and any 〈a0, . . . , a2n−1〉 ∈ D(θ0, . . . , θn−1),

there exists an a∗ ∈ A such that, 〈a0, . . . , a2n−2, a
∗〉 is in D(θ0, . . . , θn−1). We say that

variety V has the property H(n) provided HA(n) holds for all A ∈ V .

Definition 2.19. Let V be a variety. Let n be a natural number. Suppose that V

has a term function pn in 2n − 2 variables that satisfies the equations displayed in

Proposition 2.18, which we reproduce here: For all r < 2n − 1,

V |= ε̄rpn(x0, . . . , x2n−2) ≈ xr.

We say that pn is a strong n-cube term for V .

Theorem 2.20. Let V be variety, and let n be a natural number. Then V has the

property H(n) if and only if V has a strong n-cube term.

Proof. First, suppose that V exhibits the property, H(n). Consider F := FV(2n− 1).

For each r < 2n, let ε̄r denote the endomorphism of F similar to that given above.

For each i < n, let

θi = CgF{〈xr, xs〉 | βr(i) 6= βs(i) and βr(j) = βs(j) for all j 6= i}.

Then, of course, 〈x0, . . . , x2n−2〉 ∈ D◦(θ0, . . . , θn−1). Since F has the property HF(n),

we have some rank-(2n − 1) term pn such that

〈x0, . . . , x2n−2, p
F
n (x0, . . . , x2n−2)〉 ∈ D(θ0, . . . , θn−1).

Let i < n, and set r = 2n − 1− 2i. Note that θi = ker ε̄r. Thus,

ε̄rp
F
n (x0, . . . , x2n−2) = xr.

Now, for arbitrary r < 2n−1, we can write r = 2n−1−∑i∈S 2i, with S ⊆ {0, . . . , n−1}.

By inducting on |S| > 0, it is not difficult to show that, for any r < 2n − 1,

ε̄rp
F
n (x0, . . . , x2n−2) = xr.
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We have already seen the basis step. For the inductive step, write S = {i0, . . . , ik−1},

with 1 < k ≤ n. Let r = 2n − 1 −
k−1∑
j=0

2ij and r′ = 2n − 1 −
k−2∑
j=0

2ij . By inductive

hypothesis, we may assume that

ε̄r′p
F
n (x0, . . . , x2n−2) = xr′ . (2.2)

Let r′′ = 2n − 1 − 2ik−1 . Note that ε̄r′′ ε̄r′ = ε̄r and also that ε̄r′′xr′ = xr. Applying

ε̄r′′ to both sides of equation 2.2, we thus learn that

ε̄rp
F
n (x0, . . . , x2n−2) = xr.

Now, since F is free for V we thus get that, for all r < 2n − 1,

V |= ε̄rp
F
n (x0, . . . , x2n−2) ≈ xr.

Thus, V has a strong n-cube term.

Now, suppose that V has a strong n-cube term, pn. Let A ∈ V . Let θ0, . . . , θn−1

be congruences of A, and take

〈a0, . . . , a2n−2〉 ∈ D◦(θ0, . . . , θn−1).

Let a∗ = pA
n (a0, . . . , a2n−2); we claim that 〈a0, . . . , a2n−2, a

∗〉 ∈ D(θ0, . . . , θn−1). Choose

an i < n and set r = 2n − 1 − 2i. We need to show that pA
n (a0, . . . , a2n−2) θi ar. We

claim that, for each i < n,

pA
n (a0, . . . , a2n−2) θi (ε̄rpn)A(a0, . . . , a2n−2) = pA

n (a0∧r, . . . , a(2n−2)∧r),

which will prove the claim. We claim that, for any s < 2n, as θi as∧r: Note that

βs(j) = βs∧r(j) for all j < n except possibly for j = i. Since a ∈ D(θ0, . . . , θn−1), the

claim and the result then follow.

This now gives rise to the following characterization of congruence permutability,

an apparently new one.
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Theorem 2.21. Let V be a variety. Then V is congruence permutable if and only if

there is a natural number n such that the n-dimensional hyper-parallelogram comple-

tion property holds across V.

Proof. Above, for arbitrary congruence permutable V , we used a Mal’cev term to

construct a strong n-cube term for V , for each n. Now, as noted in Opršal (2014+),

Lemma 4.1, it is also easy to use a strong n-cube term, for any n, to construct a

Mal’cev term. Thus, the theorem follows by Mal’cev’s characterization of congruence

permutability (Theorem A.21) together with Theorem 2.20.

2.2 “Affine” properties of strong cube terms

In this section, we will prove a generalization of Higman’s Lemma (see Neumann

(1967), propositions 33.42 and 33.44), involving strong cube terms—indeed, we indi-

cate (in a later section, below Corollary 2.53) how one can verify that the manner

in which Higman rewrites any group-term, modulo nilpotence of some class, involves

a strong cube term. Furthermore, we characterize this new version of Higman’s

Lemma in terms of the commutation of the strong cube term with all operations on a

hypercube-indexed subpower of a given algebra. We regard this as suggesting a pos-

sible generalization of the notion of “affine” or at least as depicting supernilpotence

as a generalization of abelianness. We give a second result which we regard as further

suggestive of such a notion.

But first, we note the following purely technical observation for convenience.

Proposition 2.22. Let n be a natural number. Let A be an algebra in a Mal’cev

variety for which the term qn is defined, as above. Let θ0, . . . , θn−1 ∈ Con A. Then

for any r < 2n and any e ∈ Q := Q(θ0, . . . , θn−1),

qA
n ((εQr (e))◦) = (ε̄rqn)A(e◦) = e(r).
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Proof. This is really a direct corollary of Proposition 2.18; we calculate that

qA
n ((εQr e)◦) = qA

n (〈e(j ∧ r) | j < 2n − 1〉)

= (εrqn)A(〈e(j) | j < 2n − 1〉)

= e(r).

The next result can be viewed as a partial generalization of Proposition 5.7 from

Freese and McKenzie (1987). I think of it as concerning “affine behavior.” Its state-

ment and proof should also be compared to that of Opršal (2014+), Lemma 4.2.

Lemma 2.23. Let A be an algebra in Mal’cev variety V. Let θ0, . . . , θn, γ be con-

gruences on A. Let η be the natural quotient map of A onto A/γ. Let Q denote

Q(θ0, . . . , θn−1). Then C(θ0, . . . , θn−1; γ) implies that η ◦ qA
n : Q◦ → A/γ is a homo-

morphism with the property that for any a = 〈a0, . . . , a2n−1〉 ∈ Q,

〈qn(a0, . . . , a2n−2), a2n−1〉 ∈ γ.

Proof. Take any element a ∈ Q. Recall that by Proposition 2.7, ρA2n

r a ∈ Q for all

r < 2n. Consider

e : = qQ
n (ρQ0 a, . . . , ρQ2n−2a)

= 〈qA((ρQ0 a)(s), . . . , (ρQ2n−2a)(s)) | s < 2n〉

We calculate that

e(0) = qA((ρQ0 a)(0), . . . , (ρQ2n−2a)(0))

= qA(a(0 ∨ 0), . . . , a(0 ∨ 2n − 2))

= qA(a(0), . . . , a(2n − 2)).
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On the other hand, for r ∈ {1, . . . , 2n − 1}, we find that by Proposition 2.17,

e(r) = qA
n ((ρQ0 a)(r), . . . , (ρQ2n−2a)(r))

= qA
n (a(r ∨ 0), . . . , a(r ∨ 2n − 2))

= ρ̄rq
A
n (a(0), . . . , a(2n − 2))

= a(2n − 1).

Let a◦ denote the image of a in Q◦; that is, let a◦ = 〈as | s < 2n − 1〉. For each

r : 0 < r < 2n−1, we have that e(r) = e(r+2n−1). Using that C(θ0, . . . , θn−1; γ) holds

and applying Proposition 2.5, we get that

qA
n (a◦) = e(0) γ e(2n−1) = a(2n − 1). (2.3)

Now, take any fundamental operation symbol f . Say that f has rank `. Take, as

well, a0, . . . , a`−1 ∈ Q. Write b = fQ(a0, . . . , a`−1).

We now apply our above findings in two ways. Since γ respects fA and since, for

each i < `, we have that 〈qn(ai◦), ai(2n − 1)〉 ∈ γ, we may conclude that

〈fA(qA
n (a0

◦), . . . , qA
n (a`−1

◦)),b(2n − 1)〉 ∈ γ.

On the other hand, we also have that

〈qn(b◦),b(2n − 1)〉 ∈ γ.

Thus, by the transitivity of γ, we get that

〈fA(qn(a0
◦), . . . , qn(a`−1

◦)), qn(b◦)〉 ∈ γ.

Thus, η ◦ qn : Q◦ → A/γ is indeed a homomorphism.

The last claim of the theorem is evident from Proposition 2.14, in light of the fact

that every strong n-cube term is a an n-cube term.

It is appropriate to compare the following to Proposition 3.6 and Lemma 4.2 of

Opršal (2014+); the result below is implicit in these results of Opršal. However, it
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may also be helpful to see this as a very close generalization of Higman’s Lemma,

which can be found as Corollary 33.44 in Neumann (1967).

Theorem 2.24. For natural number n, A in a Mal’cev variety, and any congruences

θ0, . . . , θn−1, γ on A, the following are equivalent.

(i) C(θ0, . . . , θn−1; γ)

(ii) qn(a0, . . . , a2n−2) γ a2n−1 holds for any 〈a0, . . . , a2n−1〉 ∈ Q(θ0, . . . , θn−1).

(iii) C2(θ0, . . . , θn−1; γ)

Proof. That (i) implies (ii) is one of the results noted in Lemma 2.23. We get that (ii)

implues (iii) from Lemmas 2.14 and 2.15 and the fact that every strong n-cube term

is an n-cube term. The fact that (iii) implies (i) follows from Proposition 2.12.

In Freese and McKenzie (1987) (and elsewhere) it is often used that if A is in a

congruence-permutable variety with Mal’cev term p, and α, β ∈ Con A, then for any

a, b, c ∈ A with aα b β c, we have that

pA(pA(a, b, c), c, b) [α, β] a.

This fact is closely connected with the affine structure available on blocks of abelian

congruences for such an A. We now work toward what appears to be the correct

generalization of this, for a term qn, for a given n, in place of p. We suggest that one

might think of p and, for each n, qn, geometrically (in the way of Gumm) as related

to a projection function, though requiring an entire “frame” of coordinates for its

input.

Proposition 2.25. Let n be a natural number. Let A be an algebra in Mal’cev variety

with term qn as defined above. Let θ0, . . . , θn−1 ∈ Con A. Let Q = Q(θ0, . . . , θn−1).

Let r < 2n. Then for any e ∈ Q, we have that

(π̄rqn)A(e◦) ≡ e(r′) mod S(θ0, . . . , θn−1).
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Proof. Recall from Proposition 2.7 that Q := Q(θ0, . . . , θn−1) is closed under πr :=

πA
2n

r , for each r < 2n. Let e ∈ Q, and set e′ := πre = 〈e(s ⊕ r) | s < 2n〉. Let ≡

denote S(θ0, . . . , θn−1). From Theorem 2.23, we have that qA
n (e′◦) ≡ e′(2n− 1). Note

also that e′(2n − 1) = e((2n − 1)⊕ r) = e(r′). It follows that

(π̄rqn)A(e◦) = (π̄rqn)A(〈e(s) | s < 2n − 1〉)

= qA
n (〈e(s⊕ r) | s < 2n − 1〉)

= qA
n (〈e′(s) | s < 2n − 1〉)

≡ e′(2n − 1)

= e(r′)

Proposition 2.26. Let n be a natural number. Let A be an algebra in a Mal’cev vari-

ety with term qn as defined above. Let θ0, . . . , θn−1 ∈ Con A. Let Q = Q(θ0, . . . , θn−1).

Let r < 2n. Let e ∈ Q, and write e∗ = qA
n (e◦). Let a be any assignment of elements

of A to the variables in X that includes xr 7→ e∗ and, for each i 6= r, xi 7→ e(i⊕ r′).

Then

qA
n (x0, . . . , x2n−2)[a] = e(r).

Proof. Let ≡ stand for S(θ0, . . . , θn−1). Note that e∗ = qA
n (e◦) ≡ e(2n−1) = e(r⊕r′).

Then

qA
n (x0, . . . , x2n−2)[a] ≡ (π̄r′qn)A(e(0⊕ r′), . . . , e((2n − 2)⊕ r′))

≡ e(r)

As an illustration of the previous result, note that, for a given A in a Mal’cev

variety with θ0, θ1, θ2 ∈ Con A and e = 〈e0, . . . , e7〉 ∈ Q(θ0, θ1, θ2), we get that

qA
3 (e6, q

A
3 (e0, e1, e2, e3, e4, e5, e6), e4, e5, e2, e3, e0) ≡ e1 mod S(θ0, θ1, θ2).

35



2.3 Supernilpotence and a broadening of the finite basis result of

Freese and Vaughan-Lee

Definition 2.27. For any algebra A, natural number n and tuple of congruences

Θ = 〈θ0, . . . , θn−1〉, we define the (ordered) commutator of these congruences, denoted

Sn(Θ) as follows. For n = 0—that is, for Θ empty—we set S0(Θ) = 1A. For n = 1,

and so for Θ = 〈θ0〉, we set S1(Θ) = θ0. Otherwise, we let Sn(Θ) be the least

congruence γ on A so that C(θ0, . . . , θn−1; γ). (It is easy to see from the definition of

C(θ0, . . . , θn−1; γ) that one can obtain such.) Typically, for n > 0, we’ll write Sn(Θ) =

S(θ0, . . . , θn−1), with the parameter n thus implied. Note that S2(θ0, θ1) = [θ0, θ1].

Definition 2.28. For a given algebra A, and θ ∈ Con A, we say that θ is supernilpo-

tent of class k whenever for any (k + 1)-tuple of congruences, Θ with Θ(i) = θ for

each i < k + 1, we have that Sk(Θ) = 0A. If 1A is supernilpotent of class k we say

that A is supernilpotent of class k. If θ ∈ Con A (or A) is supernilpotent of class k

for some k, we say that θ (or A) is supernilpotent.

In particular, note that A is supernilpotent of class 0 if and only if A includes

only a single element, while A is supernilpotent of class 1 if and only if A is abelian.

Recall the following result of Freese (1987) and Vaughan-Lee (1983).

Theorem 2.29. (The finite basis result of Freese and Vaughan-Lee) Let A be a finite,

nilpotent algebra in a Mal’cev variety of finite signature. Suppose also that A is the

direct product of algebras of prime power order. Then A has a finite basis for its

equational theory.

Using their result, we now show that a seemingly broader statement of their result

is also true.
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Theorem 2.30. Let n be a natural number. Let V be a locally finite,3 Mal’cev variety

of finite signature consisting solely of class-n supernilpotent algebras. Then V is

finitely based.

Proof. Since V is locally finite we have that FV(n) is finite. By Theorem 2.24 and

Proposition 2.13, we have that V has a finite critical bound. However, since locally

finite algebras are generated by their critical algebras, we have that V is finitely

generated. All that remains to show is that finite supernilpotent algebras are nilpotent

and can be represented as the direct product of prime power algebras. These fact

appear as Lemmas 7.5 and 7.6 in Aichinger and Mudrinski (2010).

Continuing the work of Opršal, we find that we can simplify many of the proofs

of Aichinger and Mudrinski, as well as strengthen some of them in the process. In

particular, we offer proofs of those lemmas leading up to the results just cited in the

above proof. Along the way, we also derive several properties of higher centralizers

and commutators of a fairly basic nature, but which do not seem to have made it

into print before now. Below, we shall further apply many of these results.

2.4 Some properties of higher centralizers and commutators, some

old and some new

Here are two elementary facts one can deduce directly from Definition 2.27 (together

with the definition of C(θ0, . . . , θn−1; γ)), which are not new, but which we shall need.

Proposition 2.31. (Monotonicity of any higher commutator) Let A be an algebra

with congruences θ0, . . . , θn−1, θ
′
0, . . . , θ

′
n−1, for some natural number n. Suppose also

that θ′i ⊆ θi for each i < n. Then

(i) S(θ′0, . . . , θ′n−1) ≤ S(θ0, . . . , θn−1) and

3We also show in Theorem 3.7 that one does not need to assume local finiteness here, either: It
is enough that FV(2) is finite.
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(ii) S(θ0, . . . , θn−1) ≤ θ0 ∩ · · · ∩ θn−1.

To my knowledge, the next result has not yet appeared in print, though it has an

elementary proof.

Proposition 2.32. Let n be a natural number. Let A be any algebra. Let θ0, . . . , θn−1

be congruences on A. Let k < n− 1. Then, for any {i0, . . . , ik−1} ⊆ {0, . . . , n − 2},

we have that

Sn(θ0, . . . , θn−1) ⊆ Sk+1(θi0 , . . . , θik−1 , θn−1).

In particular, if σ is any permutation of {0, . . . , n− 2}, then

S(θ0, . . . , θn−1) = S(θσ(0), . . . , θσ(n−2), θn−1).

Proof. Let ϕ be an injective map from {0, . . . , k−1} into {0, . . . , n−2} such that for

each j < k, ij = ϕ(j). Let γ = Sk+1(θϕ(0), . . . , θϕ(n−2), θn−1). By definition of Sn, it is

sufficient to show that C(θ0, . . . , θn−1; γ) holds. Let `0, . . . , `n−1 be natural numbers,

and, for each i < n, let ai and bi be `i-tuples of elements from A such that ai θ`ii bi.

Let t be any term of rank ∑ `i. Suppose that, for any

〈u0, . . . ,un−2〉 ∈ {a0,b0} × · · · × {an−2,bn−2} \ {〈b0, . . . ,bn−2〉},

we have that tA(u0, . . . ,un−2, an−1) γ tA(u0, . . . ,un−2,bn−1).

Assume that, for each i < n, xi is a tuple of distinct variables whose entries do

not occur in any xj for j 6= i, j < n. Let e be the endomorphism of Pol A defined by

the following substitutions. For all i ∈ imϕ, let exi = xϕ−1(i); also, let exn−1 = xn−1,

and, otherwise, set exi = bi. Let t′ be the image of tA under the map e. It is evident,

then, that for all choices of

〈u0, . . . ,uk−1〉 ∈ {aϕ(0),bϕ(0)} × · · · × {aϕ(k−1),bϕ(k−1)} \ {〈bϕ(0), . . . ,bϕ(k−1)〉},
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we have that t′(u0, . . . ,uk−1, an−1) γ t′(u0, . . . ,uk−1,bn−1). Thus, we find that

tA(b0, . . . ,bn−2, an−1) = t′(bϕ(0), . . . ,bϕ(k−1), an−1)

≡ t′(bϕ(0), . . . ,bϕ(k−1),bn−1)

= tA(b0, . . . ,bn−2,bn−1).

The result follows.

The following is Proposition 6.1 in Aichinger and Mudrinski (2010) and Proposi-

tion 5.1 in Opršal (2014+), but it seems worth noting here as a simple consequence

of the equivalence of the higher term condition and higher two-term condition in

Mal’cev varieties.

Proposition 2.33. Let A be an algebra in a Mal’cev variety. Let θ0, . . . , θn−1 ∈

Con A. Let σ be a permutation of {0, . . . , n− 1}. Then

S(θ0, . . . , θn−1) = S(θσ(0), . . . , θσ(n−2), θσ(n−1)).

Proof. This easily follows from Theorem 2.24, (i) ⇔ (iii) and Proposition 2.9.

The next result is not difficult, but is also apparently new.

Proposition 2.34. Let n be a natural number. Let A be an algebra in a Mal’cev

variety. Let θ0, . . . , θn−1 ∈ Con A. Let k < n. Then, for any {i0, . . . , ik−1} ⊆

{0, . . . , n− 1}, we have that S(θ0, . . . , θn−1) ⊆ S(θi0 , . . . , θik−1).

Proof. This follows immediately from Propositions 2.32 and 2.33.

The first part of the following theorem is given as Proposition 5.2 in Opršal

(2014+) and Lemma 6.2 of Aichinger and Mudrinski (2010). Our proof of this first

statement below is essentially the same as that given by Opršal; we have simply paired

it with a second easy, but possibly overlooked, observation, to which it is related.
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Theorem 2.35. Let A be an algebra in a Mal’cev variety, and let θ0, . . . , θn−1 and γ

be congruences of A. Then

C(θ0, . . . , θn−1; γ) if and only if S(θ0, . . . , θn−1) ≥ γ.

Furthermore, if qn is a strong n-cube term for A, then

S(θ0, . . . , θn−1) = CgA{〈qn(a0, . . . , a2n−2), a2n−1〉 | a ∈ Q(θ0, . . . , θn−1)}.

Proof. Let γ = CgA{〈qn(a0, . . . , a2n−2), a2n−1〉 | a ∈ Q(θ0, . . . , θn−1)}. By Theo-

rem 2.24, we have that C(θ0, . . . , θn−1; γ) holds. Thus, by definition, S(θ0, . . . , θn−1) ⊆

γ. On the other hand, since C(θ0, . . . , θn−1;S(θ0, . . . , θn−1)), we also get that, from

Theorem 2.24, γ ⊆ S(θ0, . . . , θn−1). It follows that γ = S(θ0, . . . , θn−1), as claimed.

Now let γ′ be any congruence on A so that S(θ0, . . . , θn−1) ≤ γ′. But, as we have

just seen, this puts {〈qn(a0, . . . , a2n−2, a2n−1)〉 | a ∈ Q(θ0, . . . , θn−1)} ⊆ γ′. Thus, by

Theorem 2.24, we get that C(θ0, . . . , θn−1; γ′).

The following is recorded in Aichinger and Mudrinski (2010) as Lemma 6.7 and in

Opršal (2014+) as Lemma 5.6. Opršal’s proof fits with the current exposition (much

of which, in fairness, is a reworking of his presentation); we have not found that we

could improve in a substantial way Opršal’s proof, and so we refer the reader there.

Proposition 2.36. Let A be an algebra in a Mal’cev variety. Let n be a natural

number and let j < n. Let θi ∈ Con A for i < n such that i 6= j. Let Λ be any set

and let ψλ ∈ Con A for all λ ∈ Λ. Then

S(θ0, . . . , θj−1,
∨
Λ
ψλ, θj + 1, . . . , θn−1) =

∨
Λ
S(θ0, . . . , θj−1, ψλ, θj+1, . . . , θn−1).

The following appears in Aichinger and Mudrinski (2010), but the proof they

supply is arguably more complicated than the one we now offer.

Proposition 2.37. Let A be an algebra in a Mal’cev variety. Let n be a natu-

ral number and let j < n. Let θi ∈ Con A for i < n such that i 6= j. Let
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Λ be any set and let ψλ ∈ Con A for all λ ∈ Λ. Also, let γ ∈ Con A. Then

C(θ0, . . . , θj−1,
∨
Λ
ψλ, θj+1, . . . , θn−1; γ) if and only if, for all λ ∈ Λ,

C(θ0, . . . , θj−1, ψλ, θj+1, . . . , θn−1; γ).

Proof. The forward direction is done by monotonicity of the (n + 1)-place central-

izer in its first n coordinates. Now, assume that for all λ ∈ Λ, we have that

C(θ0, . . . , θj−1, ψλ, θj+1, . . . , θn−1; γ). Then, by Theorem 2.35, we find that, for all

λ ∈ Λ, γ ≥ S(θ0, . . . , θj−1, ψλ, θj+1, . . . , θn−1). But, by Theorem 2.36, this means that

γ ≥
∨
Λ
S(θ0, . . . , θj−1, ψλ, θj+1, . . . , θn−1) = S(θ0, . . . , θj−1,

∨
Λ
ψλ, θj+1, . . . , θn−1).

Thus, using Theorem 2.35, again, we find that

C(θ0, . . . , θj−1,
∨
Λ
ψλ, θj+1, . . . , θn−1; γ).

Corollary 2.38. Let A be an algebra in a Mal’cev variety, and let θ0, . . . , θn−1, γ be

congruences on A. Then C(θ0, . . . , θn−1; γ) holds if and only if

C(Cg〈a0, b0〉, . . . ,Cg〈an−1, bn−1〉; γ)

holds for all 〈ai, bi〉 ∈ θi.

Definition 2.39. Let n be a natural number and let A be an algebra with congru-

ences θ0, . . . , θn−1, γ. Let `0, . . . , `n−1 be natural numbers. We say that

C(`0, . . . , `n−1; θ0, . . . , θn−1; γ)

holds when the following test is satisfied. Let ai,bi ∈ A`i , for each i < n, such that

〈ai,bi〉 ∈ θ`ii . Let t be a polynomial on A of rank ∑i<n `i. Then, whenever

t(x0, . . . ,xn−2, an−1) γ t(x0, . . . ,xn−2,bn−1),

41



for all choices of 〈x0, . . . ,xn−2〉 ∈ {a0,b0}× · · · × {an−2,bn−2} \ {〈b0, . . . ,bn−2〉}, we

require also that

t(b0, . . . ,bn−2,bn−1) γ t(b0, . . . ,bn−2,bn−1).

Note that C(θ0, . . . , θn−1; γ) holds if and only if, for all natural numbers `0, . . . , `n−1,

C(`0, . . . , `n−1; θ0, . . . , θn−1; γ) holds.

The following, too, is found in Aichinger and Mudrinski, as Lemma 5.4, but we

believe our proof to be easier; the reader may agree that it has made the next result

an easy consequence of Corollary 2.38, one other fundamental result, and some simple

bookkeeping.

Lemma 2.40. Let A be an algebra in a Mal’cev variety. Let n, `0, . . . , `n−1 be natural

numbers, and let θ0, . . . , θn−1, γ be congruences of A. Then

C(`0, . . . , `n−1; θ0, . . . , θn−1; γ)

if and only if C(1, . . . , 1; θ0, . . . , θn−1; γ).

Proof. The forward direction is implicit in Definition 2.39. Now, suppose that

C(1, . . . , 1; θ0, . . . , θn−1; γ)

holds. From Corollary 2.38, it is sufficient to show that for all choices of pairs 〈ai, bi〉 ∈

θi for i < n, C(Cg〈a0, b0〉, . . . ,Cg〈an−1, bn−1〉; γ). Take 〈ai, bi〉 ∈ Cg〈ai, bi〉 for i < n.

We may as well assume that, for each i < n, θi = CgA〈ai, bi〉. Let ai,bi be tuples of

elements from A of length `i so that ai θ`ii bi for each i < n. Let t be a polynomial

over A of rank ∑i<n `i. Suppose that

t(x0, . . . ,xn−2, an−1) γ t(x0, . . . ,xn−2,bn−1),

for all choices of 〈x0, . . . ,xn−2〉 ∈ {a0,b0} × · · · × {an−2,bn−2} \ {〈b0, . . . ,bn−2〉}.

For each i < n and j < `i, we can find a polynomial tij over A such that 〈aij, bij〉 =
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〈tij(ai), tii(bi)〉. Now consider the polynomial

t′(x0, . . . , xn−1) := t(t00(x0), . . . , t0`0−1(x0), . . . , tn−1
0 (xn−1), . . . , tn−1

`n−1−1(xn−1)).

By construction, t′(x0, . . . , xn−1) = t(x0, . . . ,xn−1) for all choices of

〈〈x0,x0〉, . . . , 〈xn−1,xn−1〉〉 ∈ {〈a0, a0〉, 〈b0,b0〉} × · · · × {〈an−1, an−1〉, 〈bn−1,bn−1〉}.

Thus, we find that t′(x0, . . . , xn−2, an−1) γ t′(x0, . . . , xn−2, bn−1) for all choices

〈x0, . . . , xn−2〉 ∈ {a0, b0} × · · · {an−2, bn−2} \ {〈b0, . . . , bn−2}.

Thus, by C(1, . . . , 1; θ0, . . . , θn−1; γ), we get that

t(b0, . . . ,bn−2, an−1) = t′(b0, . . . , bn−2, an−1)

γ t′(b0, . . . , bn−2, bn−1)

= t(b0, . . . ,bn−2,bn−2).

The following appears as Lemma 6.14 of Aichinger and Mudrinski (2010) and

Proposition 5.7 of Opršal (2014+). We offer a new proof here, in case the reader

should find it more accessible than the others (but we make no promise about this,

however.)

Proposition 2.41. Let A be an algebra in Mal’cev variety V. For each natural

number n, let qn be term defined as above for V. Let n and k be any natural numbers

with k ≤ n. Let θ0, . . . , θn−1 ∈ Con A. Then

S(S(θ0, . . . , θk−1), θk, . . . , θn−1) ⊆ S(θ0, . . . , θn−1)

Proof. Let t0 be any term of rank, say, r0. Let a0, . . . , ar0−1 ∈ P (θ0, . . . , θk−1), where,

for each i < r0,

ai = 〈〈ai, bi〉(βs(ji)) | s < 2k〉,
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where ji < k and 〈ai, bi〉 ∈ θji . Set a := qA
k (ta2k−1

0 (a0, . . . , ar0−1)) and let b denote

tA0 (b0, . . . , br0−1). Let θ = CgA〈a, b〉. By Proposition 2.37 and Theorem 2.35, it is

sufficient to show that

S(θ, θk, . . . , θn−1) ⊆ S(θ0, . . . , θn−1).

Take any term t1 of rank, say r1. Let r = r0 + r1 and let m = n − k + 1. Let

ar0 , . . . , ar−1 ∈ P (θ, θk, . . . , θn−1), where, for each i ∈ {r0, . . . , r − 1},

ai = 〈〈ai, bi〉(βs(ji)) | s < 2m〉,

where ji ∈ {k, . . . , n− 1} and 〈ai, bi〉 ∈ θji . Let ϕ be mapping from r into n, taking

i 7→ ji, which identifies the ji < n involved in the definition of each ai. Let

a = 〈〈a, b〉(βs(0)) | s < 2m〉.

It is not difficult to see that, by Corollary 2.38 and Theorem 2.35, and by changing

to another polynomial t1, if necessary, it is sufficient to show that

c := qA
m(tA2m−1

1 (a, ar0 , . . . , ar−1))

is congruent, modulo γ := S(θ0, . . . , θn−1), to

tA1 (b, br0 , . . . , br−1) =: d.

We shall use Theorem 2.24 (iii) ⇔ (ii). To that end, we define two terms L and

R of rank r by essentially substituting, for each i < r, a variable xi in place of bi in

the representations of c and d, respectively, given above. We now make this explicit

(which is not to say any more clear). For each i < r0, define

a′i(xi) := 〈〈ai, xi〉(βs(ji)) | s < 2k〉.

For each i ∈ {r0, . . . , r − 1}, let

a′i(xi) := 〈〈ai, xi〉(βs(ji)) | s < 2m〉.
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Let a′ and b′ be rank r0 polynomials on A given by

a′(x0, . . . , xr0−1) = qA
k (ta2k−1

0 (a′0(x0), . . . , a′r0−1(xr0−1)))

and b′(x0, . . . , xr0−1) = tA0 (x0, . . . , xr0−1). Set

a(x0, . . . , xr0−1) = 〈〈a′(x0, . . . , xr0−1), b′(x0, . . . , xr0−1)〉(βs(0)) | s < 2m〉.

Now, let L(x0, . . . , xr−1) :=

qA
m(tA2m−1

1 (a(x0, . . . , xr0−1), a′r0(xr0), . . . , a′r−1(xr−1)))

and R(x0, . . . , xr−1) := tA1 (b′(x0, . . . , xr0−1), xr0 , . . . , xr−1).

Note that

L(b0, . . . , br−1) = qA
m(tA2m−1

1 (a(b0, . . . , br0−1), a′r0(br0), . . . , a′r−1(br−1)))

= qA
m(tA2m−1

1 (a, ar0 , . . . , ar−1)),

while

R(b0, . . . , br−1) = tA1 (b′(b0, . . . , br0−1), br0 , . . . , br−1) = tA1 (b, br0 , . . . , br−1).

Thus, since C2(θ0, . . . , θn−1; γ) holds, it is sufficient to show that L(x0, . . . , xr−1) =

R(x0, . . . , xr−1) for all choices of

〈x0, . . . , xr−1〉 ∈ {a0, b0} × {ar−1, br−1} \ {〈b0, . . . , br−1〉},

subject to the constraints that for any i < r, xi = ai if and only if for all i′ such

that ji = ji′ we have that xi′ = ai′ and that xi = ai for at least one i < r. Let

〈x0, . . . , xr−1〉 be chosen according to those contraints. Let i < r so that xi = ai. We

show by cases. First, suppose that ji < k. Then, by Proposition 2.22, we have that

a(x0, . . . , xr0−1) is a constant tuple. Thus, by Proposition 2.22, again, we get that

L(x0, . . . , xr−1) = R(x0, . . . , xr−1). On the other hand, if jj ∈ {k, . . . , n− 1}, then it

is automatic from Proposition 2.22 that L(x0, . . . , xr−1) = R(x0, . . . , xr−1).
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The following is gotten easily from the above, through an inductive argument.

Corollary 2.42. Let θ ∈ Con A, and let Θ be the constantly-θ ω-tuple. Then for any

natural number n,

[θ)n ⊆ Sn(Θ).

In particular, if A is supernilpotent of class n, then it is nilpotent of class n.

Proposition 2.43. Let A be an algebra in a Mal’cev variety. Then

S1(1A) ≥ S2(1A, 1A) ≥ · · · ≥ Sn(1A, . . . , 1A) ≥ Sn+1(1A, . . . , 1A) ≥ · · · .

Furthermore, if S(1A, 1A) = 1A, then Sn(1A, . . . , 1A) = 1A, for all n > 1.

Proof. The first claim is clear from Proposition 2.34. Now, suppose that S(1A, 1A) =

1A. If for some n > 1, Sn(1A, . . . , 1A) = 1A, then by Proposition 2.41,

1A = Sn(1A, 1A, . . . , 1A) = Sn(S(1A, 1A), 1A, . . . , 1A)

≤ Sn+1(1A, . . . , 1A),

whence the claim follows by induction.

The following seems to be a new observation, but perhaps previous authors ne-

glected to state it only since they had no use for it.

Theorem 2.44. Let V be a Mal’cev variety. Let k be a natural number. Then su-

pernilpotence of class k is preserved under HSP within V. In particular, the subclass

of all algebras in V that are supernilpotent of class k constitutes a subvariety.

Proof. Closure under H is noted in Corollary 2.46, below. Closure under S and

P can be seen from Proposition 2.11 or, alternatively, from Proposition 2.48 and

Proposition 2.48, the latter two appearing below.

For yet another way to see this, note that supernilpotence of class k is character-

izable by satisfaction of a set of equations, in a Mal’cev variety: This is evident from

Theorem 2.24 (i) ⇔ (ii).
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The following is an easy strengthening—but a useful one—of what appears as

Lemma 6.3 in Aichinger and Mudrinski (2010). We also give a slightly different

proof.

Theorem 2.45. Let A,B ∈ V with V Mal’cev. Let h be a homomorphism of A onto

B. Let θ0, . . . , θn−1 be congruences on A and write η = kerh. Then

S(θ0, . . . , θn−1) ∨ η = h−1S(h(θ0 ∨ η), . . . , h(θn−1 ∨ η)),

where h−1ξ has the usual interpretation as the set of all pairs that map into ξ ∈ Con B.

Proof. By the additivity of the higher commutator and Theorem 2.36, we find that

S(θ0 ∨ η, . . . , θn−1 ∨ η) ∨ η = S(θ0, . . . , θn−1) ∨ η.

Thus, it suffices to prove the theorem for the case η ⊆ ∩{θi | i < n}. Equivalently,

we show that

h(S(θ0, . . . , θn−1) ∨ η) = S(h(θ0), . . . , h(θn−1)).

From Theorem 2.35, we have that

S(θ0, . . . , θn−1) ∨ η = CgA{〈qA(a0, . . . , a2n−2), a2n−1〉 | a ∈ Q(θ0, . . . , θn−1)} ∪ η,

while

S(h(θ0), . . . , h(θn−1)) = CgB{〈qA(b0, . . . , b2n−2), b2n−1〉 | b ∈ Q(h(θ0), . . . , h(θn−1))}.

It is not difficult to see, then, that h maps a set of generators for S(θ0, . . . , θn−1)∨η

onto a set of generators for S(h(θ0), . . . , h(θn−1)). Thus, by Theorem A.10, we are

done.

In particular, we get the following.

Corollary 2.46. Let A be an algebra in a Mal’cev variety V. Suppose that A is

supernilpotent of class k. Then all homomorphic images of A are supernilpotent of

class k.
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Proof. Let η be any congruence on A. Then

S(1A/η, . . . , 1A/η) = (S(1A, . . . , 1A) ∨ η)/η = η/η = 0A/η.

The following is elementary (meaning, it can be deduced easily from the defini-

tions);4

Proposition 2.47. Let A be any algebra and let B be a subalgebra of A. Let

θ0, . . . , θn−1 be congruences on A. Then

S(θ0 �B, . . . , θn−1 �B) ⊆ S(θ0, . . . , θn−1) �B

Proposition 2.48. Let Ai be algebras in Mal’cev variety for all i ∈ I. Let n be a

natural number greater than 0. For each j < n, let Θj be an I-tuple of congruences

such that Θj(i) ∈ Con Ai for each j < n and i ∈ I. Then

S(ΠIΘ0(i), . . . ,ΠIΘn−1(i)) ⊆ ΠIS(Θ0(i), . . . ,Θn−1(i)).

Proof. If n = 1, then the claim is a trivial result of Definition 2.27. For each i ∈ I, let

πi be the ith projection function. Arguing by elements, we have that for any I-tuple

Θ of congruences such that Θ(i) ∈ Con Ai for each i ∈ I,

ΠIΘ(i) =
⋂
I

π−1
i (Θ(i)).

Thus, the claim reduces to showing that

S

(⋂
I

π−1
i Θ0(i), . . . ,

⋂
I

π−1
i Θn−1(i)

)
⊆
⋂
I

π−1
i S(Θ0(i), . . . ,Θn−1(i)).

By Theorem 2.45, we have that

⋂
I

π−1
i S(Θ0(i), . . . ,Θn−1(i)) =

⋂
I

S(π−1
i Θ0(i), . . . , π−1

i Θn−1(i)) ∨ kerπi.

4Also, I am not aware of it appearing in the literature before now.
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Thus, we need only show that for each j ∈ I,

S

(⋂
I

π−1
i Θ0(i), . . . ,

⋂
I

π−1
i Θn−1(i)

)
⊆ S(π−1

j Θ0(j), . . . , π−1
j Θn−1(j)) ∨ kerπj.

But, this last inclusion follows from the monotonicity of any higher commutator.

2.5 Supernilpotence and commutator polynomials

We now undertake work that will support the results of Aichinger and Mudrinski

(2010) that we used in the proof of Theorem 2.30, our broadening of Freese and

Vaughan-Lee’s finite basis result. We have found that we may be able to more easily

present the key lemmas leading into the results of Aichinger and Mudrinski of our

present interest. What’s more, we have found that we can strengthen several of them.

Lemma 2.49. Let n be a natural number. Let A be any algebra in a congruence-

regular, Mal’cev variety V. Let qn be a term for V as defined above. Then the following

are equivalent:

(i) Cn(1A, . . . , 1A; 0A)

(ii) Let b0, . . . , bn−1, a, c ∈ Con A, and let t ∈ Poln A. Let t′ represent the polyno-

mial of rank n on A2n−1 given by

t′(x0, . . . ,xn−1) = 〈t(x0(i), . . . ,xn−1(i)) | i < 2n − 1〉,

where x0, . . . ,xn−1 ∈ A2n−1. For each i < n, write

ai = 〈〈a, bi〉(βj(i)) | j < 2n〉.

Then qA
n (t′(a◦0, . . . , a◦n−1)) = t(b0, . . . , bn−1).

(iii) For all t, s ∈ Poln A and all b0, . . . , bn−1, a ∈ A, if, for all choices of

〈x0, . . . , xn−1〉 ∈ {a, b0} × · · · × {a, bn−1} \ {〈b0, . . . , bn−1〉},
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we have that sA(x0, . . . , xn−1) = tA(x0, . . . , xn−1), then we have that

sA(b0, . . . , bn−1) = tA(b0, . . . , bn−1),

as well.

Proof. That (i) ⇒ (ii) holds is clear from Theorem 2.24 ((i) ⇒ (ii)) of which this is

a special case. Showing that (ii) ⇒ (iii) involves computation similar to one used in

the proof of Lemma 2.15:

Take s, t ∈ Poln A. Let b0, . . . , bn−1, a ∈ A. Suppose that, for all choices of

〈x0, . . . , xn−1〉 ∈ {a, b0} × · · · × {a, bn−1} \ {〈b0, . . . , bn−1〉},

we have that sA(x0, . . . , xn−1) = tA(x0, . . . , xn−1). For each i < n, write a =

〈〈a, bi〉(βj(i)) | j < 2n〉. Let t′, s′ ∈ Poln A2n−1 be defined as in (ii). Then, we

have that

s(b0, . . . , bn−1) = qA
n (s′(a◦0, . . . , a◦n−1)

= qA
n (t′(a◦0, . . . , a◦n−1)

= t(b0, . . . , bn−1).

Now, assume that (iii) holds. By Theorem 2.38, to show Cn(1A, . . . , 1A; 0A), it is

sufficient to show that, for all pairs 〈a0, b0〉, . . . , 〈an−1, bn−1〉 ∈ A2,

C(CgA〈a0, b0〉, . . . ,CgA〈an−1, b−1〉; 0A)

holds. However, since A is congruence regular, we may assume that ai = a for each

i < n, for some a ∈ A. We now use a strategy similar to that employed in the proof

of Proposition 2.12.

Let t ∈ Poln A. Suppose that

t(x0, . . . , xn−2, a) = t(x0, . . . , xn−2, bn−1),
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for all choices of

〈x0, . . . , xn−2〉 ∈ {a, b0} × · · · × {a, bn−2} \ {〈b0, . . . , bn−2〉}.

Let L be the polynomial on A defined by

`(x0, . . . , xn−1) = t(x0, . . . , xn−2, a).

Let R := t. Observe that if xn−1 = a, then, for any x0, . . . , xn−2 ∈ A,

L(x0, . . . , xn−1) = t(x0, . . . , xn−1, a) = R(x0, . . . , xn−1).

On the other hand, if

〈x0, . . . , xn−1〉 ∈ {a, b0} × · · · × {a, bn−1} \ {〈b0, . . . , bn−1〉},

but with xi = a for some i < n− 1 and xn−1 = bn−1, then, too,

L(x0, . . . , xn−1) = t(x0, . . . , xn−2, a) = t(x0, . . . , xn−2, bn−1) = R(x0, . . . , xn−1).

Then, by (iii), we get that

t(b0, . . . , bn−2, a) = L(b0, . . . , bn−1) = R(b0, . . . , bn−1) = t(b0, . . . , bn−1),

as we wished.

Definition 2.50. Let A be an algebra. Let n be a natural number. Let w be a

polynomial for A in the variables {x0, . . . , xn−1, z}. We say that w is a commutator

polynomial of rank n provided that whenever δ is a substitution that sends xi to z

for at least one i < n, we have that for all b0, . . . , bn−1, a ∈ A

δw(b0, . . . , bn−1, a) = a.

If w is a term operation, then we say that it is a commutator term operation. If

w = z, then we say that w is trivial.
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Theorem 2.51. Let A ∈ V, a variety with Mal’cev term p. Suppose also that there

is a ternary term f for V such that

V |= f(p(u, x, y), y, x) ≈ u ∧ f(u, u, x) ≈ x.

Then A is supernilpotent of class n if and only if all commutator polynomials for A

of rank n or higher are trivial.

Proof. Suppose first that A is supernilpotent of class n. By Theorem 2.24 ((i) ⇔

(iii)), we have that Cn
2 (1A, . . . , 1A; 0A) holds. But from this, it is easy to see that all

commutator polynomials for A of rank n or higher are trivial.

For the converse, we shall use Lemma 2.49 ((i) ⇔ (ii)). Let t ∈ Poln A. Let t′ be

defined as in Lemma 2.49, (ii). For each i < n, set xi = 〈〈z, xi〉(βj(i)) | j < 2n〉. Let

qn be the term for A defined as above. Let v ∈ Poln+1 A be defined by

v(x, z) = v(x0, . . . , xn−1, z) = qA
n (t′(x0, . . . ,xn−1)).

Now, set w(x0, . . . , xn−1, z) = pA(v(x, z), t(x), z).We claim that w is a a commutator

polynomial for A.

Say that δ is a substitution map for Pol A that maps xi to z, for at least one

i < n. Let S = {i < n | δxi = z}. Let δ act coordinatewise on (Pol A)I , for whatever

I. Let r = ∑
i 6∈S 2i, and hence βr(i) = 0 if and only if i ∈ S. Note that for any i < n

and j < 2n,

δxi(j) = δ〈z, xi〉(βj(i))

=


z if βj(i) = 0 or if i ∈ S

xi otherwise

=


z if βj(i) = 0 or if βr(i) = 0

xi otherwise

= 〈z, xi〉(βj∧r(i)).
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Thus, for each i < n and j < 2n, δxi(j) = xi(j ∧ r). As a special case of this, note

also that, for any i < n,

xi(r) = 〈z, xi〉(βr(i))

=


z if i ∈ S

xi if i 6∈ S,

and hence t′(x0, . . . ,xn−1)(r) = t(x0(r), . . . ,xn−1(r)) = δt(x0, . . . , xn−1)). Thus, us-

ing also Proposition 2.18, we have that

δqA
n (t′(x0, . . . ,xn−1)) = qA

n (t′(δx0, . . . , δxn−1))

= qA
n (〈t(δx0(j), . . . , δxn−1(j)) | j < 2n − 1)

= qA
n (〈t(x0(j ∧ r), . . . ,xn−1(j ∧ r)) | j < 2n − 1〉)

= (ε̄rqn)A(t′(x0, . . . ,xn−1))

= t′(x0(r), . . . ,xn−1(r))

= δt(x0, . . . , xn−1).

Using that p is a Mal’cev term, then, it is easily follows that δw(x0, . . . , xn−1, z) = z;

thus, by the choice of δ, w is commutator polynomial. Since w is of rank n, we thus

get that w = z, by assumption. By hypothesis, then, we get that

qA
n (t′(x0, . . . ,xn−1)) = v(x, z)

= fA(pA(v(x, z), t(x), z), z, t(x))

= fA(w(x, z), z, t(x))

= fA(z, z, t(x))

= t(x).

By Lemma 2.49 ((i) ⇔ (ii)), then, we find that A is supernilpotent of class n.
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Corollary 2.52. Let n be a natural number. Let A be an algebra in a Mal’cev variety.

Then A is supernilpotent of class n if and only if it is nilpotent of class n and all of

its commutator polynomials of rank n or higher are trivial.

Proof. The forward direction follows from the above, together with Corollary 2.42.

To see the reverse direction, recall that from Theorem A.47, we get a term f for

V = Var A as described in the hypotheses of Theorem 2.51. The corollary then

follows from this latter result.

Corollary 2.53. Let G be a group. Then G is nilpotent of class n if and only if it

is supernilpotent of class n.

There is more than one way to see this last result; it can be deduced from Aichinger

and Mudrinski (2010), Lemma 7.6, together with the well-known fact that nlipotent

groups factor as the direct product of their Sylow subgroups, and so we do not supply a

proof here. Rather, we would like to point out that our description of supernilpotence

given by Theorem 2.24 (ii) is exactly parallel to a characterization of nilpotence in

groups that is implicit in Higman’s Lemma, as given in 33.42 and 33.44 in Neumann

(1967). That is to say, the terms constructed in 33.42, there, are precisely those

given in Theorem 2.24 (ii), but with the identity element appearing in key places.

For instance (consider the “n = 2” case), 33.44 says (almost) directly that, for any

binary term t(x, y) in the language of groups, any group A, and any x, y ∈ A

tA(x, y) ≡ qA
2 (tA(1, 1), tA(1, y), tA(x, 1)) mod [1A, 1A],

where q2(x, y, z) := y · x−1 · z. A similar expression holds true with another n > 1 in

place of 2.

2.6 Some possible applications to Problem 1.3

We turn now to some results that we have targeted out of an interest in pursuing

an Oates-Powell-proof style strategy in pursuing the question of whether any finite,
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nilpotent, Mal’cev algebra of finite signature might generate a finitely based variety.

Indeed, contained in this section is the result on critical algebras in Mal’cev varieties

which was our original motivation for considering the higher two-term condition given

above, as well as the strong n-cube terms.

2.6.1 The super-Fitting congruence

In the proof of the finite basis result of Oates and Powell, some key facts concerning

the Fitting subgroup of a group come in to play. For further explanation of our

interest here, see Neumann (1967), Lemma 52.42. Recall that the Fitting subgroup

of a given group G is the largest nilpotent, normal subgroup of G (if it has one).

It is our hope that an analysis of the highest supernilpotent congruence of a given,

(nilpotent) Mal’cev algebra might reveal combinatorial relationships paralleling those

that hold concerning Fitting subgroups. But to begin with, we offer a demonstration

of when such an object—a “super-Fitting congruence,” if you like—is available.

Theorem 2.54. Let A be an algebra in a Mal’cev variety. Then the join of any two

supernilpotent congruences of A is also supernilpotent. Furthermore, if

(i) every ascending chain in Con A contains its least upper bound (which is also its

union)

(ii) or if all supernilpotent congruences on A are of supernilpotence class m,

then A has a unique highest supernilpotent congruence.

Proof. Let α and β be congruences of A of supernilpotence class n and m, respec-

tively. We claim that α ∨ β is supernilpotent of class n + m. Let θ = α ∨ β and let

Θ = 〈θ | i ∈ ω〉.

By Propositions 2.36 and 2.33, it is not difficult to see that

Sn+m(Θ) =
∨

i≤n+m
Sn+m(Γi),
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where, for each i ≤ n+m, we define Γi as the (n+m)-tuple of congruences given by

Γi(j) =


α if j < i

β otherwise .

However, by Proposition 2.34, we have that, for i ≥ n, Sn+m(Γi) ⊆ Sn(α, . . . , α) = 0A,

while, for i < n, Sn+m(Γi) ⊆ Sm(β, . . . , β) = 0A. Thus, Sn+m(Θ) = 0A, and so α ∨ β

is indeed supernilpotent of class n+m, as claimed.

Now, let F be the set of all supernilpotent congruences of A. Clearly, F is

nonempty, since 0A ∈ F . Let C be a nonempty chain in F . If A is such that every

chain of congruences contains its union, then, of course, ∪C ∈ C ⊆ F . On the other

hand, it is well known that the union of a chain of congruences is again a congruence.

Suppose now that every supernilpotent congruence on A is of supernilpotence class

m. We claim that θ := ∪C is as well. We will show that Cm(θ, . . . , θ; 0A). Let

`0, . . . , `m−1 be natural numbers, and choose a term t for A of rank ∑i<m `i. For each

i < m, choose ai,bi ∈ A`i such that ai θ`i bi. Now, suppose that for each choice of

〈x0, . . . ,xm−2〉 ∈ {a0,b0} × · · · × {am−2,bm−2} \ {〈b0, . . . ,bm−2〉},

we have that

tA(x0, . . . ,xm−2, am−1) = tA(x0, . . . ,xm−2,bm−1).

Now, since θ = ∪C, for each i < m, we obtain θi ∈ C such that ai θ`ii ni. Since C is

a chain, we obtain an i < n such that, for all j < n, θj ⊆ θi. Let ψ = θi. Now,

since ψ ∈ C is supernilpotent of class m and hence Cm(ψ, . . . , ψ; 0A) holds, we may

conclude from the equations above that

tA(b0, . . . ,bn−2, an−1) = tA(b0, . . . ,bn−2,bn−1).

Thus, we find, too, that Cm(∪C, . . . ,∪C; 0A). Thus, ∪C ∈ F .

Thus, in case (i) or (ii) holds, we can apply Zorn’s Lemma to obtain a maximal

element of F , that is, a maximal supernilpotent congruence on A. But, of course,

from the first part of this theorem, this maximal congruence must be unique.
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2.6.2 A promising consequence of criticality in Mal’cev varieties

My own motivation for considering many of the notions in this chapter—especially

those concerning the two-term condition and the terms qn built from a Mal’cev term—

was to get the result in this subsection. In the Oates-Powell proof, we find one

of the key steps involves a combinatorial feature of any critical group, as seen in

Theorem 51.37 and Corollary 51.38 in Neumann (1967). It seems to us that a key

deficit in the generalization of the Oates-Powell proof has been a lack of information

concerning critical algebras. However, below, we offer what seems to be a satisfactory

generalization of Theorem 51.37 from Neumann (1967); it is our hope that it might

find application in answering Problem 1.3.

Let A be any algebra in a congruence regular, Mal’cev variety. Let L be a sub-

algebra of A. Let θ0, . . . , θn−1 be congruences of A. For each i < n, pick some

congruence block Bi of θi that intersects L. Since A is congruence regular, we have

that Bi determines θi for each i < n; that is, θi = CgB2
i . Let Z be a set (to symbolize

variables) duplicating L. Write Z = {za | a ∈ L}. For each i < n, let X i be a set

(to symbolize variables) duplicating Bi. For each i < n, write X i = {xia | a ∈ Bi}.

For each i < n, choose a bi ∈ Bi ∩ L. Note that CgB2
i = Cg{〈bi, a〉 | a ∈ Bi}.

Let C be a set of symbols duplicating A; these are to symbolize constants. Write

C = {ca | a ∈ A}.

For each i < n define an endomorphism δi on the algebra T of terms in Z ∪⋃
i∈ωX

i∪C by homomorphically extending its action on the variables, given as follows.

For each i < n, let

δix
i
a = zbi ,

for each a ∈ Bi, while fixing all other variables and constants. We also define, for

each r < 2n, an endomorphism ηr of T to be the product of maps, ηr = δ′0 · · · δ′n−1,

where δ′i = δi if βr(i) = 0 and is the identity map otherwise. Also, for convenience,

let η := η0.
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Let α be the assignment map from T into A given by letting, for any a ∈ L,

αza = a and, for each i < n and for all a ∈ Bi, αxia = a and, for each a ∈ A, αca = a.

Now, let T ′ be the set of all terms t in T such that αηt ∈ L. Note that since L is

closed under the operations of A and αη is a homomorphism (as an assignment map

always is), we get that T ′ is closed under the operations of T.

Lemma 2.55. With the notation defined as above, we have that α maps T ′ onto

Lθ0 · · · θn−1, while for each i < n, αδi maps T ′ into Lθ′0 · · · θ′n−2, where θ′0, . . . , θ′n−2 is

a list of the elements in {θ0, . . . , θn−1} \ {θi}.

Proof. Note that since A is congruence permutable, for any congruences γ0, . . . , γm−1

on A, Lγ0 · · · γm−1 = Lγ, with γ = γ0 ∨ · · · ∨ γn−1. Thus, this lemma is easy to see

from our construction of T ′ together with Proposition A.26; we need the fact that

θi = Cg{〈bi, a〉|a ∈ Bi} for each i < n to show onto.

Theorem 2.56. Let A be any congruence regular algebra in a Mal’cev variety. Let

L ≤ A. Let θ0, . . . , θn−1 be congruences on A such that S(θ0, . . . , θn−1) = 0A, A =

Lθ0 . . . θn−1, and for any i < n the expansion of L by ∨{θ0, . . . , θn−1}\{θi} is a proper

subset of A. Then A is not critical.

Proof. By hypothesis, and Lemma 2.55, we have that for each r : 0 < r < 2n,

Cr := αηrT′ is a proper subalgebra of A.

Let γ : T ′ → Πr:0<r<2nCr be given by γt = 〈αηrt | 0 < r < 2n〉. We claim that

ker γ ⊆ kerα. After all, if γt = γs for s, t ∈ T ′, we have by C2(θ0, . . . , θn−1; 0A) that

αt = αs.

It follows that A is a homomorphic image of a product of its proper subalgebras.

Thus, A is not critical.
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Chapter 3

Toward a finite basis result for finite,

nilpotent, Mal’cev algebras

Recall that to establish that a given locally finite variety of finite signature V is

finitely based, it is sufficient to show that, for some natural number N , V(N) is locally

finite and has a finite critical bound—or, put another way, it has only finitely many

critical algebras. (See the discussion following Theorem A.6.)

In fact, we can do the first of these tasks for V a locally finite, Mal’cev variety of

finite signature comprised solely of algebras of uniform nilpotence class n, for some n.

We begin this chapter with this result and then continue onward, establishing results

inspired by the Oates-Powell proof of the fact that all finite groups have a finitely

based equational theory, which may represent the start of an Oates-Powell-style proof

answering in the affirmative the question whether or not all finite nilpotent, Mal’cev

algebras also have a finitely based equational theory.

3.1 Lifting local finiteness

Theorem 3.1. Let A be a finitely generated algebra of finite signature with congru-

ence θ of finite index. Then θ is finitely generated.

Furthermore, a generating set may be found of size bounded in terms of the size

of the finite-generating set of A, the index of θ, the signature of A, and the arity of

its operation symbols.

Proof. Suppose A is generated by finite X ⊆ A, and that θ ∈ Con A is of finite
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index. Let T be a transversal of the θ-classes. Let Γ0 be the set of all pairs of the

form 〈b′, b〉 where b′ = QA(b0, . . . , br−1) for some fundamental operation symbol Q in

the signature of A (with whatever rank, r), {b0, . . . , br−1} ⊆ T , and b is the unique

θ-representative of b′ drawn from T . Let Γ1 := {〈a, b〉 ∈ θ | a ∈ X, b ∈ T}. Let

Γ := Γ0 ∪ Γ1, and note that, by our hypotheses, Γ is finite. We shall estimate the

size of Γ at the conclusion of the proof. We claim that θ = CgA Γ. By construction,

Γ ⊆ θ; so, we need only verify that θ ⊆ CgA Γ.

Take 〈a, b〉 ∈ θ. By the symmetry and transitivity of CgA Γ, we need only show

the case that b ∈ T , using, of course, too, that T is a transversal for θ. Since A is

generated by X, we can write a = tA(a0, . . . , am−1) for some term t of rank, say, m

and {a0, . . . , am−1} ⊆ X. Write a for 〈a0, . . . , am−1〉.

We induct on the complexity of t. The basis step consists of two cases, corre-

sponding to the two possibilities for t: It is either a variable or a constant. First,

suppose that t is a variable. Then, a = ai ∈ X, for some i, and hence 〈a, b〉 ∈ Γ1.

Now, suppose that t is a constant. Then a = cA, for some nullary operation symbol

c in the signature of A. This puts 〈a, b〉 ∈ Γ0, by construction.

For the inductive step, suppose that t = Qt0 . . . tq−1 for some fundamental oper-

ation symbol Q of rank q and each ti a term. Adopting an inductive hypothesis, we

assume that for each i < q, 〈ti(a), bi〉 ∈ CgA Γ, where bi is the unique θ-representative

of ti(a) in T . Since CgA Γ respects the operations of A, we get that

a = QA(tA0 (a), . . . , tAq−1(a)) CgA Γ ∩ θ QA(b0, . . . , bq−1) Γ0 b.

Thus, by the transitivity of CgA Γ, we have that 〈a, b〉 ∈ CgA Γ. It follows that,

θ ⊆ CgA Γ, which proves the first part of the theorem.

For the second part, let n be the cardinality of the generating set X of A. Let p

be the number of fundamental operation symbols given by the signature, and let R be

their maximum arity. Finally, let t := |T |. Then, as we found that θ was generated by
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Γ = Γ0∪Γ1, we need only count each of these. It is not difficult to see that |Γ0| ≤ p·tR

and that |Γ1| = n. Thus, we note, for convenience that |Γ| ≤ n+ t · pR.

For a given algebra A and α, β ∈ Con A, we define a congruence ∆α
β on β by

∆α
β := Cgβ{〈〈a, a〉, 〈b, b〉〉 | aα b}.

The following is a consequence of Proposition 7.1 from Freese and McKenzie 1987;

however, the proof of this particular detail is omitted in their exposition, so we record

it here for convenience.

Theorem 3.2. Let A be any algebra in a variety with a difference term, d. Let ζ be

the center of A, and let 1 denote its highest congruence. Then

|A| =
∣∣∣ζ/∆1

ζ

∣∣∣ · |A/ζ| .
Proof. Let T be a transversal of the ζ-classes of A, and write r(a) for the unique

ζ-representative from T of a given a ∈ A. We use the following map π : A →

ζ/∆1
ζ×A/ζ: π(x) = 〈〈x, r(x)〉/∆1

ζ , x/ζ〉, for a given x ∈ A. Suppose that π(x) = π(y).

Then, evidently, x ζ y, and hence r(x) = r(y). But, then, by 〈x, r(x)〉∆1
ζ 〈y, r(y)〉 and

Lemma 4.11, we get that x = y. Thus, we see that π is one-to-one.

Now, take any u, v, z ∈ A with 〈u, v〉 ∈ ζ. We need to find an element x ∈ A

so that 〈x, r(x)〉∆1
ζ 〈u, v〉 and x ζ z. We shall use x = d(u, v, r(z)). Note that x =

d(u, v, r(z)) ζ r(z) ζ z. It follows also that r(x) = r(z). Now, since ζ is abelian, we

can apply d coordinate-wise, “vertically,” to the pairs

〈u, v〉∆1
ζ 〈u, v〉

〈v, v〉∆1
ζ 〈u, u〉

〈r(z), r(z)〉∆1
ζ 〈u, u〉,

to learn that 〈x, r(z)〉∆1
ζ 〈u, v〉, as needed.
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The following is also noted by Freese and McKenzie, but it has a brief proof and

so is recorded here for convenience.

Lemma 3.3. Let A be any algebra in a congruence modular variety. Then ζA/∆1A
ζA

is abelian.

Proof. Write ζ = ζA. Also, write ∆ for ∆1A
ζ . By Proposition 4.32, we need only show

that [1ζ , 1ζ ] ⊆ ∆. For i = 0, 1, let ηi be the kernel of the ith projection map from ζ

onto A. Note that, for any 〈x0, x1〉, 〈x′0, y′0〉 ∈ ζ, we have that

〈x0, x1〉 η0 〈x0, x0〉∆ 〈x′0, x′0〉 η0 〈x′0, x′1〉;

thus, 1ζ = ∆ ∨ η0. Similarly, one can show that 1ζ = ∆ ∨ η1. Of course, we also

have that [η0, η1] ⊆ η0 ∩ η1 = 0ζ . Thus, by Proposition A.31 and the additivity of the

commutator in congruence modular varieties (see Theorem A.42), we have that

[1ζ , 1ζ ] = [∆ ∨ η0,∆ ∨ η1] ⊆ ∆,

as desired.

We shall also make use of the following fact, noted in Freese and McKenzie (1987)

(see equation 10, p. 83).

Theorem 3.4. Let A be an abelian algebra in a variety with Mal’cev term p. Then

for any t, a term operation on A of rank, say, n,

A |= t(x1, . . . , xn) ≈ t(z, . . . , z) +
n∑
j=1

t(j)(xj, z),

where each t(j), j = 1, . . . , n, is a binary term operation defined by

t(j)(u, v) := p(t(v, . . . , v, u, v, . . . , v), t(v, . . . , v), v),

and where x+ y := p(x, z, y).

62



The above has a straightforward proof that applies only the following well-known

result (see McKenzie, McNulty, and Taylor (1987), Theorem 4.155).

Theorem 3.5. Let A be an abelian algebra in a variety with Mal’cev term p. Let

z ∈ A, and define operations x + y := p(x, z, y) and −x := p(z, x, z). Let R = {r ∈

Pol1 A | r(z) = z}. Then 〈A,+,−, z, r〉r∈R is a module with underlying abelian group

〈A,+,−, z〉. Furthermore, for any natural number r and any s ∈ Polr A such that

s(z, . . . , z) = z, we get the identity

s(x1, . . . , xr) =
n∑
i=1

si(xi),

where each si ∈ Pol1 A is defined by si(x) = s(z, . . . , z, x, z, . . . , z), with x appearing

in the ith place. (Abelian algebras in a Mal’cev variety are thus called affine.)

Corollary 3.6. Let A be in V, a Mal’cev variety of abelian algebras. Suppose also

that A is n-generated, for some natural number n. Then

|A| ≤ |FV(1)| · |FV(2)|n ≤ |FV(2)|n+1.

Proof. We can take FV({z}), FV({y1, . . . , yn}), and, for each i = 1, . . . , n, FV({z, yi})

to be subalgebras of FV({z, y1, . . . , yn}). (We shall let each of the variables z, y1, . . . , yn

denote both an index and the projection function indexed by that index; see A.1.1 for

details.) Note also that FV({z}) is isomorphic to FV(1), while, for each i = 1, . . . , n,

FV({z, yi}) is isomorphic to FV(2). Let S be the subset of FV({z}) × FV({z, y1}) ×

· · · × FV({z, yn}) with elements of the form

〈t(z, . . . , z), t(1)(y1, z), . . . , t(n)(yn, z)〉,

where t is any term operation of rank n. By Theorem 3.4, the map from S into

F := FV({y1, . . . , yn}) defined by

〈t(z, . . . , z), t(1)(y1, z), . . . , t(n)(yn, z)〉 7→ t(z, . . . , z) +
n∑
j=1

t(j)(yj, z)
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is onto. Thus, |FV(n)| ≤ |FV(1)| · |FV(2)|n. Since every n-generated algebra in V is a

homomorphic image of F, the result follows.

Given any variety V and for each natural number N , let V(N) denote the variety

based on the set of N -variable equations that hold across V .

Theorem 3.7. Let V be a Mal’cev variety of finite signature such that |FV(2)| = m,

a natural number, and such that each of its algebras is of nilpotence class k. Let p

be the number of fundamental operations provided in the signature and let R be the

maximum of their ranks. There is a function F : N × N → N (with its definition

depending on m, p, R) so that for all N high enough, for all n-generated B ∈ V(N)

of nilpotence class c ≤ k, |B| ≤ F (n, c). In particular, for all high enough N , V(N)

is locally finite, and hence V itself is locally finite.

Proof. Let V be as described in the hypotheses. By Theorems A.21 and 4.48, we can

find a natural number N0 ≥ 2 such that for all N > N0, V(N) is Mal’cev and so that

for all B ∈ V(N), B is nilpotent of class c.

We shall define f recursively in the parameter c. For the basis step, note that if

c = 1, we have that B is abelian. Then, it is not too difficult to see that we can use

Corollary 3.6 to find that |B| ≤ mn+1. Thus, we set F (n, 1) = mn+1. Now, suppose

F (n, c′) has been defined for all c′ < c, for some c ≤ k, and that F (n, c′) provides a

bound on the n-generated algebras of nilpotence class c′ in V(N). Using Theorem 3.2,

we can write |B| = |ζB/∆1B
ζB
| · |B/ζB|. Note that B/ζB is nilpotent of class c − 1

(see Theorem 4.30 and Proposition 4.28) and is also, of course, n-generated. Thus,

we have that the index of ζB is bounded by t := F (n, c− 1). Thus, as shown in the

proof of Theorem 3.1, as a congruence, ζB is generated by n + ptR elements. We

claim further that, as a subalgebra, ζB is generated by 2n + ptR elements. Indeed,

from Theorem A.25, for any Mal’cev algebra A and X ⊆ A × A, we have that
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CgAX = SgA×AX ∪ 0A. In light of the fact that 0A is n-generated in A ×A, the

claim is apparent.

By Lemma 3.3, ζB/∆1B
ζB

is abelian. As ζB/∆1B
ζB

is also (2n + ptR)-generated,

we may apply Corollary 3.6 to learn that |ζB/∆1B
ζB
| ≤ m2n+ptR+1, and hence |B| ≤

m2n+ptR+1 · t. Thus, we set

F (n, c) = m2n+ptR+1 · t,

with t = F (n, c− 1).

3.2 Towards an Oates-Powell-style proof

The general strategy of the Oates-Powell proof, as outlined in the broadest sense by

Section A.2 of Appendix A, is supplemented greatly by several properties of varieties

of groups. (Our reference here for this result is Neumann (1967)). Essentially, Oates

and Powell make use of the fact that for V a finitely generated variety of groups,

there are three parameters for V that can be “lifted” to V(N) for all high enough N ;

these include

• the exponent of V ;

• a bound on the nilpotence class of all nilpotent algebras in V ;

• a bound on cardinality of the chief factors of V .

Our suggestion, inspired by this, is to replace, wherever helpful, the first two

concepts by |FV(2)| and the maximum supernilpotence class of all supernilpotent

algebras of V , respectively. Lifting the first parameter to V(N) is simple: indeed, we

have already put this parameter to use in our proof that V(N) is locally finite for all

high enough N , where V is a variety with a finite freely 2-generated algebra. However,

it is not clear that the second parameter is even a property available in V , for V a

finitely generated Mal’cev variety of nilpotent algebras. Research in this direction
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appears to be a very new endeavor—however, work by Kearnes (1999) and perhaps

Smith (2015) may point the way.

On the other hand, the third parameter above, as we prove below, is indeed

available in V for V a Mal’cev variety of nilpotent algebras. Furthermore, if the

nilpotence class k of algebras in V is uniformly bounded, then we can also lift this

parameter to V(N) for all large enough N . Of course, we should recall what is meant

by “chief factor” in group theory, and then describe how we shall generalize this

concept, following the lead of Freese and McKenzie (1981) and Freese and McKenzie

(1987). For a group G with normal subalgebras M ≺ N, M/N is a chief factor

of G; by “bound on the chief factor M/N ,” then, it is meant a bound on |M/N |.

Adopting our usual routine of considering congruences in favor of normal subalgebras,

given an algebra A, and congruences α ≺ β of A, we consider instead the supremum

over the cardinalities of all β/α-classes in A/α; we denote this by Ind(β/α). Thus,

whenever for V there exists a cardinal κ such that Ind(β/α) < κ, for all A ∈ V and

all α ≺ β from Con A, we say that V has a bound on its chief factors. We shall only

be interested in the case of κ a natural number, however; in this case, we say that V

has a finite bound on its chief factors.

Shortly, we prove that for any Mal’cev variety V , consisting solely of algebras

of nilpotence class k, for some natural number k, V has a finite bound on its chief

factors. Thus, by the discussion above, “lifting” nilpotence of class k to V(N), for all

large enough N , also serves to lift the bound on the chief factors, when V is a Mal’cev

variety of algebras of nilpotence class k. Along the way, however, we establish several

other results of independent interest.

3.3 Lifting the bound on the chief factors, and other results

In the exposition of the Oates-Powell proof given in Neumann (1967), the following

is noted.
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Theorem 3.8. For each natural number n, there is an equation vn in the language

of groups that is satisfied by every group of cardinality n or less and, conversely, if

vn holds in G, then the index of the centralizer of any chief factor is n or less.

Recall that if G is a group with factor H/K, then the centralizer of H/K is the

set of all a ∈ G such that ah ≡ ha mod K, for all h ∈ H.

Neumann (1967) refers to this vn as the “chief centralizer law,” which, for com-

parison, we give now. We adopt the usual notation for group operations. Let us

abbreviate conjugation, writing xy in place of y−1xy for variables x, y. We also let

[x, y] = x−1y−1xy abbreviate the commutator of variable elements x and y, and re-

cursively define some iterates of this by [x0, . . . , xn−1] = [[x0, . . . , xn−2], xn−1], for

n > 2. For any n > 1, Neumann (1967) recursively defines the terms vn in the

variables x1, . . . , xn, y3, . . . , yn, and yi,j (1 ≤ i < j ≤ n) by v2 = [x1, x2, (x−1
1 x2)y1,2 ]

and, for n > 2, vn = [vn−1, x
yn
n , (x−1

1 xn)y1,n , . . . , (x−1
n−1xn)yn−1,n ]. The law vn, by usual

convention, is formed by equating this term vn to the symbol for the identity element.

We shall show that for each natural number n and for a fixed congruence modular

variety V , we can obtain a similar “chief centralizer law” (depending on V) and a

result parallel to Theorem 3.8; we have repurposed the symbol vn for this law, which

we have, in a sense, patterned after that given above. Our chief centralizer law vn

turns out to be a countably infinite set of equations, rather than a single one; on the

other hand, for a Mal’cev variety V of algebras of nilpotence class k, for some natural

number k, and for which FV(2) is finite, we find that the law vn is implied by a finite

set of equations—namely, those given by Freese and McKenzie (1987), characterizing

nilpotence of class k (see Theorem 4.48).

We construct the law using the following Mal’cev condition for congruence mod-

ular groups, given by Gumm (1983) as well as the work building on this of McKenzie

(1987a). The following is
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Theorem 3.9. Let V be a variety. Then V is congruence modular if and only if there

is a natural number n and ternary terms q0, . . . , qn, p for V such that the following

equations hold in V:

1. q0(x, y, z) ≈ x

2. qi(x, y, x) ≈ x for 0 ≤ i ≤ n

3. qi(x, y, y) ≈ qi(x, y, y) for even i < n

4. qi(x, x, y) ≈ qi(x, x, y) for odd i < n

5. qn(x, y, y) ≈ p(x, y, y)

6. p(x, x, y) ≈ y

We shall call such terms—that is, that satisfy these equations—Gumm terms.

Remark 3.10. It also turns out that for V with Gumm terms given above, p is a

difference term.

Let V be a congruence modular variety. Let p, qi(i = 0, . . . , n) be a set of Gumm

terms for V .

Following McKenzie (1987a), for a given natural number k and term t in 2 +

k variables, we let St be the set of all 4 + k-rank terms s(x, y, u, v, z) including

p(t(x, u, z), t(y, u, z), t(y, v, z)) and, for each i ≤ n, qi(t(x, v, z), t(x, u, z), t(y, v, z))

and qi(t(x, v, z), t(y, u, z), t(y, v, z)).

We shall make use of the following consequence of Theorem 2.7 from McKenzie

(1987a).

Theorem 3.11. Let A be an algebra in a congruence modular variety, with Gumm

terms p, qi(i = 0, . . . , n), for some natural number n. Let a, b, c, d ∈ A. Then
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[Cg〈a, b〉,Cg〈c, d〉] = 0A if and only if for all natural numbers k, for all terms t

in 2 + k variables, and for all s ∈ St, we have

s(a, b, c, d, e) = s(a, b, d, d, e),

for all k-tuples e of elements of A.

For any given A ∈ V and a, b, c, d ∈ A, let us write CA(a, b, c, d) if and only if

[Cg〈a, b〉,Cg〈c, d〉] = 0A. Note also that, by the equations for the Gumm terms fixed

above, for any t and any s ∈ St,

V |= s(x, x, u, v, z) ≈ s(x, x, v, v, z). (3.1)

Let m be a natural number. Set Λm = {〈i, j〉 | 0 ≤ i < j < m}. We impose

an order on Λm ∪ {∅}, by letting ∅ be its least element, and by letting the rest be

ordered arbitrarily (or, if you like, with the dictionary order.) Let X be the usual set

of variables, indexed by the natural numbers. For each λ ∈ Λm, let Zλ be a countably

infinite set of distinct variables. Let Z = ∪Zλ. Also, let u, v be two more distinct

variables. Let T be the set of terms in the variables X ∪{u, v}∪Z. For convenience,

for a given t̄ ∈ TΛm , set S t̄ = ΠΛmStλ .

For each λ = 〈i, j〉 ∈ Λm, let 〈xλ, x′λ〉 = 〈xi, xj〉. For each t̄ ∈ TΛn , s̄ ∈ S t̄, and

λ ∈ Λm ∪ {∅}, we shall define a pair of terms `(t̄,s̄)
λ and r(t̄,s̄)

λ in the variables u, v, Zλ,

and xi, for i = 0, . . . ,
(
m
2

)
− 1, . For convenience, however, for each λ ∈ Λm ∪ {∅},

let us for the moment write `λ = `
(t̄,s̄)
λ and rλ = r

(t̄,s̄)
λ . Set `∅(x, u, v, z) = u and

r∅(x, u, v, z) = v. For λ ∈ Λm, let

`λ(x, u, v, z) = sλ(xλ, x′λ, `λ− , rλ− , zλ)

and

rλ(x, u, v, z) = sλ(xλ, x′λ, rλ− , rλ− , zλ),

where we have suppressed expression of the dependence of `λ− and rλ− on their

variables and where λ− is the immediate predecessor of λ.
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Let M be the highest element of Λm. Set `(t̄,s̄) = `
(t̄,s̄)
M and r(t̄,s̄) = r

(t̄,s̄)
M . Let vm be

the conjunction of all equations `(t̄,s̄) ≈ r(t̄,s̄), for all choices of t̄ ∈ TΛm and s̄ ∈ S t̄.

Let A ∈ V . Choose t̄ ∈ TΛm and s̄ ∈ S t̄. Let a be an assignment of the variables

appearing in ` := `(t̄,s̄) and r := r(t̄,s̄). Let ei = xi[a], and write 〈eλ, e′λ〉 = 〈ei, ej〉 for

any λ = 〈i, j〉 ∈ Λm. Suppose that eλ = e′λ for some λ ∈ Λm. We claim that this

entails that A |= (` ≈ r)[a]. Note that by equation 3.1 we have that `λ[a] = rλ[a].

If λ is the highest element of Λm, then we are done. Otherwise, it easily follows that

`λ+ [a] = rλ+ [a], where λ+ is the immediate successor of λ. Thus, by induction on the

order we imposed on Λm we have that `[a] = r[a].

Theorem 3.12. Let V be a congruence modular variety. Let m be a natural number.

Fix Gumm terms, p, qi(i = 0, . . . , n) for V. Let Λm and vm be as described above. Let

A ∈ V. If |A| < m, then A |= vm. Conversely, if α ≺ β are congruences on A and

A/α |= vm, then |A/(α : β)| < m.

Proof. Suppose first that |A| < m. Let a be any assignment of the variables X ∪

{u, v} ∪ Z to elements in A. Let ei = xi[a], and write 〈eλ, e′λ〉 = 〈ei, ej〉 for any

λ = 〈i, j〉 ∈ Λm. Reasoning as pigeons do, we find that there must be a λ ∈ Λm so

that eλ = e′λ. Thus, by the argument preceding this theorem, we have that A |= vm.

Now, suppose that α ≺ β are congruences on A so that (α : β) has index m or

greater. Without loss of generality, we shall assume that α = 0A: After all, (α :

β)/α = (0A/α : β/α), and so, by the third isomorphism theorem (A.15), (0A/α : β/α)

has the same index in A/α as (α : β) does in A. Thus, we can write β = Cg〈a, b〉 for

some a, b ∈ A. List m elements e0, . . . , em−1 ∈ A lying in mutually distinct (0A : β)-

classes. We shall find a sequence of terms t̄ ∈ TΛm and s̄ ∈ S t̄ and terms ` = `(t̄,s̄)

and r = r(t̄,s̄), and a witness to the failure of ` ≈ r in A, which shall also represent a

failure of vm in A.

Set a∅ = a and b∅ = b. Let `∅ = u and r∅ = v. Let λ+ ∈ Λm with immediate

predecessor λ. Suppose that aλ, bλ have been chosen so that Cg〈a, b〉 = Cg〈aλ, bλ〉.
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Suppose that `λ and rλ are terms in the variables X ∪ {u, v} ∪Z and cλ′(λ′ ≤ λ) are

elements of A that have been chosen so that, for any assignment a of elements of A

to the variables appearing in `λ and rλ that includes xi 7→ ei, u 7→ a, v 7→ b, and, for

each λ′ ≤ λ, zλ′ 7→ cλ′ , we have that `λ[a] = aλ and rλ[a] = bλ. (Note that the basis

step, above, clearly satisfies these requirements, if we let c∅ be arbitrary.)

Since ¬CA(eλ+ , e′λ+ , aλ, bλ), by Theorem 3.11 we get a term t, a tuple of elements

c from A, and an s ∈ St so that

aλ+ := s(eλ+ , e′λ+ , aλ, bλ, c) 6= s(eλ+ , e′λ+ , bλ, bλ, c) =: bλ+ .

Set tλ+ = t , sλ+ = s, and cλ = c. Note that, by inductive hypothesis,

〈aλ+bλ+〉 ∈ Cg〈aλ, bλ〉 \ 0A = Cg〈a, b〉 \ 0A.

But since 0A ≺ Cg〈a, b〉, we get that Cg〈aλ+ , bλ+〉 = Cg〈a, b〉. Set

`λ+ = s(xλ+ , x′λ+ , `λ, rλ, zλ+)

and

`λ+ = s(xλ+ , x′λ+ , rλ, rλ, zλ+),

and note that, by inductive hypothesis, under any assigment a that includes xi 7→ ei,

u 7→ a, v 7→ b, and, for each λ ≤ λ+, zλ 7→ cλ, we get that `λ+ [a] = aλ+ and

rλ+ [a] = bλ+ . Let the construction of this sequence of objects indexed by Λm ∪ {∅}

then continue through recursion.

Thus, we get a t̄ ∈ TΛm and s̄ ∈ S t̄. For each λ ∈ Λm ∪ {∅}, set `(t̄,s̄)
λ = `λ and

r
(t̄,s̄)
λ = rλ. Let r = rM and `M , where M is the highest element of Λm. Let a be

any assignment of elements in A that includes xi 7→ ei, u 7→ a, v 7→ b, and, for each

λ ∈ Λm, zλ 7→ cλ. By construction, then, we get that a witnesses the failure of ` ≈ r

in A. It is also evident from the construction of r and ` that this entails the failure

of vm in A.
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This theorem—and especially its consequences—should be compared with those

evident from some results in Chapter 10 of Freese and McKenzie (1987), in particular,

their Theorem 10.12 and Theorem 10.16. Kearnes (1996) should also be consulted.

We can find several uses for the theorem just given. We now take a look at a few of

its immediate consequences, some of which seem to be new results in their own right.

This first consequence is also evident from Freese and McKenzie (1987), Theorem

10.12.

Corollary 3.13. Let A be a finite algebra that generates a congruence modular variety

V. Then for any subdirectly irreducible B ∈ V with nonabelian monolith, we have that

|B| ≤ |A|.

Proof. Let A and B be as described. Say that |A| = n. Then, by the theorem

above, A |= vn+1. Now, since vn+1 is just a (countable) set of equations, we have that

V |= vn+1 as well. Note that the annihilator of the monolith of B is 0B; hence, by the

theorem above, we get the result.

The next is a well-known result, originating from Foster and Pixley (1964).

Corollary 3.14. Let A be a finite algebra in a congruence distributive variety. Let

V be the variety generated by A. Then V has a finite residual bound.

Proof. To see this result as a consequence of Corollary 3.13, one needs to first recall

Day’s Mal’cev characterization of congruence distributivity, which can be found in

Freese and McKenzie (1987), as well as recall the elementary fact that congruence

distributivity implies congruence modularity. Secondly, one must recall that any

prime congruence quotient for an algebra lying in a congruence distributive variety is

nonabelian. This last is a nontrivial, but well-known result (See Hobby and McKenzie

(1988), Theorems 5.7 and 9.11, for instance.)
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The following is patterned from the parallel observation made in Neumann (1967),

as Corollary 52.34, where it was limited to the case of V a variety of groups. It appears

to be a new result. It is interesting to consider this result alongside that of Kearnes

(1996), Theorem 3.7 (iii) ⇒ (iv).

Theorem 3.15. If A ∈ V, a congruence modular variety, and A is a finite, subdi-

rectly irreducible with non-abelian monolith, then A is critical.

Proof. Let A be a finite, subdirectly irreducible algebra in a congruence modular va-

riety V . Say that |A| = n. Suppose also that the monolith, say µ, of A is nonabelian.

(See Definition A.43). Then, (0A : µ) = 0A; that is, the index of the annihilator of

µ is n. Then, by Theorem 3.12, we get that A 6|= vn. Thus, we get that for some

t̄ ∈ TΛn , s̄ ∈ S t̄, and ϕ = `(t̄,s̄) ≈ r(t̄,s̄), A 6|= ϕ. On the other hand, by Theorem 3.12,

we also get that, if B is a proper factor of A, then B |= vn and hence B |= ϕ. It

follows that A is critical.

One flaw in our chief centralizer laws vn as given above, relative to the one given

in Neumann (1967), is that ours is potentially an infinite set of equations. On the

other hand, the following can be used to show that vn is implied by a finite set of

equations under a certain circumstance in which we are interested. More to the point,

vn holds in any algebra A in the variety with which vn is associated provided A is

nilpotent of class
(
n
2

)
. This fact and its results are apparently new.

Theorem 3.16. Let A ∈ V, a congruence modular variety. Pick Gumm terms for V;

we adopt the notation from above. Let n be a natural number, and pick t̄ ∈ TΛn. Let

s̄ ∈ S t̄. List the elements, in order, of Λn ∪ {∅} as λ0, . . . , λm, for m =
(
n
2

)
. Then

for each k ≤ m and all assignments a to the relevant variables, `(t̄,s̄)
λk

[a] (1A]k r(t̄,s̄)
λk

[a].

In particular, if (1A]m = 0A, then A |= vn.

Proof. For convenience, write `λ = `
(t̄,s̄)
λ and rλ = r

(t̄,s̄)
λ for each λ ∈ Λn ∪ {∅}.

Let a be any assignment of the variables appearing in `λm−1 , rλm−1 to elements of A;
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say that a sends 〈xi, u, v, zλ〉i∈ω,λ∈Λn to 〈ei, a, b, cλ〉i∈ω,λ∈Λn . For λ = 〈i, j〉 ∈ Λn, let

〈eλ, e′λ〉 = 〈ei, ej〉.

We shall show by induction that `λk [a] (1A]k rλk [a] for each k ≤ m. The claim is

trivial for k = 0. Now, suppose that it has been verified for some k < m. Note that

from equation 3.1,

sλk+1(eλk+1 , eλk+1 , `λk [a], rλk [a], cλk+1) = sλk+1(eλk+1 , eλk+1 , rλk [a], rλk [a], cλk+1).

Thus, by the inductive hypothesis and the fact that C(1A, (1A]k; (1A]k+1) holds, we

get that

`λk+1 [a] = sλk+1(eλk+1 , e
′
λk+1

, `λk [a], rλk [a], cλk+1) (1A]k+1

sλk+1(eλk+1 , e
′
λk+1

, rλk [a], rλk [a], cλk+1) = rλk+1 [a].

It is interesting to compare the above result with Theorem of Freese and McKenzie

(1987); the two results seem somewhat orthogonally related.

We shall need the following result, the proof of which is only a slight alteration of

what appears in Kearnes, Szendrei, and Willard (2013+) as Lemma 2.8 and McKen-

zie (1987a) as Lemma 2.16. (That is, the result is not new.) For algebra A and

congruences α ≤ β on A, we let Ind(β/α) be the supremum of the cardinalities of all

β/α-classes in A/α.

Theorem 3.17. Let A ∈ V, a Mal’cev variety, and let α ≺ β be a pair of congruences

on A. Let r be a natural number. If the index of (α : β) is r or less, then

Ind(β/α) ≤ |FV(r + 1)|.

Proof. Affirm the hypotheses. Let p be the Mal’cev term for V . Since (α : β)/α =

(0A/α : β/α), we can use the third isomorphism theorem A.15 to reduce the claim to

the case of α = 0A. That is, we may assume that β = CgA〈a, b〉 for some a, b ∈ A.
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Fix a transversal T of the (0A : β)-classes of A. Fix also e, a tuple of length r with

exactly the elements of T appearing in it.

Let u ∈ A, and choose v ∈ u/β. Then, by Theorem A.26, we get a term s so that

〈v, u〉 = 〈s(a, e′′), s(b, e′′)〉, for some tuple e′′ of elements from A. Now, using that p

is a Mal’cev term, we have that

p(s(a, e′′), s(b, e′′), u) = p(v, u, u) = v = p(v, v, v) = p(s(a, e′′), s(a, e′′), v).

From C((0A : β), β; 0A), we can conclude that

p(s(a, e′), s(b, e′), u) = p(s(a, e′), s(a, e′), v) = v,

for any tuple e′ related coordinate-wise by (0A : β) to e. Let e′ be the tuple of the

same length as e′′ and whose elements are the unique representatives from T of the

corresponding elements of e′′. It is easy to see that one can use s to construct a

term t in r + 1 variables such that s(x, e′) = t(x, e) for any x ∈ A. In particular,

〈u, v〉 = 〈u, p(t(a, e), t(b, e), u). On the other hand, given any t ∈ Clor+1 A, and we

have that p(t(a, e), t(b, e), u) ∈ u/β.

Thus, we can define a map from Clor+1 A into u/β given by

t 7→ p(t(a, e), t(b, e), u)

and the map is is onto. The result follows.

Theorem 3.18. Let m be a natural number. Let A be an algebra of nilpotence class

m (or less) that generates a congruence permutable variety V. Then A |= vn, where

n is any natural number so that m ≤
(
n
2

)
—such as n =

⌈√
2m

⌉
+ 1. Thus, for any

congruences α ≺ β of A, (α : β) is of index less than n and Ind(β/α) ≤ |FV(n)|.

Proof. Let n =
⌈√

2m
⌉

+ 1. Note that n ≥ 1 and hence 2n − 1 ≥ n. Thus,
(
n
2

)
=

n2−n
2 ≥ n2−2n+1

2 = (n−1)2

2 ≥ m. By, Theorem 3.16, we get that A |= vn. Let α, β ∈

Con A such that α ≺ β. By Theorem 3.12, (α : β) has index less or equal to n − 1
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(noting, of course, that congruence permutability implies congruence modularity.)

Therefore, by Theorem 3.17, we conclude that Ind(β, α) ≤ |FV(n)|.

It is by means of the theorem just proved not only that we discover that for any

Mal’cev variety of algebras of nilpotence class k, and any A ∈ V , we have a bound

Ind(β/α) for any prime quotient α ≺ β of congruences on A, but that we are also

able to “lift” this bound to V(N) for large enough N . In the following sections we

shall explore some preliminary suggestions for how to apply this result towards the

finite basis result sought. First, we recall some facts concerning nilpotent algebras in

a Mal’cev variety, noted by Smith (1976).

3.4 Some useful items adapted from Smith (1976)

While the results and their proofs presented in this section can be found in Smith

(1976), he uses somewhat different concepts and language concerning the commutator

from that employed in the present paper. Some of these differences may even be of

more than a strictly superficial kind, but, in any case, we offer proofs using the

notation established earlier in this paper.

Lemma 3.19. Let A ∈ V, a variety with a difference term, d. If α, β ∈ Con A

with β ≤ α such that [β, α] = 0A, then 〈x, y〉∆α
β 〈u, v〉 implies that v = dA(y, x, u).

If d is also a Mal’cev term, then for any α, β ∈ Con A, 〈x, y〉∆α
β 〈u, v〉 implies that

v [α, β] dA(y, x, u).

Proof. Let d denote dA, as well. Let α, β ∈ Con A. Suppose first that [β, α] = 0A

and that β ≤ α. Apply d coordinate-wise, “vertically” to the following pairs:

〈y, y〉∆α
β 〈y, y〉

〈x, y〉∆α
β 〈x, y〉

〈x, y〉∆α
β 〈u, v〉,
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to yield 〈d(y, x, x), y〉∆α
β 〈d(y, x, u), v〉. Since [β, β] ≤ [β, α] = 0A and 〈y, x〉 ∈ β, we

have that d(y, x, x) = y. Thus, the first claim follows by Proposition A.37.

The second claim is even easier, and it follows by a similar computation, and so

we omit it. (It is also a consequence of Theorem 2.24 together with Remark 2.6.)

For any algebra A and any B ⊆ A, we shall say that B is normal provided it is

the class of some congruence—in particular, of CgAB2.

The following is a generalization of Proposition 236 from Smith (1976). The proof

is adapted from his, as well.

Theorem 3.20. Let A be an algebra in a variety with difference term d. Let ζ be

the center of A. Let M be a subalgebra of A with the property that Mζ = A. Then

M is normal in A, and A/CgM2 is abelian.

Proof. Let d denote dA. Let µ̃ be the binary relation on A defined by 〈a, a′〉 ∈ µ̃ if

and only if there exist m,m′ ∈M such that

〈a,m〉∆1A
ζ 〈a′,m′〉.

We claim that µ̃ is a tolerance (that is, a reflexive, symmetric, binary relation that

respects the operations of A. Reflexivity of µ̃ follows from reflexivity of ∆1A
ζ and from

the hypothesis that Mζ = A; put another way, Mζ = A says precisely that given

any a ∈ A, we can find an m ∈ M so that mζ a. The symmetry of µ̃ is also easy

to see: One just needs the symmetry of ∆1A
ζ . That µ̃ respects the operations of A is

automatic from the facts that M and ∆1A
ζ are closed under the operations of A and

A2, respectively. It easily follows that the transitive closure µ of µ̃ is a congruence

on A.

Now, by the definition of ∆1A
ζ , we get that for any m,m′ ∈M ,

〈m,m〉∆1A
ζ 〈m′,m′〉,

and so mµm′. Thus, we see that M is contained in some µ-class.
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We claim that M absorbs µ̃: That is, if m ∈ M and a ∈ A such that m µ̃ a,

then a ∈ M . Let m and a satisfy these hypotheses. Say that 〈m,m0〉 ∆1A
ζ 〈a,m1〉.

Then, it is not hard to see, by Mal’cev’s description of congruence generation (see

Theorem A.9) that 〈m0,m〉∆1A
ζ 〈m1, a〉, as well. Thus, since [ζ, 1A] = 0A, Lemma 3.19

tells us that a = p(m,m0,m1) ∈M . We use this now to show that M absorbs µ. Let

m ∈M and a ∈ A such that m µ a. Then we can write

m = a0 µ̃ a1 µ̃ · · · µ̃ ak−1 = a,

for some natural number k and ai ∈ A for i < k. Since M absorbs µ̃, we have that

a1 ∈ M . Thus, by inducting on k, we have that a ∈ M , as well. As we saw above

that M is contained in a single µ-block, it now follows that M is a congruence block

of µ; hence M is normal.

We claim further that µ = CgM2. Of course, we have just seen that CgM2 ≤ µ,

and so it remains only to show the reverse inequality. Indeed, using an argument

similar to the one just given, we observe that if 〈a, a′〉 ∈ µ̃, then a′ = p(a,m,m′) for

some m,m′ ∈M . Thus,

〈a, a′〉 = 〈p(a,m,m), p(a,m,m′)〉

= p(〈a, a〉, 〈m,m′〉, 〈m,m′〉)

∈ CgM2.

Thus, µ̃ ≤ CgM2, from which it now follows that µ = CgM2. Note also that since

Mζ = A and M is a block of µ, we get that µ ∨ ζ = 1A.

It remains to show that A/µ is abelian. To do so, by Proposition A.28, it is

equivalent to show that (µ : 1A) = 1A. Note that since A is in a difference term

variety, we use Theorem 4.38 and the fact that C(ζ, 1A; 0A) to learn that C(ζ, 1A;µ).

Thus, ζ ≤ (µ : 1A). On the other hand, C(µ, 1A;µ) and so µ ≤ (µ : 1A), as well.

Thus, 1A = µ ∨ ζ ≤ (µ : 1A), as desired.
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The following is given by Smith (1976), as Proposition 236. In fact, he says a

little more than we have included here—concerning the Frattini subalgebra of a given

nilpotent, Mal’cev algebra A, should it have one.

Theorem 3.21. Let A be a nilpotent algebra in a Mal’cev variety. Then every

maximal subalgebra of A is normal.

Proof. Let k be the nilpotence class of A. According to Theorem 4.30, since A is

nilpotent, we have that ζk := ζkA = 1A. Let M be a maximal (proper) subalgebra of

A. Evidently, Mζk = A. Let n be the least natural number so that Mζn = A. Note

that n > 0, since ζ0 = 0A and M is a proper subset of A. Also, by the maximality of

M, we have that for any i < n, Mζ i = M . In particular, M is a union of ζn−1-blocks.

Let M/ζn−1 denote the set of ζn−1-blocks contained in M . It is not hard to see that

(M/ζn−1)ζA/ζn−1 = (M/ζn−1)(ζn/ζn−1) = A/ζn−1.

It follows by Theorem 3.20 (and Definition 4.14) that M/ζn−1 is normal in A/ζn−1

and that (A/ζn−1)/Cg(M/ζn−1)2 is abelian. Recall from Theorem A.46, that, since

A is nilpotent and Mal’cev, it is also congruence regular. In particular, ζn−1 =

CgA{〈a, b〉 | b ∈ a/ζn−1 and a ∈M}. Thus, ζn−1 ≤ CgAM2. Now, using also that

(CgAM2)/ζn−1 = CgA/ζn−1(M/ζn−1)2 (3.2)

(which can be seen from Proposition A.10), we can easily show thatM is a congruence

block of CgAM2; that is, M is normal in A: Let m ∈ M and a ∈ A such that

m CgAM2 a. Then,

〈m/ζn−1, a/ζn−1〉 ∈ CgAM2/ζn−1 = CgA/ζn−1(M/ζn−1)2,

and hence a/ζn−1 ∈M/ζn−1, whence a ∈M . We also observe that from

C(1A/ζn−1 , 1A/ζn−1 ; CgA/ζn−1(M/ζn−1)2),
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we can also deduce from 3.2 and Proposition A.28 (e) that

C(1A, 1A; CgAM2);

that is, CgAM2 is abelian.

3.5 (Some) Frattini congruences

In group theory, the Frattini subgroup is defined to be the intersection of all maximal

subgroups of a given group—if it has any—and otherwise the group itself. (See Scott

(1964), section 7.3). In his Proposition 237, Smith (1976) showed that this concept

generalizes to Mal’cev nilpotent algebras with favorable results. On the other hand,

Smith has a counterexample demonstrating that the intersection of the maximal

subalgebras of a nilpotent, Mal’cev algebra may be empty (see p. 45 in Smith (1976)).

Kiss and Vovsi (1995) and Kearnes (1996) have argued that the concept of Frattini

subgroup is more aptly generalized by a congruence. We give their definition of the

Frattini congruence below, but we also offer a second one which we show is equivalent

to theirs in any Mal’cev variety of nilpotent algebras.

Let A be any algebra. Denote by MA, or, if A is clear from context, simply,

M, the set of all maximal subalgebras of A (of course,M may be empty.) For any

nonempty subset B of A, let φB denote the largest congruence so that B is a union

of φB-classes, noting, of course, that an easy computation is needed to justify this

definition. Given a subset B of A and a congruence θ on A, we say that θ is contained

in B provided Bθ = B (see Definition A.12.) (We might also say that “B absorbs θ.”)

It is not hard to see, then, that for a given B ⊆ A, φB is also the largest congruence

contained in B; indeed, for a given θ ∈ Con A, B is a union of θ-classes if and only

if Bθ = B.

Definition 3.22. For a given algebra A, let 1ΦA be the congruence on A defined as
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follows. If A has no maximal subalgebras, let 1ΦA = 1A. Otherwise, let

1ΦA =
⋂
{φM |M ∈MA}.

When it is clear from context, we shall drop the subscript A. We call this the 1Frattini

congruence of A.

Kiss and Vovsi (1995) and Kearnes (1996) used this to generalize some results

from Neumann (1967) concerning critical algebras and other matters. Our interest,

too, is critical algebras (albeit, we seek necessary conditions of criticality rather than

sufficient ones) and we have found some promise in answer Problem 1.3 through the

consideration of the following definition, which turns out to yield the same object as

Definition 3.22 in the context of a Mal’cev variety of nilpotent algebras.

Definition 3.23. For a given algebra A, let 2ΦA be a congruence on A defined as

follows. If A has no maximal (proper) subalgebras, let 2ΦA = 1A. Otherwise, we set

2ΦA =
⋂
{CgAM2 |M ∈MA}.

When it is clear from context, we shall drop the subscript A. We call this the 2Frattini

congruence of A.

Proposition 3.24. Let A be any algebra. If A is congruence regular, then we have

that 1ΦA ≤ 2ΦA. If A is such that each of its maximal subalgebras are normal,

then 2ΦA ≤ 1ΦA. In particular, if A is nilpotent and lies in a Mal’cev variety, then
1ΦA = 2ΦA.

Proof. Note that if A is without maximal, proper subalgebras, we have that, by

definition, 1Φ = 2Φ (where we have dropped the subscript, A.) So, let us suppose

thatM =MA is nonempty.

First, suppose that A is congruence regular. Let 〈a, b〉 ∈ 1Φ. Let M ∈ M. We

need to show that 〈a, b〉 ∈ CgAM2. Since 〈a, b〉 ∈ 1Φ, we have that CgA〈a, b〉 ≤ φM .
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Thus, M CgA〈a, b〉 ⊆ MφM = M and hence M is a union of CgA〈a, b〉-classes. But

since A is congruence regular, we thus have that CgA〈a, b〉 ≤ CgAM2. It follows

that 1Φ ⊆ 2Φ.

Now, suppose that A is such that each of its maximal subalgebras is normal. Let

〈a, b〉 ∈ 2Φ. Let M ∈ M. We need to show that 〈a, b〉 ∈ φM . It is sufficient to show

that M CgA〈a, b〉 = M . By assumption, we have that 〈a, b〉 ∈ CgAM2, and hence

CgA〈a, b〉 ≤ CgAM2. Now, we have assumed that M is normal, and hence we must

also have that M is the union of CgA〈a, b〉-classes. This puts 〈a, b〉 ∈ φM . It follows

that 2Φ ⊆ 1Φ.

To see the final claim of this proposition, recall Theorems A.46 and 3.21.

As in the case of the study of Frattini subgroups, we have a connection with the
1Frattini congruence and a notion of “nongeneration.” See also Kearnes (1996), p. 8.

Definition 3.25. For a given algebra A, we shall call any pair 〈x, y〉 ∈ A2 a
1nongenerator for A whenever for any B ≤ A, we have that

B CgA〈x, y〉 = A⇒ B = A.

Theorem 3.26. Let A be an algebra such that every chain of proper subalgebras of

A includes its least upper bound. Then 1ΦA is exactly the set of all 1nongenerators

for A.

Proof. Note that, if A is without maximal, proper subalgebras, then, our hypothesis

concerning chains of subalgebras of A together with Zorn’s Lemma, implies that A is

without any proper subalgebras at all. Thus, under this circumstance, every pair of

elements from A is a 1nongenerator and so, by definition of 1Φ, the claim is satisfied.

Thus, we will proceed under the assumption thatM is nonempty.

Let 〈a, b〉 ∈ 1Φ. Let B ≤ A and suppose that B Cg〈a, b〉 = A. If B 6= A, then,

by Zorn’s Lemma and our hypothesis concerning chains of subalgebras of A, we can
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extend B to a maximal, proper subalgebra M of A. Note that, since 〈a, b〉 ∈ 1Φ ≤ φM ,

we also have that M Cg〈a, b〉 = M . Altogether, we thus have that A = B Cg〈a, b〉 ≤

M Cg〈a, b〉 = M , which contradicts the definition of M as proper. Thus, we are

forced to conclude that B = A, which shows that 〈a, b〉 is a 1nongenerator for A.

Now, assume that 〈a, b〉 is a 1nongenerator for A. Let M ∈M. We need to show

that 〈a, b〉 ∈ φM , which is to say, thatM Cg〈a, b〉 = M . But, of course, the alternative,

namely that M Cg〈a, b〉 = A is ruled out by the definition of 1nongenerator, as M is

assumed to be a proper subset of A.

Lemma 3.27. Let A be an algebra with regular congruences, and suppose that each

of its maximal, proper subalgebras are normal. Then if M is a maximal (proper)

subalgebra of A, then CgM2 is a maximal proper congruence of A.

Proof. Let A and M be as described. Denote CgM2 by µ. Let θ be a congruence

on A with µ < θ. Note that M is a block of µ and is also contained within a single

θ-block, which is equal to Mθ. Since A has regular congruences, we must have that

M < Mθ = A. But this entails that all of A is a single θ-block and hence that

θ = 1A.

Theorem 3.28. Let A be an algebra that generates a Mal’cev variety and such that

each chain of subalgebras of A contains its upper bound. Let Φ denote its 1Frattini

congruence. Suppose that Φ is finitely generated. Then A is generated by a transversal

of its Φ-classes.

Proof. Choose a transversal T of the Φ-classes of A. Let B = SgA T . We claim that,

in fact, B = A. Note that BΦ = A.

By our hypotheses, we can write

Φ = Cg〈x0, y0〉 ◦ · · · ◦ Cg〈xn−1, yn−1〉
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for some natural number n and some pairs 〈xi, yi〉 ∈ A2. Note that

BΦ = B Cg〈x0, y0〉 · · ·Cg〈xn−1, yn−1〉

By induction and Theorem 3.26, we have that

A = B Cg〈x0, y0〉 · · ·Cg〈xn−1, yn−1〉

⇒A = B Cg〈x0, y0〉 · · ·Cg〈xn−2, yn−2〉
...

⇒A = B

The following is noted by Smith (1976) as Proposition 234.

Theorem 3.29. Let A be any algebra. If every subalgebra of any algebra B in the

variety generated by A is normal, then A is abelian.

As a partial converse, if A is abelian and Mal’cev, then each of its subalgebras is

normal in A.

Proof. Suppose that each subalgebra of any algebra B in Var A is normal in B. Note

that it is not hard to see from Proposition A.37, that A is abelian if and only if 0A is

normal in ∆1A
1A . But, by hypothesis, since ∆1A

1A is a subalgebra of A2, we have exactly

that.

Now, suppose that A is abelian with Mal’cev term operation p. Let B be a

subalgebra of A. Note that, by Proposition A.25, we have that CgAB2 = SgA×AB2∪

0A. We claim further that SgA×AB2 ∪ 0A = B2∆1A
1A (see Definition A.12 for an

explanation of the notation.) Let ∆ = ∆1A
1A . Note that, by the reflexivity of ∆, we

have that B2 ⊆ B2∆. We claim further that 0A ⊆ B2∆: Let a ∈ A. Also, take any

b ∈ B. Then 〈b, b〉∆ 〈a, a〉 and so, indeed, 0A ⊆ B2∆. Since B2∆ is closed under the

operations of A2, it follows that SgA×AB2∪0A ≤ B2∆. Now, take any 〈a, a′〉 ∈ B2∆.
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Then we have some 〈b, b′〉 ∈ B2 such that 〈b, b′〉∆ 〈a, a′〉. By Proposition 3.19, we

have that a′ = p(b′, b, a). Thus,

〈a, a′〉 = 〈pA(b, b, a), pA(b′, b, a)〉 = pA2(〈b, b′〉, 〈b, b〉, 〈a, a〉),

which puts 〈a, a′〉 in SgA×AB2 ∪ 0A. It now follows that CgAB2 = B2∆.

Now, take any b ∈ B and a ∈ A such that bB2∆ a. Then, for some b0, b1 ∈ B, we

can write 〈b, a〉∆ 〈b0, b1〉. By Proposition 3.19, then, we get that a = pA(b1, b0, b) ∈ B,

since B is closed under the operations of A. Thus, B is indeed normal in A.

The following is apparently new, and includes a generalization of 7.3.3 from Scott

(1964); see also Theorem 237 in Smith (1976).

Theorem 3.30. Let A be an congruence regular algebra in a Mal’cev variety. Suppose

also that for all γ ∈ Con A with γ ≺ 1A we have that 1A is abelian over γ (which

means nothing more or less than that A/γ is abelian). If all the maximal, proper

subalgebras of A are normal, then 2ΦA ≥ [1A, 1A].

Conversely, if 1ΦA ≥ [1A, 1A], then all maximal, proper subalgebras of A are

normal, and hence, in fact, 1ΦA = 2ΦA.

Proof. Let 1Φ and 2Φ denote the 1 and 2Frattini congruences of A, respectively.

Let M be the set of all maximal, proper subalgebras of A. First, assume that all

M ∈ M are normal. From Lemma 3.27, for any M ∈ M and µ := CgAM2, we

have that µ ≺ 1A, and hence, by hypothesis, C(1A, 1A;µ) holds. By definition of 2Φ

(and Proposition A.28 (a)) we also have that C(1A, 1A; 2Φ) holds, which is to say,
2Φ ≥ [1A, 1A].

Now, suppose that 1Φ ≥ [1A, 1A]. Let M ∈ M. Note that M is a union of
1Φ-blocks. Let M/1Φ = (M1Φ)/1Φ denote the set of all 1Φ-blocks contained within

M . It is not hard to see that M/1Φ is closed under the operations of A/1Φ. Note,

also that, by congruence regularity of A, 1Φ ≤ CgAM2. (See Theorem A.14.) Now,
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by Proposition A.28 (e), C(1A, 1A; 1Φ) implies that A/1Φ is abelian and hence, by

Theorem 3.29, M/1Φ is normal in A/1Φ. We claim that this entails thatM is normal

in A. Let m ∈M and a ∈ A such that m CgAM2 a. Then, by Proposition A.10, we

have that

〈m/1Φ, a/1Φ〉 ∈ (CgAM2)/1Φ = CgA/1Φ(M/1Φ)2.

Since M/1Φ is normal, we then get that a/1Φ ∈M/1Φ, which puts a ∈M . It follows

that M is normal. Now, by the second part of Theorem 3.24, we then also discover

that 2Φ ≤ 1Φ. By the first part of Theorem 3.24, we also have that 1Φ ≤ 2Φ, and

hence the two are equal.

Theorem 3.31. Let A be a nilpotent algebra in a Mal’cev variety. Denote its
2Frattini congruence by Φ. Then A/Φ is abelian.

Proof. There is more than one way to see this. Note that if A is without maximal,

proper subalgebras, then Φ = 1A and so the claim is trivial. So suppose otherwise.

Let M ∈ M :=MA. Now, note from Theorem 3.21 and Lemma 3.27, we have that

CgM2 ≺ 1A. Thus, by Theorem A.48 we get that A/CgM2 is abelian. Now, since

A/Φ ↪→sd Π{A/CgM2 |M ∈M}

and since abelianness is inherited under SP , the claim follows. (See A.1.1 for nota-

tion.)

3.6 A condition for the finite axiomatizability of supernilpotence of

class n

The following result is likely to be a necessary step in addressing the task suggested

by the second bullet near the beginning of Section 3.2. That is, while it is not

currently known whether the supernilpotence class c of any supernilpotent algebra in

a congruence permutable variety generated by an algebra A (perhaps also assumed
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to be nilpotent) is controlled by the cardinality of A (or, perhaps, another related

parameter), but the following shows that, if this is the case, then such a bound on c

can be “lifted” to V(n) for high enough n, under the circumstances described in the

theorem.

Theorem 3.32. Let n be a natural number. Let V be a Mal’cev variety of finite

signature such that each of its members is nilpotent of class n and so that FV(2) is

finite. Then for all natural numbers k, there is a finite set Σk of equations in the

language of V such that for any algebra A in the same signature as V, we have that

if A |= Σk, then A is supernilpotent of class k.

Proof. By Theorem 3.7 we get a natural number N ≥ 2 such that V(N) is locally

finite (and hence V is locally finite, too). Let k be any natural number. Let Sk be

the class of all algebras in V(N) that are supernilpotent of class k. It is also clear

that since N ≥ 2 that V(N) is Mal’cev (see Theorem A.21). Note from Theorem 2.44

that Sk is a variety. Since V(N) is locally finite, we have that Sk is too. Thus, by

Theorem 2.30, Sk is finitely based. Let Σk be its finite basis. It is clear that Σk has

the property claimed of it in the statement of this theorem.

See Neumann (1967), Lemma 52.35, for a model of precisely how this result might

be used.

3.7 Some strategies for establishing that V(N) has a finite critical

bound for high enough N

Let k be a natural number, and fix a Mal’cev variety V of finite signature, such that

each A ∈ V is nilpotent of class k and so that FV(2) is finite. By Corollary 4.49,

we get a finite set of equations Ek satisfied in V such that, for any algebra B of the

same signature as A, B |= Ek if and only if B is nilpotent of class k. Since Ek is

finite, we get an N0 so that for N ≥ N0, V(N) |= Ek. Suppose that N ≥ max{N0, 2}.
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Since N ≥ 2, we get that FV(N)(2) = FV(2) (see Subsection A.1.1.) So by applying

Corollary 4.49, again, we find that each algebra in V(N) is nilpotent of class k.

By Theorem 3.7, we also learn that there is an N1 such that for all N ≥ N1,

V(N) is locally finite. Let N ≥ max{N1, N0, 2}. Let C be critical algebra in V(N) .

Then C is finitely generated and hence finite by the local finiteness of V(N). Thus, by

Theorems 3.26, 3.24, and 3.28 it is sufficient to find a bound for C/Φ, where Φ is the
2Frattini congruence of C. We also get that |C/Φ| ≤ Π{|C/CgM2| |M ∈M}, where

M is the set of all maximal, proper subalgebras M of C. Since N ≥ max{N0, 2}, we

have that C is nilpotent of class k. Thus, by Lemma 3.27, for each M ∈ K, we have

that CgCM2 is maximal in Con C—that is, CgCM2 ≺ 1C . Now, by Theorem 3.18, for

each M ∈ K, we have that |C/CgM2| ≤ |FV(n)|, where n =
⌈√

2m
⌉

+ 1, noting that

since V(N) is locally finite, FV(n) is finite. Thus, we need only bound the number of

maximal subalgebras of C (or, perhaps, the number of maximal, proper congruences

of C.) Now, we haven’t used the fact that C is critical, except to argue that it is finite.

So, really, unless for some reason we think that V might have an upper bound on the

size of its finite algebras, then we ought to find some further use for the hypothesis

that C is critical. Furthermore, we must recall Example 1 from Vaughan-Lee (1983):

We shall not be able to establish a finite critical bound in V(N) without also assuming

that V is generated by a finite algebra, as he provides an example of a locally finite,

Mal’cev variety V of algebras of nilpotence class 3 such that V is not finitely based.

Remark 3.33. Let C be a subdirectly irreducible algebra lying in a congruence

permutable variety such that C is nilpotent. Let β be its monolith. Recall from The-

orem A.48, that β is abelian, since C is nilpotent of class, say, m. From Theorem 3.18,

then, we have that Ind(β : 0A) ≤ |FV(n)|, where n =
⌈√

2m
⌉

+ 1. In particular, if

V is a locally finite, finite signature, Mal’cev variety of algebras of nilpotence class

m, then by Corollary 4.49 and Theorem A.21, we get the same for V(N) for all high

enough N . From Theorem 3.7, we also have that V(N) is locally finite for high enough
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N . Thus, if we can establish that the index of the monolith of any critical algebra

C ∈ V(N) is bounded, then we shall be able to establish a finite critical bound for

V(N). While it is not true, in general, that a bound for the index of the monolith of

an arbitrary subdirectly irreducible can be found for V , it may turn out that such

a bound does exist for critical algebras. Of course, in the case of V , a variety of

groups of nilpotence class m, we do indeed get a finite critical bound for V ; this can

be seen directly from Corollary 2.53 together with Theorem 2.13 and Theorem 2.24

(among other ways). It is interesting to note that Theorem 3.7 (iii)⇒ (iv) of Kearnes

(1996), together with Theorem 3.18 shows that each of one particular class of critical

algebras in V—namely those whose monolith equals its annihilator—is of some finite,

bounded cardinality. On the other hand, Example 1 from Vaughan-Lee (1983) shows

that this class does not always comprise all of the critical algebras in V(N).

A the very least, perhaps there is a way to bound the height of (0C : β) above β

in the lattice Con C. Theorem 3.18 would then finish the job.

A third strategy is outlined in the following. After giving this result, we shall

generalize it, but it still seems helpful to display the proof below, as an example of

the general case.

Theorem 3.34. Let C be a critical algebra in a Mal’cev variety. Then C is either

2-generated, or it is generated by a transversal of its ζC-classes.

Proof. Let ζ denote the center of C. We use that the term condition is equivalent to

the two-term condition in Mal’cev varieties (a fact which isn’t hard to prove directly,

but which is also evident from Theorem 2.24). Since C is critical, there is some

equation t ≈ s that fails in C but which is satisfied in all proper factors of C.

Since the failure of t ≈ s involves a finite witness, say c = 〈c0, . . . , c`〉, for some

natural number `, it is thus evident that C is generated by {c0, . . . , c`}. Assume that
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tC(c0, . . . , c`) 6= sC(c0, . . . , c`) witnesses that C is critical, but also that ` is minimal

in this regard.

Suppose that ci ζ cj, for some i 6= j. By permuting the variables of t and s, we

may assume that i = 0 and j = `. Suppose, too, that ` ≥ 2. Let us write c for c`.

Now, from (the contrapositive of) C2(ζ, 1C ; 0C), we learn that one of the following

inequalities must hold:

tC(c, c, c, . . . , c) 6= sC(c, c, c, . . . , c),

tC(c0, c, c, . . . , c) 6= sC(c0, c, c, . . . , c), or

tC(c, c1, c2, . . . , c`−1, c) 6= sC(c, c1, c2, . . . , c`−1, c).

But, by the minimality of `, this cannot be. It follows that the elements in {c0, . . . , c`}

must lie in distinct ζ-classes. The claim follows.

The second part of the theorem just given is worth comparing to Theorem 51.35

of Neumann (1967), which we can now easily generalize:

Theorem 3.35. If C is an abelian, critical algebra in a Mal’cev variety V then C is

2-generated. If, too, V is provided with a named constant in its signature, then C is

1-generated.

Proof. The first claim is evident from Theorem 3.34. The second claim can be seen

by using the named constant in place of c.

We also find that the previous theorem is a special case of the following, which

can be seen as a partial generalization of Proposition 2.13. Let A be an algebra

in a Mal’cev variety. Let n be a natural number. Note that from Theorem 2.37,

for any congruences θ0, . . . , θn−1 on A, we can find a highest α ∈ Con A such

that Sn+1(α, θ0, . . . , θn−1) = 0A. Let ξn(A) be the largest ξ ∈ Con A such that

Sn+1(ξ, 1A, . . . , 1A) = 0A. Note that ξ2(A) = ζA.
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Theorem 3.36. Let C be a critical algebra in a Mal’cev variety. Then for every

natural number n, C is either n-generated or it is generated by a transversal of its

ξn(A)-classes.

Proof. Let n be a natural number. Denote ξn(A) by ξn. We use that the higher

term condition is equivalent to the higher two-term condition in Mal’cev varieties, as

shown in Theorem 2.24. Since C is critical, there is some equation t ≈ s that fails in

C but which is satisfied in all proper factors of C. Since the failure of t ≈ s involves a

finite witness, say c = 〈c0, . . . , c`〉, for some natural number `, it is thus evident that

C is generated by {c0, . . . , c`}: Indeed, the subalgebra generated by this set cannot

be proper. Assume that tC(c0, . . . , c`) 6= sC(c0, . . . , c`) witnesses that C is critical,

but also that ` is minimal in this regard.

Suppose that ci ξn cj, for some i 6= j. By permuting the variables of t and s, we

may assume that i = 0 and j = `. Suppose, too, that ` > n. For each r < 2n − 1, let

δr be the endomorphism of the term algebra generated by the usual set of variables

with δr given by the substitutions

δrxi = x`

if i < n and βr(i) = 0 or if i ≥ n and βr(n − 1) = 0 but which is otherwise the

identity. Now, from (the contrapositive of) Cn+1
2 (ξn, 1C , . . . , 1C ; 0C), we learn that for

some r < 2n − 1

δrs
C(x0, . . . , x`)[c] 6= δtC(x0, . . . , x`)[c],

for else we would have that sC(c0, . . . , c`) = tC(c0, . . . , c`). But, by the minimality of

`, this cannot happen. It follows that the elements in {c0, . . . , c`} must lie in distinct

ξn-classes.

Lending more interest to the previous theorem and the strategy it suggests is the

following observation.
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Proposition 3.37. Let A be an algebra in a Mal’cev variety. Then

ξ1(A) ≤ ξ2(A) ≤ · · · ≤ ξn(A) ≤ ξn+1(A) ≤ · · · .

Proof. For each natural number n, let ξn denote ξn(A). Let n be any natural number.

We wish to show that ξn ≤ ξn+1. By Proposition 2.32, we find that

0A = Sn+1(ξn, 1A, . . . , 1A) ≥ Sn+2(ξn, 1A, . . . , 1A),

whence the result follows.

On the other hand, the following would seem to indicate that the strategy given

at the beginning of this section is more likely to work that that of Theorem 3.34.

Theorem 3.38. Let A be a critical algebra in a locally finite Mal’cev variety V. Then

|A| ≤ |FV(n)|, where n = |FV(1)|, or ζA ≤ 1ΦA.

Proof. Let p be the Mal’cev term for V . Let ζ denote the center of A. Let M be a

maximal, proper subalgebra of A. Suppose thatMζ = A. Since M is a proper subset

of A, we can find a b ∈ A \M . Let B = SgA{b}. Note that if Bζ = A, then A/ζ is

generated by b/ζ: After all, if a ∈ A, then we can find a unary term t such tA(b) ζ a

and hence tA/ζ(b/ζ) = a/ζ. By Theorem 3.34, this would entail that |A| ≤ |FV(n)|,

where n = |FV(1)|. So, we may assume that Bζ is a proper subset of A.

Let M × Bζ ×ζ B denote the set of all triples 〈m, b, b′〉 ∈ A3 such that m ∈ M ,

b ∈ Bζ and b′ ∈ B such that b ζ b′. Now, we define a map ϕ : M ×Bζ ×ζ B → A by

ϕ〈m, b, b′〉 = pA(m, b, b′). Note that M×Bζ×ζB is a subalgebra of a product of proper

factors of A. By Theorem 4.10, it is evident that ϕ is a homomorphism. We claim

that it is also onto. Let a ∈ A. By assumption, we can obtain an m ∈ M such that

mζ a. Let b ∈ B. Note then that pA(m, a, b) ζ b and hence 〈pA(m, a, b), b〉 ∈ Bζ×ζB.
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Then by Theorem 4.10 (or Proposition 2.26), we have that

pA(m, pA(m, a, b), b) = pA(pA(m, a, a), pA(m, a, b), pA(a, a, b))

= pA(pA(m,m, a), pA(a, a, a), pA(a, b, b))

= pA(a, a, a) = a.

This entails that A is a homomorphic image of a subalgebra of a product of some

of its proper factors, which contradicts the assumption that A is critical. It follows

thatMζ = M , and as M was an arbitrary maximal, proper subalgebra of A, we have

that ζA ≤ 1ΦA.

The following is very similar to the last and, under the conditions of its hypotheses,

it is stronger.

Theorem 3.39. Let k and n be natural numbers so that k ≤
(
n
2

)
. Let C be a

critical algebra in a Mal’cev variety V, and suppose that C is nilpotent of class k. Let

M ∈ MC, and let µ = CgCM2. Then either |MC| < 2m − 1, where m = |FV(n)|

or, for any M ∈ MC and µ = CgCM2, we have that (0C : µ) ≤ µ. In particular, if

|MC| ≥ 2m − 1, then ζC ≤ ∩{(0C : CgCM2) |M ∈MC}, and (0C : µ) is abelian.

Proof. Let p be a Mal’cev term operation for A. Note first that, by Theorem 3.18,

A has at most m µ-classes. Thus, A has at most 2m − 2 collections C of µ-classes

such that ∪C 6∈ {∅, A}. Let M = MC. Suppose that |M| ≥ 2m − 1. We claim

that, for some M′ ∈ M, M ′µ = A. If not, then for all M′ ∈ M, we have that

M ′µ = M ′, which means that each M ′ ∈ M is a union of M ′ classes. But, by our

initial observation, there is some M′ ∈M that is not a union of µ-classes. Take such

an M ′ ∈M, and note that M ′µ = A.

Let γ = (0C : µ), and suppose now that Mγ = A. Now, define ϕ : M ×γ M ×µ

M ′ → A by ϕ(m0,m1,m
′) = p(m0,m1,m

′), where M ×γ M ×µM ′ denotes the set of

all triples 〈m0,m1,m
′〉 ∈M ×M ×M ′ such that m0 γm1 µm

′, noting that it is easily
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seen to be a subalgebra of M ×M ×M′. Note also that by Theorem 2.23 (or by a

classic result), ϕ is a homomorphism. We claim further that ϕ is onto. Let a ∈ A.

By assumption, we have some m ∈M and m′ ∈M ′ such that m γ a µ m′. Note that

mµ p(m, a,m′) γ m′ and, in particular, by Theorem 3.21, p(m, a,m′) ∈M . Then, by

Lemma 2.23, we have that

ϕ(m, p(m, a,m′),m′) = p(m, p(m, a,m′),m′)

= q(q(a,m,m′),m,m′)

= q(q(a,m,m′), q(a,m, a), q(a, a,m′))

= q(a, a, a) = a,

where q(x, y, z) := p(y, x, z). Thus, ϕ is onto. But, this makes C a homomorphic

image of a subalgebra of a direct product of its proper factors, which contradicts our

assumption that C is critical. It follows that M(0C : µ) = M . Thus, we have that M

is a union of (0C : µ)-classes, which, since C is congruence regular (by Theorem A.46),

entails that (0C : µ) ≤ µ. The other claims follow easily.
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Chapter 4

New results on the commutator in varieties

with a difference term

We begin with what is unlikely to be a new result, but which is worth promoting

here—that is, even if it is not something that has been heretofore overlooked, but

simply because it does not seem to have made it into print anywhere and deserves bet-

ter publicity. Following this, we offer some apparently new results. We shall establish

that, in any variety with a difference term, a natural generalization of “upward nilpo-

tence,” previously explored (from a somewhat different perspective) by J.D.H. Smith

(see Smith (1976), pp. 42-43) as a generalization of the concept of “upward central

series” from group theory, is equivalent to the traditional notion of nilpotence—which

we shall call “downward nilpotence.” Applying this, we show that the set of equa-

tions given by Freese and McKenzie (1987) in Theorem 14.2 as a characterization

of nilpotence (of fixed class) for congruence modular varieties also works if only the

availability of a difference term is assumed. In the process of obtaining these, we also

establish further results concerning the commutator in difference term varieties that

may be of independent interest. In particular, we offer new order theoretic properties

of the commutator in varieties with a difference term, a new condition concerning

when homomorphism will commute with the commutator, and a property concerning

affine behavior. We also argue that several of these properties are at least nearly

“sharp.”
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4.1 A remark on varieties with a weak difference term

Definition 4.1. Let V be a variety with ternary term w such that for any A ∈ V ,

any θ ∈ Con A, and any 〈a, b〉 ∈ θ, we have that

w(a, b, b) [θ, θ] a [θ, θ]w(b, b, a).

We say that w is a weak difference term for V .

This concept has been studied by Lipparini (1994) and Mamedov (2007); see also

Hobby and McKenzie (1988), especially their Theorem 9.6 for a related result.

Recall the finite basis result of Freese and Vaughan-Lee given in Freese and

McKenzie (1987) and Vaughan-Lee (1983), and given above as Theorem 2.29. We

assert that the following apparent broadening of their result holds.

Theorem 4.2. Let A be a finite nilpotent algebra in a variety with a weak difference

term. Suppose that A is the direct product of algebras of prime power order. Then

A has a finitely based equational theory.

Actually, the theorem of Freese and Vaughan-Lee has something further to say,

concerning special terms of the variety generated by A called commutator terms. We

could include a parallel statement here, but we leave this matter until another time.

For now, our purpose is simply to point out that this ostensibly new result is a trivial

consequence of the following observation, which does not seem to have made it into

print.

Theorem 4.3. Let V be a variety with a weak difference term. Let A be a solvable

algebra in V. Then A has a Mal’cev term. In particular, since nilpotence always

implies solvability, every nilpotent algebra in V also has a Mal’cev term.

Freese and Vaughan-Lee’s result might be said to properly concern Mal’cev alge-

bras; since nilpotent (even solvable) algebras in a congruence modular variety generate
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a Mal’cev variety, they were able to state it as strongly as they did. Thus, this result,

although establishing that the result of Freese and Vaughan-Lee can be stated even

more strongly, still properly concerns Mal’cev algebras.

In Exercise 9, Ch. 6, of Freese and McKenzie (1987), we are invited to make the

following observations. Given a variety with a difference term d, for each natural

number n, we define a ternary term dn as follows. Let d0(x, y, z) = z, and for n > 0,

set dn(x, y, z) = d(x, dn−1(x, y, y), dn−1(x, y, z)). Note, of course, that d1(x, y, z) =

d(x, y, z). We first observe that

Proposition 4.4. Let A be an algebra with a difference term operation d. Then for

all natural numbers n, dn(x, y, y) [θ]n x whenever 〈x, y〉 ∈ θ ∈ Con A. (See Defini-

tions A.39 and A.45 for clarification.)

Proof. We shall induct on n. For the basis, note that [θ]0 = θ. Thus, the basis

is trivial. Now, assuming that the proposition holds for n = k − 1, we find that

dk(x, y, y) = d(x, dk−1(x, y, y), dk−1(x, y, y)) [θ]k x, since d is a difference term.

The above lends itself immediately to the following.

Corollary 4.5. Let A be an algebra with a difference term operation. Let n be any

natural number. If A ∈ V is solvable of class n, then dn is a Mal’cev term for A.

Proof. In light of Proposition 4.4, we need only note here that

A |= dn(x, x, y) ≈ y.

This can easily be shown by inducting on n, using only the fact that this holds for

n = 1 (solvability is not used in this part of the proof).

Let V be a variety with a weak difference term. Through a similar construction,

we can also show that any solvable algebra in V has a difference term operation, and

hence a Mal’cev term operation. Define w1(x, y, z) = w(x, y, z) and for any n > 1, let

wn(x, y, z) = w(wn−1(x, y, z), wn−1(y, y, z), z).
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Lemma 4.6. Let A be an algebra with a weak difference term operation. Let θ be a

congruence of A, and let 〈x, y〉 ∈ θ. Then for all natural numbers n > 0,

wn(x, y, y) [θ, θ]x,

and

wn(x, x, y) [θ]n y.

Proof. We induct on n; the basis follows from Definition 4.1. For the inductive step,

we observe that, by inductive hypothesis,

wn(x, y, y) = w(wn−1(x, y, y), wn−1(y, y, y), y) [θ, θ]w(x, y, y) [θ, θ]x.

Also, by inductive hypothesis, we have that wn−1(x, x, y) [θ]n−1 y. Thus, since w is a

weak difference term, we get that

wn(x, x, y) = w(wn−1(x, x, y), wn−1(x, x, y), y) [θ]n y.

Thus, the claim follows by induction.

In particular, the following soon follows.

Theorem 4.7. Let V be a variety with a weak difference term w. Let A be a solvable

algebra in V. Then A has a difference term operation and hence a Mal’cev term

operation.

Proof. Let n be the solvability class of A. By Proposition 4.6, we have that A has

a difference term d := wn. Then, by Proposition 4.5, we may conclude that dn is

a Mal’cev term for A. Since such is characterized by satisfaction of some equations

satisfied by A, we have also that the variety generated by A is Mal’cev.
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4.2 A new result on affine behavior in difference term varieties

In his 1995 paper, Varieties with a difference term, Keith Kearnes obtains, as Lemma

2.9, the following partial generalization of a result of Freese and McKenzie concerning

the commutator in congruence modular varieties, given in (1987) as Theorem 5.7.

Theorem 4.8. For A ∈ V , a variety with difference term d and α ∈ Con A, the

following conditions are necessary and sufficient to exhibit [α, α] = 0A:

• For any fundamental operation s (and hence for any term operation) of arity,

say, n, and xi α yi α zi, i = 1, . . . , n,

d(s(x), s(y), s(z))) = s(d(x1, y1, z1), . . . , d(xn, yn, zn)).

and

• For any xα y,

y = d(y, x, x) = d(x, x, y).

Remark 4.9. It seems rather clear (though I haven’t fastidiously checked it) that

for A ∈ V , a variety with a weak difference term w, a similar result holds with “weak

difference term” replacing “difference term.”

Now, it turns out that a stronger version of this theorem is also true—in fact,

Theorem 5.7 from Freese and McKenzie (1987) extends intact to varieties with a dif-

ference term, as shown in the following. Following its proof, we shall apply this result

to extend Freese and McKenzie’s characterization of the center of an algebra in a

congruence modular varieties to algebras; it works also if one only assumes the pres-

ence of a difference term. This latter finding enables us to similarly characterize the

upward central series of any algebra in a difference term variety. This, in turn, we use

to prove the equivalence of upward and downward nilpotence in a difference term va-

riety, which is enough to implicitly demonstrate that the equational characterization
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of nilpotence in congruence modular varieties, given by Freese and McKenzie (1987)

as Theorem 14.2, works also in difference term varieties. We do give an explicit proof

of this, however.

Theorem 4.10. For A ∈ V , a variety with difference term d and β ≤ α from Con A,

the following conditions are necessary and sufficient to exhibit [β, α] = 0A:

• For any fundamental operation s (and hence for s any term operation) of arity,

say, n, and all xi β yi α zi, i = 1, . . . , n,

d(s(x), s(y), s(z))) = s(d(x1, y1, z1), . . . , d(xn, yn, zn)).

and

• For any x β y, y = d(y, x, x) = d(x, x, y).

Proof. We begin with a brief

Lemma 4.11. Let A ∈ V, a variety with a difference term, and α ≥ β ∈ Con A for

which [β, α] = 0A. Then for any x, y ∈ A, if

(i) 〈x, z〉∆β
α 〈y, z〉 for some z

or

(ii) 〈z, x〉∆β
α 〈z, y〉 for some z

then x = y.

Proof. We prove that (ii) implies the conclusion, the other case having a similar

proof. So suppose (ii) holds for some x, y, and z. In light of Mal’cev’s description of

congruence generation (Proposition A.9) we get that x β y. Thus, using the definition
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of ∆β
α, we find that

〈z, x〉∆β
α 〈z, x〉

〈z, x〉∆β
α 〈z, y〉

〈x, x〉∆β
α 〈y, y〉.

Applying d “vertically" (and using also that [β, β] ≤ [β, α] = 0A), we get that

〈x, x〉∆β
α 〈y, x〉.

Now, by Remark A.38, the claim holds.

Let A ∈ V and α, β ∈ Con A, be as described in the hypotheses. First, suppose

that [β, α] = 0A. Then since d is a difference term and [β, β] ≤ [β, α] = 0A, we get

the second bullet immediately. Now, choose fundamental operation s of arity, say, n

and xi β yi α zi, i = 1, . . . , n. Also, let x, y, z ∈ A with x β y α z. Since d is a difference

term and [β, β] ≤ [α, β] = 0A, we can apply d vertically to

〈x, x〉∆β
α 〈y, y〉

〈y, x〉∆β
α 〈y, x〉

〈z, x〉∆β
α 〈z, x〉

to obtain that 〈d(x, y, z), x〉∆β
α 〈z, y〉. We now apply this observation in two ways.

Since s(x) β s(y) α s(z), we have that

〈d(s(x), s(y), s(z)), s(x)〉∆β
α 〈s(z), s(y)〉.

Also, for each i = 1, . . . , n we have that

〈d(xi, yi, zi), xi〉∆β
α 〈zi, yi〉.

Applying s to the tuple given on the left and right sides of the line above then yields

〈s(d(x1, y1, z1), . . . , d(xn, yn, zn)), s(x)〉∆β
α 〈s(z), s(y)〉.
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After using transitivity of ∆β
α, we can use Lemma 4.11 (ii) to obtain the first bullet.

We now assume that the bulleted conditions hold and prove that [β, α] = 0A

(using, of course, too, that β ≤ α). We claim that under our assumptions, we get

that

〈x, y〉∆α
β 〈u, v〉 if and only if xβ y α u and v = d(y, x, u).

Let ∆′ be the binary relation on β characterized by the second part in the line above.

Notice first that for 〈x, y〉 and 〈u, v〉 as described on the right in the displayed line

above, v = d(y, x, u) β d(y, y, u) = u, and hence ∆′ is indeed a subset of β × β. It

is important to note, too, that, since β ≤ α, we have that x α y α u α v, for any

〈〈x, y〉, 〈u, v〉〉 ∈ ∆′.

We first show that ∆′ is a congruence on β. To see that ∆′ is reflexive, take any

〈x, y〉 ∈ β. Then, since β ≤ α, we get x β y α x and, by the second bullet,

y = d(y, x, x),

which puts 〈x, y〉∆′ 〈x, y〉. Now assume that 〈x, y〉∆′ 〈u, v〉. Using that β ≤ α, we

have that v = d(y, x, u) α d(x, x, x) = x. Thus, u β v α x. Also, by the first bullet,

using d′ := d in the place of s, we discover that

d(v, u, x) = d′(d(y, x, u), d(x, x, u), d(x, x, x))

= d(d′(y, x, x), d′(x, x, x), d′(u, u, x))

= d(d′(y, x, x), x, x) = y,

where we have used the second bullet twice to obtain the last equality. Thus, we find

that ∆′ is symmetric.

To see that it is transitive, suppose that

〈x, y〉∆′ 〈u, v〉∆′ 〈z, w〉.

For ease of reference, notice that this entails that x β y α uβ v α z, v = d(y, x, u), and

w = d(v, u, z). Again using that β ≤ α, we have that y α z, and so x β y αz. Note,
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too, that uαvαz. Using the equations just above and the bulleted conditions (again,

with d′ := d in the place of s), we also have that

d(y, x, z) = d′(d(y, x, x), d(x, x, x), d(u, u, z))

= d(d′(y, x, u), d′(x, x, u), d′(x, x, z))

= d(v, u, z) = w.

It follows that ∆′ is transitive.

That ∆′ respects the operations of β follows immediately from the first bullet, the

fact that β and α respect the operations of A, that operations on β are computed

coordinate-wise, and that β ≤ α. We observe this computation now. Suppose that f

is a fundamental operation of arity n , and 〈xi, yi〉∆′ 〈ui, vi〉 for i = 1, . . . , n. Writing

out what this means, we get that for i = 1, . . . , n, xi β yi αui and vi = d(yi, xi, ui).

Since α and β respect f , we immediately get that

f(x) β f(y)α f(u).

Using the first bullet, with f in the place of s, we also get that

f(v) = f(d(y1, x1, u1), . . . , d(yn, xn, un)) = d(f(y), f(x), f(u)).

Finally, we observe that in β, we compute that, for any n-tuples a and b from A,

fβ(〈a1, b1〉, . . . , 〈an, bn〉) = 〈fA(a), fA(b)〉.

Thus, ∆′ is a congruence on β.

Note that for any xα y, reflexivity of β and the equation y = d(x, x, y) puts

〈x, x〉∆′ 〈y, y〉; thus we have that the generators of ∆α
β are contained in congruence

∆′ and hence ∆α
β ⊆ ∆′.
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Now take 〈x, y〉∆′ 〈u, v〉. Then x β y α u and v = d(y, x, u). In particular, xα u

and so 〈x, x〉∆α
β 〈u, u〉. Thus, using also the second bullet,

〈x, y〉 = 〈d(x, x, x), d(y, x, x)〉

= d(〈x, y〉, 〈x, x〉, 〈x, x〉)

∆α
β d(〈x, y〉, 〈x, x〉, 〈u, u〉)

= 〈d(x, x, u), d(y, x, u)〉

= 〈u, v〉

We thus conclude that ∆′ = ∆α
β , as claimed.

We will use this observation in concert with another claim, which we add now.

Under the present assumptions, we hold that

[α, β] ⊆ {〈x, y〉 | 〈x, x〉∆α
β 〈x, y〉}.

Let

θ := {〈x, y〉 ∈ [α, β] | 〈x, x〉∆α
β 〈x, y〉}.

We wish to show that θ comprises the whole of [α, β]. Using our characterization of

∆α
β just given we will then quickly finish the proof.

We first show that θ is a congruence. Reflexivity is immediate from the reflex-

ivity of [α, β] and ∆α
β . Now, suppose that 〈x, y〉 ∈ [α, β] and 〈x, x〉∆α

β〈x, y〉. Using

reflexivity of ∆α
β , we get that

〈x, x〉∆α
β 〈x, x〉,

〈x, x〉∆α
β 〈x, y〉,

〈y, y〉∆α
β 〈y, y〉.

Of course, by definition of ∆α
β , we have x β y, and, using the second bullet, we can

apply d “vertically” to the left and right sides above to obtain

〈y, y〉∆α
β 〈y, x〉.
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We now need only notice symmetry of [α, β] to conclude that θ is symmetric.

Similarly, to find that θ is transitive, we suppose that x θ y θ z. Immediately, we

get 〈x, z〉 ∈ [α, β], by the transitivity of that relation. We apply d in the same way

as above, this time to the left and right sides of

〈x, x〉∆α
β 〈x, y〉

〈y, y〉∆α
β 〈y, y〉

〈y, y〉∆α
β 〈y, z〉

to conclude that 〈x, x〉∆α
β 〈x, z〉.

That θ respects the operations of A is an immediate consequence of the facts

that [α, β] and ∆α
β both respect the operations of their respective algebras and that

operations are computed coordinate-wise on β. So, θ is a congruence on A contained

in [α, β].

Now, by Theorem A.37, we have that [α, β] is the least congruence γ on A so that

γ ∩ β is the union of ∆α
β -classes. We contend that θ is also the union of ∆α

β -classes.

To see this, suppose that 〈x, y〉 ∈ θ and that 〈x, y〉∆α
β 〈u, v〉. Since θ ⊆ [α, β] and the

latter is a union of ∆α
β -classes, we get that 〈u, v〉 ∈ [α, β]. But also 〈x, x〉∆α

β 〈x, y〉 and

so, by transitivity of ∆α
β , 〈x, x〉∆α

β 〈u, v〉. By Mal’cev’s characterization of congruence

generation A.9, we evidently have that xα u. Thus, 〈u, u〉∆α
β 〈x, x〉∆α

β 〈u, v〉, which

puts 〈u, v〉 ∈ θ. Thus, the contention is good, and so θ is all of [α, β].

Now, take an arbitrary x [β, α] y. By Theorem A.40, x [α, β] y. Then, as we have

just seen, 〈x, x〉∆α
β 〈x, y〉. But since ∆α

β = ∆′, we get that y = d(x, x, x) = x. Thus,

[β, α] = 0A, as claimed. This finishes the proof.

The following was noted by Kearnes.

Corollary 4.12. In a variety V with a difference term, every abelian algebra is affine

and, conversely, every affine algebra is abelian.
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For an explanation of what is meant by “affine” see Theorem 3.5.

Theorem 4.10 enables us to construct useful generators for [β, α], for any con-

gruences β and α of A such that β ≤ α, for a given algebra A in a difference term

variety.

Theorem 4.13. Let V a be variety with a difference term d and equipped with fun-

damental operation symbols F . Let A ∈ V, and let β, α ∈ Con A such that β ≤ α.

Then [β, α] = CgG, where

G := {〈dA(fA(x), fA(y), fA(z)), fA(dA(x1, y1, z1), . . . , dA(xn, yn, zn))〉 |

f ∈ F and xi β yi α zi} ∪ {〈y, dA(y, x, x)〉 | x β y}

Proof. Write d for dA. Let θ := CgG, where G is as above. Using Theorem 4.10 and

a basic commutator fact that holds in any algebra—namely that

[β/[β, α], α/[β, α]] = 0A/[β,α]

—one soon finds that θ ⊆ [β, α]: Take any f ∈ F of arity, say, n. Let us write f for

fA, as well. Then, since [β, α] ⊆ α ∩ β, we get that given xi β yi α zi(i = 1, . . . , n),

xi/[β, α] β/[β, α] yi/[β, α] β/[β, α] zi/[β, α],

and so, by Theorem 4.10,

d(f(x), f(y), f(z)) [β, α] f(d(x1, y1, z1), . . . , d(xn, yn, zn)).

Similarly, if x β y, then using the theorem again, we get that

y [β, α] d(y, x, x).

It follows that θ ⊆ [β, α], and, in particular, θ ⊆ α ∩ β.

To get the reverse inclusion, we need only check that C(β, α; θ). Now, evidently,

by Theorem 4.10 we have that [β/θ, α/θ] = 0A/θ. Thus, C(β/θ, α/θ; 0A/θ). By

Proposition A.28 we then get that C(β, α; θ).
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4.3 The equivalence of upward and downward nilpotence in varieties

with a difference term, and an application

A key result of this section concerns a generalization of the “upper central series” from

group theory. A generalization of this was worked out by Smith (1976) (see pages

42-43 in Smith’s work) for congruence permutable varieties but does not seem to have

been used much since—although, it is certainly implicit in the proof of Theorem 14.2

from Freese and McKenzie (1987). We shall first define the natural generalization

of this group theoretic concept, using the term condition to define the center of an

algebra.

Throughout this section, for a given algebra A, we shall use ζA to denote the

center of A, which is defined as the largest ζ ∈ Con A such that C(ζ, 1A; 0A) holds.

(See Definition A.29 in the appendix.)

Definition 4.14. For a given algebra A, set

ζ0
A := 0A

and for k ≥ 1 define

Ak := A/ζk−1
A ,

and let ζkA be the (unique) preimage of ζAk under the isomorphism of the interval

I[ζk−1
A , 1A] onto Con Ak that is provided by the correspondence theorem.

We say that A is upward nilpotent of class k whenever ζkA = 1A.

Remark 4.15. . For a given algebra A,

0A = ζ0
A ≤ · · · ≤ ζkA ≤ ζk+1

A ≤ · · · ≤ 1A.

We shall call this chain of congruences the upper central series of A.

Recall that for any algebra A and any α, β ∈ Con A, we use Proposition A.28

(b) to define (α : β) as the highest γ ∈ Con A such that C(γ, β;α). We shall have

repeated need of the following fact.
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Proposition 4.16. Let A be an algebra with congruences α, β. Then (0A/α : β/α) =

(α : β)/α.

Proof. Note that since C(α, β;α) always holds (Proposition A.28 (f)) we have that

α ≤ (α : β). Thus, by Proposition A.28 (e) we find that C((α : β)/α, β/α; 0A/α) and

hence (α : β)/α ≤ (0A/α : β/α). On the other hand, if γ is the unique congruence

above α so that γ/α = (0A/α : β/α) (provided by the correspondence theorem A.16)

then from Proposition A.28 (f) and the fact that C(γ/α, β/α; 0A/α), we may conclude

that C(γ, β;α). Thus, γ ≤ (α : β) and so (0A/α : β) = γ/α ≤ (α : β)/α.

Proposition 4.17. Let A be any algebra. Then, for all natural numbers k, ζk+1
A =

(ζkA : 1A).

Proof. For convenience, we suppress the subscript A, writing ζk for ζkA.

From the definition of ζk, we know that C(ζk/ζk−1, 1A/ζk−1 ; 0A/ζk−1). We also have

that ζk−1 ⊆ ζk. Thus, by Proposition A.28 (e) and from the obvious fact that 1A/θ =

1A/θ for any congruence θ, we deduce that C(ζk, 1A; ζk−1). Thus, ζk ⊆ (ζk−1 : 1A).

Now, from Proposition A.28 (f), we have that C(ζk−1, 1A; ζk−1), and hence ζk−1 ⊆

(ζk−1 : 1A). We can then use the correspondence theorem and Proposition A.28 (e),

again, to see that

C((ζk−1 : 1A)/ζk−1, 1A/ζk−1 ; 0A/ζk−1).

By the definition of ζk, then, (ζk−1 : 1A) ⊆ ζk.

This suggests another nice way of notating the upper central series, which helps

to generalize it.

Definition 4.18. Let A be an algebra. We define ζ : Con A → Con A by ζ(θ) :=

(θ : 1A), for any θ ∈ Con A. Let us also write ζ(A) for ζ(0A) = ζA. We then

iterate ζ in the usual way: For all θ ∈ Con A, let ζ0(θ) := θ while for n > 0 define

ζn(θ) := ζ(ζn−1(θ)).
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Note that, for all natural numbers n, ζnA = ζn(0A) = ζn(A). We also may very

well get some usefulness out of replacing 1A in the above definition with an arbitrary

β ∈ Con A. We do this now.

Definition 4.19. Let A be any algebra. Let β ∈ Con A. Let Z(β) : Con A→ Con A

be given by Z(β)α = (α : β), for any α ∈ Con A. Now, let α ∈ Con A. Set

Z0
(β)α := α and for all natural numbers n > 0, let Zn(β)α := Z(β)Zn−1

(β) α. For example,

Z2
(β)α = Z(β)Z(β)α = Z(β)(α : β) = ((α : β) : β). Also, for any θ ∈ Con A and all

natural numbers n, ζn(θ) = Z(1A)(0A). Let us call these annihilator operations.

Remark 4.20. Let A be any algebra. Let α, β ∈ Con A. Then

α = Z0
(β)α ≤ Z1

(β)α ≤ · · · ≤ Zn(β)α ≤ Zn+1
(β) α ≤ · · · .

Proof. Let n be a natural number. By definition Zn+1
(β) α is the largest γ ∈ Con A

such that C(γ, β;Zn(β)α). Now, since C(Zn(β)α, β;Zn(β)α) holds, the claim follows.

Definition 4.21. Let A be an algebra. Let ψ ∈ Con A. Similarly, let C(ψ) : Con A→

Con A be given by C(ψ)θ = [θ, ψ], for any θ ∈ Con A. Now define Cn(ψ) by iterating

this functions in the usual way (with the 0th power denoting the identity function.)

In particular, for all natural numbers n, [1A)n = Cn(1A)1A. (These operators are also

defined in McKenzie (1987b), section 3, although his notation would probably not be

advisable for use in the context below.)

Proposition 4.22. Let A be an algebra with congruences ψ ≤ ψ′ and θ ≤ θ′. Then

for all natural numbers n, Cn(ψ)θ ≤ Cn(ψ′)θ′.

Proof. This follows easily from the monotonicity of the commutator (Proposition A.30)

and induction.

On the other hand, the order theoretic properties of an annihilator operation

appear to be a bit more complicated. We need use of the following, which appears

as Proposition 4.2 in Freese and McKenzie (1987). It has many consequences.
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Proposition 4.23. Let A be an algebra in a congruence modular variety. Let

α, β, δ ∈ Con A. Then C(α, β; δ) if and only if [α, β] ≤ δ

A restricted version of Proposition 4.23 holds in varieties with a difference term,

as we shall see below (and as noted in Kearnes (1995)).

Proposition 4.24. Let A be an algebra in a congruence modular variety. Let

ϕ, θ, ψ ∈ Con A such that ϕ ≤ θ. Then Z(ψ)ϕ = (ϕ : ψ) ≤ (θ : ψ) = Z(ψ)θ.

Thus, for all natural numbers n. Zn(ψ)ϕ ≤ Zn(ψ)θ

Proof. By Proposition 4.23, we have that for any α, β ∈ Con A, C(α, β;ϕ) implies

that C(α, β; θ) holds. Thus, since C((ϕ : ψ), ψ;ϕ) holds we may conclude that

C((ϕ : ψ), ψ; θ) holds. It follows that (ϕ : ψ) ≤ (θ : ψ).

Proposition 4.25. Let A be any algebra, and let ϕ, ψ, θ ∈ Con A. Then

(i) for all natural numbers n and k, Ck(ψ)Z
n+k
(ψ) θ ≤ Zn(ψ)θ;

(ii) thus, for all natural numbers m, n and k, Cm(ψ)(ϕ) ≤ Zn+k
(ψ) θ implies that

Cm+k
(ϕ) θ ≤ Zn(ψ)θ.

If, furthermore, A generates a congruence modular variety, then,

(iii) for all natural numbers n and k, Cm(ψ)θ ≤ Zk(ψ)C
m+k
(ψ) θ;

(iv) thus, for all natural numbers m, n and k, Cm+k
(ψ) ϕ ≤ Zn(ψ)θ implies that

Cm(ψ)ϕ ≤ Z
n+k
(ψ) θ.

Proof. We first prove (i). We shall induct on k. Note that the basis step is trivial (in

this case, Ck(ψ) is the identity.) Now, suppose that for some natural number k, item

(i) has been verified. Then, by Proposition 4.22,

Ck+1
(ψ) Z

n+k+1
(ψ) θ = C(ψ)Ck(ψ)Zn+k+1

(ψ) θ

≤ C(ψ)Zn+1
(ψ) θ

= [Zn+1
(ψ) θ, ψ].
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Now, since Zn+1
(ψ) θ = (Zn(ψ)θ : ψ) we have that C(Zn+1

(ψ) θ, ψ;Zn(ψ)θ) and hence

[Zn+1
(ψ) θ, ψ] ≤ Zn(ψ)θ.

Item (i) follows, by induction.

To see (ii), note that if Cm(ψ)ϕ ≤ Z
n+k
(ψ) θ, then using Proposition 4.22 and then (i),

we have that Cm+k
(ψ) ϕ = Ck(ψ)Cm(ψ)ϕ ≤ Ck(ψ)Z

n+k
(ψ) θ ≤ Zn(ψ)θ.

Suppose now that A generates a congruence modular variety. We show (iii) by

induction on k. Again, the basis step is trivial. Now, assume that the claim has been

verified for some natural number k. Then, using Proposition 4.24, we observe that

Zk+1
(ψ) C

m+k+1
(ψ) θ = Z(ψ)Zk(ψ)Cm+k+1

(ψ) θ

≥ Z(ψ)Cm+1
(ψ) θ.

Now, since Z(ψ)Cm+1
(ψ) θ = (Cm+1

(ψ) θ : ψ) and Cm+1
(ψ) θ = [Cm(ψ)θ, ψ], it follows that

C(Z(ψ)Cm+1
(ψ) θ, ψ; Cm+1

(ψ) θ) and C(Cm(ψ)θ, ψ; Cm+1
(ψ) θ),

and hence Z(ψ)Cm+1
(ψ) θ ≥ Cm(ψ)θ. The claim follows.

To see (iv), we use Proposition 4.24 and item (iii). Suppose that Cm+k
(ψ) ϕ ≤ Zn(ψ)θ.

Then Zn+k
(ψ) θ = Zk(ψ)Zn(ψ)θ ≥ Zk(ψ)C

m+k
(ψ) ϕ ≥ Cm(ψ)ϕ.

Corollary 4.26. If A is an algebra upward nilpotent of class k, then A is downward

nilpotent of class k, as well.

Proof. Let k be a natural number, and suppose that A is nilpotent of class k. Then

C0
(1A)1A = 1A = ζk(A) = Zk(1A)0A entails that [1A)k = Ck(1A)1A ≤ Z0

(1A)0A = 0A.

Corollary 4.27. Let A be an algebra in a congruence modular variety. Then, for all

natural numbers n, [1A)n = 0A if and only if ζn(A) = 1A.

Proof. Let n be a natural number. That upward nilpotence of class n implies down-

ward nilpotence of class n is true in general, as seen in the previous corollary. Now,
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suppose that Cn(1A)1A = [1A)n = 0A = Z0
(1A)0A. Using Proposition 4.25 (iv), we thus

get that 1A = C0
(1A)1A ≤ Zn(1A)0A = ζn(A).

There is another elementary fact concerning the elements of the upper central

series of an algebra worth noting here, which we shall have need of below.

Proposition 4.28. Let A be an algebra. Let ϕ ≤ θ ∩ ψ be congruences of A. Then

for all natural numbers n,

Zn(ψ/ϕ)(θ/ϕ) = (Zn(ψ)θ)/ϕ.

Thus, if ζ is the center of A, then for all natural numbers n,

ζn(A/ζ) = ζn+1(A)/ζ.

Proof. We induct on n to show the first claim. The basis is trivial, since, in this case,

Zn(ψ) and Zn(ψ/θ) are identity maps. Now suppose the claim has been verified for some

natural number n. Then, using also Proposition 4.16,

(Zn+1
(ψ) θ)/ϕ = (Zn(ψ)θ : ψ)/ϕ

= ((Zn(ψ)θ)/ϕ : ψ/ϕ)

= (Zn(ψ/ϕ)(θ/ϕ) : ψ/ϕ)

= Zn+1
(ψ/ϕ)(θ/ϕ).

The first claim follows by induction. To see the second claim, observe that

ζn(A/ζ) = Zn(1A/ζ)(ζ/ζ)

= (Zn(1A)ζ)/ζ

= ζn(ζ)/ζ

= ζn+1(A)/ζ.
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Corollary 4.29. In a given algebra A, for all n ≥ 1, A is upward nilpotent of class

n if and only if A/ζA is upward nilpotent of class n− 1.

In Proposition 4.27, we saw that upward and downward nilpotence is equivalent

in congruence modular varieties—a fact which was surely known prior to this. It was,

at least, proved for congruence permutable varieties, in a similar fashion, by Smith

(1976) on pp. 42-43. One of the main results of this section is the following, of which

we have already seen the forward direction in Corollary 4.26.

Theorem 4.30. Let A be an algebra in a variety with a difference term. For all

natural numbers n, A is upward nilpotent of class n if and only if A is (downward)

nilpotent of class n; in symbols,

ζn(A) = 1A ⇔ [1A)n = 0A.

Later in this chapter, we apply this result to show that the same equational

characterization of nilpotence of class k for algebras in a congruence modular variety

given by Freese and McKenzie (1987) works if we assume only the availability of a

difference term.

Theorem 4.30 is not hard to prove, although it may still be a new result. Indeed,

we saw in Corollary 4.26 that the “forward direction” of this theorem is automatic,

in the sense that we do not need to assume the availability of a difference term.

Consider further the following, to wind up the proof of Theorem 4.30.

Lemma 4.31. Let A be an algebra in a difference term variety. Suppose also that

[1A)n = 0A. Then ζn(A) = 1A.

Proof. By Theorem 4.5, A has a Mal’cev term. Let V be the variety generated

by A. Since such is defined in terms of satisfaction of an equation, we also have

that V is Mal’cev. By Mal’cev’s characterization of congruence permutability (The-

orem A.21), V is congruence permutable. Since congruence permutability implies
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congruence modularity (Proposition A.24), we can apply Corollary 4.27, to wind up

the claim.

4.4 New properties of the commutator in difference term varieties

It is also true that upward and downward nilpotence of a given class k for algebras

in a congruence modular variety is easy to check by induction, through the use of

the “homomorphism” property of the commutator given as Theorem 4.4 (1) in Freese

and McKenzie (1987). For reference, we state this property now.

Proposition 4.32. Let A be an algebra in a congruence modular variety. Let

α, β, η ∈ Con A. Then

([α, β] ∨ η)/η = [(α ∨ η)/η, (β ∨ η)/η].

Thus, one might take Theorem 4.30 as a suggestion that a stronger homomor-

phism property of the commutator exists for varieties with a difference term. We

show such a result below, and give a generalization of the “reverse direction” of The-

orem 4.30. Thus, a still larger fragment of the commutator theory for congruence

modular varieties is found to extend to varieties with only a difference term.

In order to prove this new homomorphism property, we first establish another

apparently new result concerning difference term varieties, an order theoretic property

of the commutator, which we now give.

The proof of the following is patterned almost exactly after that of Lemma 2.5

from Kearnes (1995). Recall that, for any congruences α, β, θ on a given algebra, we

denote by [α, β]θ the least congruence γ ≥ θ such that C(α, β; γ); see Definition A.33.

Lemma 4.33. Let A be an algebra in a variety with a difference term d. Let α, β, θ ∈

Con A such that β ≤ α. Then

[α ∨ θ, β ∨ θ] ≤ [α, β] ∨ θ.

114



By the symmetry of the commutator in difference term varieties, it also follows that

[β ∨ θ, α ∨ θ] ≤ [β, α] ∨ θ.

Proof. Suppose instead that [α∨θ, β∨θ] 6≤ [α, β]∨θ. We shall derive a contradiction.

Set θ′ = [α, β] ∨ θ. Then, by the monotonicity of the commutator, we must have

that [α ∨ θ′, β ∨ θ′] 6≤ [α, β] ∨ θ′. Thus, by changing notation, we now assume that

[α ∨ θ, β ∨ θ] 6≤ [α, β] ∨ θ and that [α, β] ≤ θ.

We claim that β ◦ θ ⊆ θ ◦ β. Let 〈x, z〉 ∈ β ◦ θ. Then we obtain y ∈ A such that

x β y θ z. Then

x [β, β] d(x, y, y) θ d(x, y, z) β d(y, y, z) = z.

Now, since [β, β] ≤ [α, β] ≤ θ, it follows that β ◦ θ ⊆ θ ◦ β, as claimed. It follows

from Proposition A.19 that β ∨ θ = β ◦ θ.

Note that θ < [α∨ θ, β∨ θ]θ: After all, if instead θ = [α∨ θ, β∨ θ]θ, then we would

have that C(α ∨ θ, β ∨ θ; θ), from which we could conclude that [α ∨ θ, β ∨ θ] ≤ θ =

[α, β] ∨ θ, contrary to our assumptions. Now, it must also be that θ < [α, β ∨ θ]θ:

Indeed, θ = [θ, β∨θ]θ always holds and so by Proposition A.34 (left semi-distributivity

of the commutator), if θ = [α, β ∨ θ]θ, then we would also get that θ = [α∨ θ, β ∨ θ]θ,

which we have just ruled out.

From θ < [α, β ∨ θ]θ we have that for some natural number k, term t of rank k,

and tuples 〈a, b〉 ∈ α and 〈ui, vi〉 ∈ β ∨ θ, for i < k,

t(a,u) θ t(a,v),

while

t(b,u) [α, β ∨ θ]θ \ θ t(b,v).

Since β∨θ = β ◦θ, for each i < k, we may obtain a wi ∈ A such that uiβwi θvi. Note,

then, that t(a,u) θ t(a,v) θ t(a,w). Thus, by definition of [α, β]θ, we may conclude

that c := t(b,u) [α, β]θ t(b,w) =: e. On the other hand, 〈c, e〉 = 〈t(b,u), t(b,w)〉 6∈ θ,

for else we would have t(b,u) θ t(b,w) θ t(b,v), contrary to our assumptions.
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Now, let t′ be a polynomial on A defined by t′(x,y) = d(t(x,y), t(x,u), t(b,u)).

Note that

t′(a,u) = d(t(a,u), t(a,u), t(b,u)) = t(b,u)

and, as well,

t′(b,u) = d(t(b,u), t(b,u), t(b,u)) = t(b,u).

Using also the symmetry of the commutator in difference term varieties, we thus find

that 〈t′(a,w), t′(b,w)〉 ∈ [β, α] = [α, β] ⊆ θ. Observe further that c = t(b,u) =

d(t(a,u), t(a,u), t(b,u)) θ d(t(a,w), t(a,u), t(b,u)) = t′(a,w), while

t′(b,w) = d(t(b,w), t(b,u), t(b,u)) [β, β] t(b,w) = e.

Note that [β, β] ⊆ [α, β] ⊆ θ. Altogether, then, we obtain that cθ t′(a,w)θ t′(b,w)θ e,

which is a contradiction of our finding above regarding these elements.

Theorem 4.34. Let A be an algebra in a variety with a difference term, d. Let

α, β ∈ Con A such that β ≤ α. Let h : A → B be an epimorphism with kernel θ.

Then

h([α, β] ∨ θ) = [h(α ∨ θ), h(β ∨ θ)].

By the symmetry of the commutator in difference term varieties, it also follows that

h([β, α] ∨ θ) = [h(β ∨ θ), h(α ∨ θ)].

Proof. Note that Theorem 4.10 gives us sets of generators G and G′ for [α, β] and

[h(α ∨ θ), h(β ∨ θ)], respectively. (Of course, it is necessary to note that, by the

correspondence theorem, h preserves the lattice order for congruences on A above θ.)

For ease of reference, we have

G :=
{〈
dA

(
fA(x), fA(y), fA(z)

)
, fA

(
d(x0, y0, z0), . . . , dA(xn−1, yn−1, zn−1)

)〉
|

n ∈ ω, f ∈ Fn, xi α yi β zi for i < n
}⋃{

〈dA(x, y, y), x〉 | x β y
}
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and

G′ :=
{〈
dB
(
fB(x), fB(y), fB(z)

)
, fB

(
dB(x0, y0, z0), . . . , dB(xn−1, yn−1, zn−1)

) 〉
|

n ∈ ω, f ∈ Fn, xi h(α ∨ θ) yi h(β ∨ θ) zi for i < n
}⋃

{〈
dB(x, y, y), x

〉
| xh(β ∨ θ) y

}
,

where, in both expressions, Fn denotes the set of fundamental operation symbols of

arity n in the signature of A. In particular, note that G ∪ θ generates [α, β] ∨ θ.

Take 〈a′, b′〉 ∈ h(G). That is, suppose that 〈a′, b′〉 = 〈h(a), h(b)〉 for some

pair 〈a, b〉 ∈ G. We have two cases to consider. First suppose that for some

fundamental operation symbol f in the signature of A of arity, say, n, and for

a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1 ∈ A, such that ai α bi β ci for each i < n, we

have

〈a, b〉 =
〈
dA
(
fA(a), fA(b), fA(c)

)
, fA

(
dA(a0, b0, c0), . . . , dA(an−1, bn−1, cn−1)

)〉
.

Then

〈ha, hb〉 =
〈
hdA

(
fA(a), fA(b), fA(c)

)
, hfA

(
dA(a0, b0, c0)), . . . , dA(an−1, bn−1, cn−1)

)〉
=
〈
dB
(
fB(ha), fB(hb), fB(hc))

)
,

fB
(
dB(ha0, hb0, hc0), . . . , dB(han−1, hbn−1, hcn−1

)〉
.

Now, since, for each i < n, we have that h(ai)h(α)h(bi)h(β)h(ci); it follows that

〈h(a), h(b)〉 ∈ G′. The other case can be treated similarly. Thus, we have that

h(G) ⊆ G′. Note also that h(G ∪ θ) = h(G) ∪ h(θ) = h(G) ∪ 0B, and that OB ⊆ G′.

It follows from Proposition A.10 that h([α, β] ∨ θ) ⊆ [h(α ∨ θ), h(β ∨ θ)].

Now, take 〈a′, b′〉 ∈ G′. Again, we have two cases to consider. Suppose that, for

some fundamental operation symbol f with arity n and some a′0, . . . , a′n−1, b′0, . . . , b′n−1,

c′0, . . . , c
′
n−1 ∈ B with a′i h(α ∨ θ) b′i h(β ∨ θ) c′i, for each i < n, we have that

〈a′, b′〉 =
〈
dB
(
fB(a′), fB(b′), fB(c′)

)
, fB

(
dB(a′0, b′0, c′0)), . . . , dB(a′n−1, b

′
n−1, c

′
n−1)

)〉
.
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For each i, get ai, bi, ci ∈ A such that h(ai) = a′i, h(bi) = b′i, and h(ci) = c′i and so

that ai α ∨ θ bi β ∨ θ ci. Then, of course, for

〈a, b〉 :=
〈
dA
(
fA(a), fA(b), fA(c)

)
, fA

(
dA(a0, b0, c0)), . . . , dA(an−1, bn−1, cn−1)

)〉
,

we have that 〈h(a), h(b)〉 = 〈a′, b′〉. Now, by Theorem 4.10, we also have that 〈a, b〉 ∈

[α ∨ θ, β ∨ θ]. But, then, by Theorem 4.33, we have that 〈a, b〉 ∈ [α, β] ∨ θ. After

treating the second case in a similar fashion, we thus find that G′ ⊆ h([α, β] ∨ θ).

It follows that [h(α ∨ θ), h(β ∨ θ)] ⊆ h([α, β] ∨ θ), which, together with the opposite

inclusion shown above, completes our task.

Remark 4.35. It appears possible to prove, in a similar manner, that if A is an

algebra in a variety with a difference term, then for all α, β, θ ∈ Con A, we have that

([α, β] ∨ θ)/θ ≤ [(α ∨ θ)/θ, (β ∨ θ)/θ].

Let A be an algebra in a difference term variety. Let α, β ∈ Con A. One ought to

be able to use Theorem 6.2 from Kearnes, Szendrei, and Willard (2013+) to find

generators for [α, β], much in the way that we used Theorem 4.10 to find generators

for [α, β] in the case of β ≤ α. With these generators in hand, a similar proof to

that of the first inclusion featured in the proof of Theorem 4.34 should do the trick.

We shall see below why the reverse inclusion is not available without additionally

implying congruence modularity.

Remark 4.36. Let A be an algebra in a variety with a weak difference term. In

Lipparini (1994), Theorem 4.3 (i), we learn that, for all α, θ ∈ Con A,

[α ∨ θ, α ∨ θ] ≤ [α, α] ∨ θ.

Thus, it seems that one might use the (likely) result of Remark 4.9 together with

the proof technique employed to get Theorem 4.34, to learn that, further, for all

α, θ ∈ Con A,

[(α ∨ θ)/θ, (α ∨ θ)/θ] = ([α, α] ∨ θ)/θ.
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We now draw some interesting conclusions from this result.

Corollary 4.37. Let A be an algebra in a variety with a difference term. Let α, θ ∈

Con A. Then for all natural numbers n,

[(α ∨ θ)/θ]n = ([α]n ∨ θ)/θ

and

[(α ∨ θ)/θ)n = ([α)n ∨ θ)/θ

Proof. We shall show the first claim, since the proof of the second is entirely parallel.

We shall induct on n. The base case is rather trivial, as seen by computing that

[(α ∨ θ)/θ]0 = 1A/θ = 1A/θ = (1A ∨ θ)/θ = ([α]0 ∨ θ) /θ.

Now, suppose the claim has been verified for some natural number n. Using also the

proposition above, we compute that

[(α ∨ θ)/θ]n+1 = [[(α ∨ θ)/θ]n, [(α ∨ θ)/θ]n]

= [([α]n ∨ θ)/θ, ([α]n ∨ θ)/θ]

= ([[α]n, [α]n] ∨ θ)/θ

= ([α]n+1 ∨ θ)/θ.

A portion of the following is got from Kearnes (1995), Lemma 2.3 (see his “In

particular...”), but not the full result, which has many consequences. In fact, the

portion of this proof not covered by Kearnes’ previous result seems to be the more

useful part.

Theorem 4.38. Let A be an algebra in a variety with a difference term. Let α, β, γ ∈

Con A such that β ≤ α. Then C(α, β; γ) holds if and only if [α, β] ≤ γ, and C(β, α; γ)

holds if and only if [β, α] ≤ γ. Furthermore, C(α, β; γ) holds if and only if C(β, α; γ)

holds.
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Proof. Note that if C(α, β; γ) holds, then, by definition [α, β] ≤ γ. Now, suppose

that [α, β] ≤ γ. By Theorem 4.34, we thus have that

[(α ∨ γ)/γ, (β ∨ γ)/γ] = ([α, β] ∨ γ)/γ = γ/γ = 0A/γ.

Thus, C((α ∨ γ)/γ, (β ∨ γ)/γ; 0A/γ) holds, which, by Proposition A.28 (e), entails

that C(α ∨ γ, β ∨ γ; γ) holds. By the monotonicity of the centralizer in its first two

coordinates (Proposition A.28 (c)), we thus have that C(α, β; γ) holds, as desired.

We may also argue in a similar way, using Theorem 4.34, that C(β, α; γ) holds if

and only if [β, α] ≤ γ.

To see the last claim, observe that C(α, β; γ) holds if and only if [α, β] ≤ γ. By

Theorem A.40, [α, β] = [β, α], and so we see that C(α, β; γ) holds if and only if

C(β, α; γ), as claimed.

Theorem 4.39. Let A be an algebra in a variety with a difference term. If αi(i ∈

I), β ∈ Con A such that αi ≤ β for each i ∈ I, then

[
∨
i∈I
αi, β] =

∨
i∈I

[αi, β].

If α, β(i ∈ I) ∈ Con A such that α ≤ βi for each i ∈ I, then

[α,
∨
i∈I
βi] =

∨
i∈I

[α, βi].

Proof. We will show the first claim, with the second having a similar proof. By the

monotonicity of the commutator, it is always true that

∨
i∈I

[αi, β] ≤ [
∨
i∈I
αi, β].

Thus, we need only show the reverse inequality. To do so, it is sufficient to show that

C
(∨

αi, β;
∨

[αi, β]
)

holds. By Proposition A.28 (b), it is sufficient to show that, for each i ∈ I,

C
(
αi, β;

∨
[αi, β]

)
.
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By definition, for each i ∈ I, we have that C(αi, β; [αi, β]). Now, by Theorem 4.38,

we have that, for each i ∈ I, C(αi, β;∨[αi, β]). The result follows.

We would further like to observe that Theorems 4.33 and 4.34 are—at least to

a degree—sharp. We make this claim precise in the next series of results. The key

result we shall use is given by Theorem 3.2 (i) from Lipparini (1994) (which actually

says something stronger). We state it here for convenience.

Theorem 4.40. Let A be an algebra in a variety with a difference term. Suppose

that for all α, β, γ ∈ Con A, we have that

[α ∨ β, γ] = [α, γ] ∨ [β, γ].

Then Con A is modular.

Theorem 4.41. Let A be an algebra in a variety with a difference term. Suppose

also that for all α, β, θ ∈ Con A we have that

[(α ∨ θ)/θ, (β ∨ θ)/θ] = ([α, β] ∨ θ) /θ.

Then Con A is modular. In particular, if V is a variety with a difference term,

then the above homomorphism property holds across V if and only if V is congruence

modular.

Proof. It is easy to mimic the proof of Theorem 4.38, above, to establish that, under

our assumptions, for all α, β, γ ∈ Con A, we have that if C(α, β; γ) holds if and only if

[α, β] ≤ γ. From this, it is easy to see that for all α, β, γ, γ′ ∈ Con A such that γ ≤ γ′,

we have that if C(α, β; γ) then C(α, β; γ′) holds as well. One can then prove, using

little more than the basic facts concerning the commutator—that is, which hold in all

varieties—that we must have that for all α, β, γ ∈ Con A, [α ∨ β, γ] = [α, γ] ∨ [β, γ].

(The fact just cited appears in Lipparini (1994) as Proposition 1.6.)

Now, by Theorem 4.40, we may conclude that Con A is congruence modular.
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We see from Theorem 4.40 that for a given variety V , the finite additivity of the

commutator plus the availability of a difference term implies that V is congruence

modular. Here we note—apparently for the first time—that the finite “subadditivity”

of the commutator is enough to force congruence modularity in any difference term

variety.

Theorem 4.42. Let A be an algebra in a variety V with a difference term. Suppose

that Con A is subadditive. That is, suppose that for all α, β, θ ∈ Con A we have that

[α ∨ θ, β ∨ θ] ≤ [α, β] ∨ θ.

Then Con A is modular. In particular, V is congruence modular if and only if Con A

is subadditive for all A ∈ V.

Proof. Suppose that for all α, β, θ ∈ Con A we have that

[α ∨ θ, β ∨ θ] ≤ [α, β] ∨ θ.

We may easily mimic the proof of Theorem 4.34 to argue that these assumptions

imply that for all α, β, θ ∈ Con A, we have that

[(α ∨ θ)/θ, (β ∨ θ)/θ] = ([α, β] ∨ θ)/θ.

Thus, that (i)⇒ (ii) follows from Theorem 4.41.

The finish the second claim, one only needs the addivity of the commutator in

congruence modular varieties, together with Proposition A.31.

Theorem 4.34 also provides a (somewhat) interesting proof of Theorem 4.30, in-

dependent of Corollary 4.5.

Proof. (of Theorem 4.30) Let ζ = ζA. Suppose that [1A)n = 0A. We wish to show that

ζAn = 1A. We shall induct on n. For the base case, observe that ζ0
A = 0A = [1A)0 = 1A.

Now, suppose that n > 0 and that the (n − 1)-case has been verified. Note that
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[1A)n = 0A entails that [1A)n−1 ≤ ζA. From Corollary 4.37, we also have that

[1A/ζ)n−1 = ([1A)n−1∨ ζ)/ζ, and hence [1A/ζ)n−1 = 0A/ζ . By inductive hypothesis, we

have that ζn−1
A/ζ = 1A/ζ . By Proposition 4.28, then, we have that ζnA = 1A, as claimed.

Thus the “reverse direction” follows by induction.

Now suppose that ζnA = 1A. Again, we induct on n. For the case of n = 0,

note that [1A)0 = 1A = ζ0
A = 0A. Assume that n > 0 and the (n − 1)-case has

been verified. We wish to show that [1A)n = 0A. This is equivalent to showing that

[1A)n−1 ≤ ζA. By Proposition 4.28, we have that ζnA = 1A entails that ζn−1
A = 1A/ζ .

Thus, by inductive hypothesis, we have that [1A/ζ)n−1 = 0A/ζ . By Corollary 4.37,

then, we have that

([1A)n−1 ∨ ζ)/ζ = [1A/ζ)n−1 = 0A/ζ ;

thus, by the correspondence theorem A.16, we have that [1A)n−1 ∨ ζ = ζ, which is

to say, [1A)n−1 ≤ ζ. Thus, this direction follows by induction as well, completing the

proof.

There is a third path to this result, via the following more general fact. First,

consider this lemma.

Lemma 4.43. Let A be an algebra in a variety with a difference term. Let ψ, θ, ϕ ∈

Con A with ϕ ≤ θ and such that for all natural numbers n, Zn(ψ)θ ≤ ψ. Then Z(ψ)ϕ =

(ϕ : ψ) ≤ (θ : ψ) = Z(ψ)θ and hence, for all natural numbers n, Zn(ψ)ϕ ≤ Zn(ψ)θ.

Proof. From Theorem 4.38, it is easy to see that C((ϕ : ψ), ψ;ϕ) implies that C((ϕ :

ψ), ψ; θ). Thus, (ϕ : ψ) ≤ (θ : ψ). The rest follows by induction.

Proposition 4.44. Let A be an algebra in a variety with a difference term. Let

ψ, θ, ϕ ∈ Con A such that for all natural numbers n, Zn(ψ)θ ≤ ψ. Then, for all natural

numbers k,m, and n,

(i) Cm(ψ)θ ≤ Zk(ψ)C
m+k
(ψ) θ and
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(ii) Cm+k
(ψ) ϕ ≤ Zn(ψ)θ implies that Cm(ψ)ϕ ≤ Z

n+k
(ψ) θ.

Proof. The same proof as was supplied for Proposition 4.25 (iii) and (iv) works here,

substituting the use of Proposition 4.24 in favor of 4.43.

Corollary 4.45. Let A be an algebra in a variety with a difference term. Let θ ∈

Con A. Then ζn(θ) = 1A if and only if [1A)n ≤ θ.

Proof. This is just an application of Propositions 4.44 and 4.25.

We have a further use for Theorem 4.10; it enables us to use the same proof of

Theorem 14.1 in Freese and McKenzie (1987) to get a new result, with “congruence

modular,” in the statement of their theorem, replaced by “difference term.”

Theorem 4.46. For A ∈ V, a variety with a difference term d, a ζA b if and only if

f(d(r1(a, b), r1(b, b), c1), . . . , d(rn(a, b), rn(b, b), cn)) =

d(f(r1(a, b), . . . , rn(a, b)), f(r1(b, b), . . . , rn(b, b)), f(c)) (4.1)

and

d(r(a, b), r(b, b), r(b, b)) = r(a, b), (4.2)

for all fundamental operations f , all c = 〈c1, . . . , cn〉 ∈ An, and all binary term

operations r and ri.

Proof. The proof supplied by Freese and McKenzie for the case of V congruence

modular goes through intact, replacing only their proposition 5.7 with Theorem 4.10.

We can also use Theorem 4.46 to find an equational characterization of nilpotence

in varieties with a difference term in much the same way that Freese and McKenzie

did for congruence modular varieties; in order to make their proofs work, however,

we require the fact that upward and downward nilpotence are equivalent in varieties

with a difference term.
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Definition 4.47. For V , a variety with a difference term, set

E0 := {x ≈ y},

and for k > 0 let Ek+1 be the set of all equations of the form

f (d(r1(s, t), r1(t, t), z1), . . . , d(rn(s, t), rn(t, t), zn))

≈ d (f(r1(s, t), . . . , rn(s, t)), f(r1(t, t), . . . , rn(t, t)), f(z))

union the set of all equations of the form

d(r(s, t), r(t, t), r(t, t)) ≈ r(s, t),

where f is a basic operation symbol, r and ri are binary terms, s ≈ t ∈ Ek, and the

zi are any variables.

Theorem 4.48. Let A ∈ V, a variety with a difference term. Then for all natural

numbers k, A satisfies Ek if and only if [1A)k = 0A.

.

Proof. We essentially use the proof of Freese and McKenzie, except for added steps

that invoke Theorem 4.30 We induct on k. The case of n = 0 is clear from the

definition of [1A)0 as 1A. That is, if A is nilpotent of class 0, then, evidently, 0A =

[1A)0 = 1A. This can only happen if A is a singleton, and so we see that A |= E0.

Now, suppose that the theorem holds for some k ≥ 0. By Theorem 4.30, we

find that [1A)k = 0A ⇔ ζkA = 1A. By Corollary 4.29 and a second application of

Theorem 4.30, we have that ζkA = 1A ⇔ ζk−1
A/ζA

= 1A/ζA ⇔ [1A/ζA)k−1 = 0A/ζA . Now,

using the inductive hypothesis and A/ζA in place of A, we have that [1A/ζA)k−1 =

0A/ζA if and only if for all evaluations 〈a, b〉 of any s ≈ t ∈ Ek−1 in A, we have that

a ζA b. By Theorem 4.46, the last condition holds if and only if for all evaluations
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〈a, b〉 of any s ≈ t ∈ Ek−1 in A, for all fundamental operations f of any arity n, all

binary terms ri, (i = 0, . . . , n), and all elements c1, . . . , cn from A,

f(d(r1(a, b), r1(b, b), c1), . . . , d(rn(a, b), rn(b, b), cn)) =

d(f(r1(a, b), . . . , rn(a, b)), f(r1(b, b), . . . , rn(b, b)), f(c))

and

d(r0(a, b), r0(b, b), r0(b, b)) = r0(a, b).

But, of course, this says precisely that A |= En.

We thus get the following, which parallels Theorem 14.3 from Freese and McKenzie

(1987).

Corollary 4.49. Let V be a variety of finite signature with a difference term such

that FV(2) is finite. Then for each natural number n, there is a finite set of equations

En depending only on FV(2) and the signature of V such that A ∈ V is nilpotent of

class n if and only if A |= En.
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Chapter 5

Questions for further study

5.1 Concerning Problem 1.3

The following is known, through a combination of results in Aichinger and Mudrinski

(2010) and Kearnes (1999).

Theorem 5.1. Let A be a nilpotent algebra in a variety with a Mal’cev term. Then

the following are equivalent.

(i) A is supernilpotent.

(ii) A has a finite bound on the rank of its nontrivial commutator polynomials.

(iii) A has a finite bound on the rank of its nontrivial commutator terms.

(iv) A factors as the direct product of algebras of prime power order.

Proof. That (i) implies (ii) is given above as Corollary 2.52 (and was given prior to

this as Lemma 7.5 in Aichinger and Mudrinski (2010)). That (ii) implies (iii) is trivial

(see Definition 2.50). We get that (iii) implies (iv) from Kearnes (1999), Theorem

3.14. Finally, that (iv) implies (i) is given by Aichinger and Mudrinski (2010) as

Lemma 7.6.

What is left to be desired in the above is a parallel characterization of supernilpo-

tence of class n, for fixed n.

Problem 5.2. For a given natural number n, find a characterization of supernilpo-

tence of class n in a Mal’cev variety that parallels Theorem 5.1. In particular, can we
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find a bound on the rank of the nontrivial commutator terms for an (finite?) algebra

of supernilpotence class n that depends (only?) on n? Is there a combinatorial de-

pendence on the parameter n of the number of factors or the powers associated with

the prime power factorization of a Mal’cev algebra of supernilpotence class n?

If we are to follow an Oates-Powell strategy—as discussed in Chapter 3—to solve

Problem 1.3, it seems likely that we shall require a generalization of the following

facts.

Proposition 5.3. (see 51.24 (p. 146) in Neumann (1967)) Let A be a group. Then

we have that the nilpotence class of any nilpotent group in Var A is bounded by the

highest nilpotence class among nilpotent factors of A.

Proposition 5.4. For each natural number n, there is a finite set Σn of first order

sentences in the language of groups such that an algebra A of the signature of groups

is nilpotent of class n if and only if A |= Σn.

Of course, what we have in mind in the above proposition is simply the usual

commutator equation. Though something quite of this strength is not necessary,

something along these lines, together with Proposition 5.3 is needed to prove the

following.

Proposition 5.5. (See Lemma 52.35 (p. 153) in Neumann (1967)) Let A be a finite

group, and let V = Var A. Suppose that all nilpotent factors of A are nilpotent of

class at most c (finite). Then, there is a natural number N such that for all n > N ,

for all nilpotent groups B ∈ V(n), we have that B is nilpotent of class c.

Problem 5.6. Establish the following analogy to the above proposition. Let A be a

finite, nilpotent algebra that generates a Mal’cev variety V of finite signature. Suppose

that all supernilpotent factors of A are supernilpotent of class at most c (finite). Then,
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is there a natural number N such that for all n > N , for all supernilpotent algebras

B ∈ V(n), we have that B is supernilpotent of class c?

In Theorem 3.32, we have undertaken one of the necessary steps to address the

above problem. A second would be to find an analogy to Proposition 5.3:

Problem 5.7. Is it true that, given a finite, nilpotent, Mal’cev algebra A that there

is a bound for supernilpotence classes of all supernilpotent algebras in the variety

generated by A?

Perhaps the nilpotence class of A itself bounds the highest supernilpotence class

possible in Var A—but I would hazard that it does not. Proposition 5.3 can be proved

with reference to Sylow theory (see 51.24 (p. 146) in Neumann (1967)). It does not

seem readily apparent how to generalize this approach, but I suggest that further

study or adaptation of Kearnes (1999) or perhaps Smith (2015) may yield an answer

to this problem.

Now, another approach to its solution is suggested by McKenzie (1987b). Here,

we find that, if A is a finite algebra that generates a congruence modular variety, then

there is indeed a bound on the nilpotence class possible in the variety generated by

A; see Theorem 3.2 and Corollary 2.12 (or Kiss’ improvement on this latter result)

in McKenzie’s paper for an explanation of how this is established. However, the

proof of this fact—as suggested by the results cited in McKenzie (1987b)—appears

to depend on the fact that nilpotence is recursively defined, whereas supernilpotence

is not apparently so definable. For instance, it is unclear whether a collapse in the

middle of the chain

1A ≥ S2(1A, 1A) ≥ S3(1A, 1A, 1A) ≥ · · · ,

for a given algebra A, will result in the collapse of the remainder:
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Problem 5.8. If for a given Mal’cev algebra A we have that, for some natural number

n, Sn(1A, . . . , 1A) = Sn+1(1A, . . . , 1A), then, is it the case, too, that Sm(1A, . . . , 1A) =

Sn(1A, . . . , 1A) for all m ≥ n?

On the other hand, Lemma 3.1 of McKenzie (1987b), which feeds into his Theorem

3.2 does appear to work if one exchanges the iterated commutator for the higher

commutator. A sort of illustration of this is given in Proposition 2.43. A source of

insight into these questions may also be provided by some of the material in Mayr

(2011).

Despite Theorem 3.32 or, rather, encouraged by it, one wonders whether su-

pernilpotence of a given class and in a fixed Mal’cev variety can be defined in terms

of satisfaction of some finite number of equations given, say, a finite signature and

a degree of local finiteness—but independently of Freese and Vaughan-Lee’s finite

basis.

Problem 5.9. Let V be a locally finite, Mal’cev variety of finite signature. Let k be

a natural number. Find, independent of the finite basis result of Freese and Vaughan-

Lee, a finite set σk of equations in that language of V such that for any A ∈ V , A is

supernilpotent of class k if and only if A |= σk.

Perhaps the algorithm developed in Neumann (1967), Lemma 33.37, can be (some-

how) adapted to show that the equations given implicitly in Theorem 2.24, only lim-

ited to t a term in k variables characterize supernilpotence of class k. An answer

to this problem will then lend itself to a new, arguably easier proof of the finite

basis result of Freese and Vaughan-Lee: Using Theorem 3.7 and the arguments of

Proposition 2.13 (together with Theorem 2.24), one could then show that if V is a

congruence-permutable variety of supernilpotent algebras such that FV(2) is finite,

then V(n) is a Cross variety, for large enough n.
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By consulting pages 156-7 of Neumann (1967), one can observe that our strategy

of estimating the cardinality of an algebra in a congruence permutable variety given

in Theorem 3.28 has a precedence. For any group A, it is remarked there that A

is generated by a transversal of its Φ-classes, where Φ is the Frattini subalgebra of

A. Building on this fact, Neumann is able to establish a bound on the cardinality

of any critical group A—under the assumptions of a finite exponent, a bound on the

nilpotence class of any of its nilpotent factors, and a bound on it chief factors—by

counting each of the factors in the following:

|A/Φ| = |A/C| · |C/F | · |F/Φ|, (5.1)

where Φ is the Frattini subgroup of A, F is the Fitting subgroup of A, and C is the

centralizer of F/Φ. Among other facts, this count relies on the fact that in any finite

group, the Frattini subalgebra of a group is nilpotent (and hence contained in the

Fitting subgroup of the group, by definition.) (See Scott (1964), 7.4.4.) It is here

that Neumann employs Theorem 51.37 (by way of Corollary 51.38), which we have

sought to generalize with our Theorem 2.56. Thus, if this program is to be followed,

we will need to answer (among other things) the following in the affirmative.

Problem 5.10. Let A be a finite Mal’cev algebra. By Theorem 2.54, A has a highest

supernilpotent congruence, which we shall label σ. If Φ is the 1Frattini congruence

of A, then is Φ ≤ σ? That is, is the 1Frattini congruence of a finite Mal’cev algebra

also supernilpotent?

Again, if we are to follow closely the example set by group theory in establishing

this, it may be through an extension of Sylow theory to this more general setting;

see Scott (1964), 7.3.13. Together with the desire to understand Problem 5.6, it is

more than enough to motivate the next interesting problem. Note also that Theo-

rem A.47 establishes that any nilpotent, Mal’cev algebra is polynomially equivalent

to a quasigroup with operators.
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Problem 5.11. Find out to what extent Sylow theory can be extended to quasigroups

with operators, or, more generally, to congruence regular algebras. In particular,

further analysis of (regular) congruences of prime power index (meaning each of its

congruence class is of prime power) in any setting is desired.

This project has already been begun implicitly in Kearnes (1999) and Smith

(2015), and perhaps elsewhere. This project may be substantial enough, but what

may be ultimately needed is a generalization of the result of Gaschütz, given as

Lemma 52.42 in Neumann (1967). On the other hand, perhaps only a small part

of Sylow theory may be necessary to establish and make use of such a result in the

broader setting of, say, nilpotent, Mal’cev algebras. Kearnes (1996) is also worth

consulting regarding this question.

One can check by hand that the Mal’cev algebra supplied on p. 45 of Smith (1976)

as an example of an algebra with an empty Frattini subalgebra is abelian. (Let me

suggest using Remark A.38 to verify this—though there may be an easier way.) In

light also of Theorem 237 in Smith (1976), it seems fair to wonder whether any

nilpotent, Mal’cev algebra with an empty Frattini subalgebra is in fact abelian. This

would make the Frattini subalgebra a potentially useful notion to answer Problem 1.3.

For reference, we restate this now.

Problem 5.12. Settle whether or not any nilpotent algebra in a Mal’cev variety that

has an empty Frattini subalgebra (as defined by Smith (1976), e.g.: Proposition 235)

is abelian.

Finally, there is a subject which I have not touched on in this thesis, though

it is well-developed elsewhere. Further study of the notion of what Kearnes (1996)

calls normalization may lead to the resolution of Problem 1.3. I believe this to be

a promising avenue of study and one which is evidently related to Theorem 3.12,

above—at least if one considers their respective consequences. See also Freese and
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McKenzie (1987), Chapter 10, for a further discussion of these matters. In partic-

ular, I would like to know whether if A is a subdirectly irreducible algebra that

generates a congruence modular variety, then is A found in the variety generated by

its normalization?

5.1.1 A small result and then a question, on the first-order

definability of criticality

The strategy of many finite basis results, including McKenzie (1987a), Willard (2000),

and Kearnes, Szendrei, and Willard (2013+) can be subsumed under the use of a

general fact: that for a given locally finite variety V of finite signature, if it happens

that there is a natural number N and elementary sentences ϕ and θ in the language

of V , such that the class of subdirectly irreducibles in V(N) is axiomatized by ϕ, while

the class of subdirectly irreducibles in V is axiomatized by θ, then V is finitely based.

Using Mal’cev’s description of congruence generation (Theorem A.9) it is not difficult

to see that the concept of subdirect irreducibility is elementarily expressible, although

one has to take greater pains and make use of further assumptions to capture such

with a single sentence. On the other hand, criticality has historically (see MacDonald

and Vaughan-Lee (1978) and Neumann (1967), for instance) included finiteness as

part of its definition, which makes it impossible to first-order define. Now, we have

shown in the above that it may not be necessary to include finiteness as part of the

definition of criticality. On the other hand, as we observed, any critical algebra in

a locally finite variety does indeed turn out to be finite. Indeed, our definition also

remains resistant to elementary definition, as shown in the following result, which is

really just an immediate corollary to work of MacDonald and Vaughan-Lee (1978).

Theorem 5.13. There is a class K of algebras of finite signature and a variety V for

which no set Γ of first order sentences exists such that

CritV = {A ∈ K | A |= Γ}.
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Proof. In MacDonald and Vaughan-Lee (1978), the authors exhibit a finite algebra M

so that Var M contains an infinite chain of critical algebras—in particular, it has no

finite critical bound.1 On the other hand, since V := Var M is locally finite, we have

that each of these critical algebras is finite. A routine application of the compactness

theorem then demonstrates the result.

However, the following appears to be an open question.

Problem 5.14. Is there a variety V without a finite critical bound and yet for which

CritV is still first-order definable (noting, as seen in the above, that V cannot then

be locally finite)?

5.2 Concerning the higher centralizer of Bulatov

Is Bulatov’s higher centralizer the “right” definition? How would one decide? One

possible defect is its lack of symmetry and—what I take to be related—the apparent

difficulty presented in discovering what properties and applications it holds outside of

the context of congruence permutability. Even some properties, which are simple to

prove in the case of the usual term-condition centralizer and commutator, are man-

aged with surprising difficulty for the higher centralizer and commutator. Consider

some “symmetrically-defined higher centralizers,” by way of an example. Let A be

an algebra with congruences θ0, θ1, and θ2. Let n be any natural number, let t be a

term for A of rank n. Choose natural numbers `0, `1, and `2 that sum to n, and pick

tuples ai and bi of length `i, for each i < 3 such that ai θ`ii bi. One might consider

the (four-place) centralizer defined by requiring the following implication to hold for

all such choices in A:

1‘M’ is for Murskii, who invented it.
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tA(a0, a1, a2) γ tA(a0, a1,b2) and tA(b0, a1, a2) γ tA(b0, a1,b2)

⇓

tA(a0,b1, a2) γ tA(a0,b1,b2) and tA(b0,b1, a2) γ tA(b0,b1,b2)

Or, perhaps, the following implication would provide a better definition:

tA(a0, a1, a2) γ tA(a0, a1,b2) γ tA(b0, a1, a2) γ tA(b0, a1,b2)

⇓

tA(a0,b1, a2) γ tA(a0,b1,b2) γ tA(b0,b1, a2) γ tA(b0,b1,b2)

It may be that a collection of rather more involved implications would be of even

greater use. Indeed, the central principal to pay attention to may be the tracking

of “collapse” in the dimensionality of the “geometric” arrangement (in the way of

Gumm (1983)) of the various congruence relations possible between a so-called ma-

trix of terms. A plausible commutator may come out of any reasonable notion of

“collapse” and “projection” so conceived. But, for now, a specific question: Is the

alternative centralizer or centralizers here conceived useful? My sense is that restor-

ing the symmetry to the definition of the higher centralizer would yield properties, in

the congruence-modular setting, for a higher centralizer and commutator so-defined,

properties analogous to those that hold for the term-condition centralizer and com-

mutator there, namely those given in Chapter 4 of Freese and McKenzie (1987). The

further question is whether such a symmetrically-defined centralizer would continue

to find as impressive applications in congruence permutable varieties; might any of

these symmetrical centralizers be equivalent in the congruence permutable setting to

the higher centralizer as originally defined?

The main question concerning the Bulatov centralizer and commutator is this:

Can the properties that are known to hold for it in Mal’cev vareities be extended to a
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more general setting. A nice further project would be to see whether, using the 4-ary

difference term of Kiss (see Kearnes, Szendrei, and Willard (2013+), section 6) in

place of the Mal’cev term, one might be able to establish a part of Theorem 2.24 for

varieties with a difference term. That is, by building a sequence of terms qn through

the composition of the Kiss difference term, rather than building these with the

Mal’cev term, might we achieve an end as strong or nearly so as got in Theorem 2.24?

For instance, with q := q2 the 4-ary difference term of Kiss, for n > 2, let

qn(x0, . . . , x2n−1) = q(qn−1(x0, . . . , x2n−1−1), x2n−1−1, qn−1(x2n−1 , . . . , x2n−1), x2n−1).

Theorem 2.24 (i) ⇒ (ii) appears to work for this new sequence of qn’s, using the

“same proof.”

As proof of concept, we now work toward a new result that serves as an illustration

and application of what we have in mind. Fix a variety V with a difference term d.

Following Lipparini (1999), we let

q(x0, x1, x2, x3) := d(d(x1, x3, x3), d(x0, x2, x3), x3).

Note that V |= q(x, y, x, y) ≈ y ≈ q(x, x, y, y). We also need the following observation

from Lipparini (1999). Let A ∈ V , and let α, β ∈ Con A. Let x, y, z, w, w′ ∈ A such

that 〈x, y〉, 〈z, w〉, 〈z, w′〉 ∈ α and 〈x, z〉, 〈y, w〉, 〈y, w′〉 ∈ β. let d denote the difference

term operation for A. Note that

d(d(w,w,w), d(z, z, w), w) = w [α ∩ β, α ∩ β] d(d(w,w′, w′), d(z, z, w′), w′).

It follows that

d(d(y, w, w), d(x, z, w), w) [β, α ∩ β] d(d(y, w′, w′), d(x, z, w′), w′).

In particular, these terms are [β, α]-related. That is,

q(x, y, z, w) [β, α] q(x, y, z, w′).
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Recall the notation of Theorem 2.24. Let θ0, θ1 ∈ Con A. Let n, `0, and `1 be

natural numbers so that `0 + `1 = n. For j = 0, 1, choose aj,bj ∈ A`j such that

aj θ
`j
j bj. Let t be any term operation of rank n for A. Let

e = 〈t(a0, a1), t(b0, a1), t(a0,b1), t(b0,b1)〉.

Then

ρ̄1q(e) = q(t(b0, a1), t(b0, a1), t(b0,b1), t(b0,b1)) = t(b0,b1),

ρ̄2q(e) = q(t(a0,b1), t(b0,b1), t(a0,b1), t(b0,b1)) = t(b0,b1), and

ρ̄3q(e) = q(t(b0,b1), t(b0,b1), t(b0,b1), t(b0,b1)) = t(b0,b1).

In particular,

q(t(b0, a1), t(b0, a1), t(b0,b1), t(b0,b1)) = q(t(b0,b1), t(b0,b1), t(b0,b1), t(b0,b1))

and hence

q(t(a0, a1), t(b0, a1), t(a0,b1), t(b0,b1))[θ0, θ1]

q(t(a0,b1), t(b0,b1), t(a0,b1), t(b0,b1)) = t(b0,b1).

Using this observation and previous work, we soon find the following.

Theorem 5.15. Let A be an algebra in a variety with a difference term d. Define q

as above. Let θ0, θ1 ∈ Con A. Then the following are equivalent:

(i) C(θ0, θ1; 0A);

(ii) qA(e0, e1, e2, e3) = e3, for all e ∈ Q(θ0, θ1) and if e, e′ ∈ Q(θ0, θ1) such that,

for i < 3, ei = e′i, then qA(e0, e1, e2, e3) = qA(e0, e1, e2, e
′
3);

(iii) C2(θ0, θ1; 0A).

(See Definition 2.4 for notation.)
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Proof. In the argument proceeding the statement of this theorem, we saw that (i)

implies (ii). That (iii) implies (i) was done in Proposition 2.12.

Now, suppose that (ii) holds. Let n, `0, and `1 be natural numbers such that

`0 + `1 = n. For j = 0, 1, choose aj,bj ∈ A`j such that aj θ
`j
j bj. Let t and s be any

term operations of rank n for A. Suppose that

t(a0, a1) = s(a0, a1),

t(b0, a1) = s(b0, a1), and

t(a0,b1) = s(a0,b1).

Then, by (ii), we have that

t(b0,b1) = qA(t(a0, a1), t(b0, a1), t(a0,b1), t(b0,b1)) =

qA(s(a0, a1), s(b0, a1), s(a0,b1), s(b0,b1)) = s(b0,b1),

which proves (iii).

A portion of the above theorem is covered by Lemmas 2.3 and 6.2 from Kearnes,

Szendrei, and Willard (2013+).

In order to generalize the above theorem, it may be necessary to first develop

a generalization of the 4-difference term of Kiss. I submit the following for further

consideration. Let n be a natural number. Fix a variety V . Suppose that qn is a

rank-2n term for V , such that

V |= ρ̄rqn(x0, . . . , x2n−1) ≈ x2n−1,

for each natural number r such that 0 < r < 2n. Suppose also that the following con-

dition holds. Let A ∈ V , and choose θ0, . . . , θn−1 ∈ Con A. Let e, e′ ∈ Q(θ0, . . . , θn−1)

such that ei = e′i, for i < 2n − 1. Then we require that

qA
n (e0, . . . , e2n−1) S(θ0, . . . , θn−1) qA

n (e′0, . . . , e′2n−1).

(See Definition 2.27 for notation.) Let us call such a term an n-difference term.
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Problem 5.16. Let n be a natural number. Do difference term varieties have an

n-difference term? Do congruence modular varieties have an n-difference term?

5.3 Concerning the commutator in varieties with a weak-difference

term

In analogy to Theorem 4.42 and Theorem 4.41 in Chapter 4, it would be interesting

to know whether the following hold.

Problem 5.17. Let V be a variety with a weak-difference term. Suppose that for

any algebra A ∈ V and any α, β, θ ∈ Con A such that β ≤ α, we have that

[α ∨ θ, β ∨ θ] ≤ [α, β] ∨ θ.

Does it then follow that V has a difference term?

Problem 5.18. Let V be a variety with a weak-difference term. Suppose that for

any algebra A ∈ V and any α, β, θ ∈ Con A such that β ≤ α, we have that

[(α ∨ θ)/θ, (β ∨ θ)/θ] = [α ∨ θ, β ∨ θ]/θ.

Does it then follow that V has a difference term?
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Appendix A

Fundamentals

A.1 Fundamentals of general (universal) algebra

Following in the footsteps of Garrett Birkhoff, Anatoli Mal’cev, Alfred Tarski and

others, we take a permissive view of the appellation “algebra.” When we say algebra

we mean a nonempty set A together with an indexed list, say Φ, (possibly empty)

of operations on A. We use boldface for the algebra, as distinguished from the set,

as in A = 〈A,Φ〉. In this case, we also call A the universe of A. The operations of

A, that is, the elements φ appearing in Φ, should be viewed as elements of AAκ , for

some cardinal κ where κ is called the arity of f . Throughout this text, however, we

shall consider only the case of κ a finite cardinal; that is, all operations will be of

finite arity. We shall call any one-element algebra trivial.

Now, it is useful to consider the class K of all algebras each of whose list of

operations is indexed by the same index set, say F . We call F the set of fundamental

operations for K. For each A = 〈A,Φ〉 ∈ K, we devise an interpretation of f ∈ F

in A, by mapping f to the element of Φ indexed by f . The interpretation map so

defined is written f 7→ fA, for a given A ∈ K and f ∈ F . The interpretation of f in

A, that is, fA, is called a fundamental operation of A. We may also use the symbol

FA in place of Φ in this context.

We shall also like to associate a uniform arity to all fundamental operations in-

dexed by the same symbol. Thus, we require a function, say ρ that assigns to each

f ∈ F its intended arity. Let K be a class of algebras each of which has fundamental
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operations indexed by F , with which is associated the arity function ρ. Suppose also

that for any A,B ∈ K, and any f ∈ F of arity, say r, fA ∈ AA
r and fB ∈ BBr .

When this holds, we shall say that K consists in similar algebras or algebras of the

same similarity type. If you like, the word ‘type,’ here, refers to the arity function, ρ,

which we shall also call the signature of K. Thus, we shall typically say that similar

algebras are of the same signature.

Within the context of a fixed signature, we can develop the standard mathemat-

ical notions of homomorphic image, subalgebra, and direct or Cartesian product.

Fix any class K of similar algebras. Given A,B ∈ K, and a map h : A → B,

we say that h is a homomorphism, provided it respects the indexing of the respec-

tive operations, indicating this by modifying the map-notation to include bold print,

writing h : A → B. That is, h : A → B is a homomorphism if and only if, for

any fundamental operation symbol f (with arity, say, r) and any a0, . . . , ar−1 ∈ A,

h(fA(a)) = fB(h(a0), . . . , h(ar−1)).

Any subset A′ of A that is closed under the operations of A can also be used as

the universe of an algebra of the same similarity type; for fundamental operation f ,

we interpret fA′ to be the restriction of fA to A′. In this circumstance, A′ is called

a subalgebra of A.

If C is a collection of subalgebras of a given algebra A, then ∩C is also a subal-

gebra. In particular, if D is any collection of subalgebras of a given algebra, and C

is the collection of all subalgebras that contains ∪D, then ∩C is the least subalgebra

containing all of them. From these observations, it is established that the set of sub-

algebras of a given algebra can be given a lattice structure—that is, it is naturally

endowed with a partial order (set inclusion) with which we can associate least up-

per bound and greatest lower bound functions. We remark here, too, that if S is a

subset of the universe of some given algebra, then we can obtain a least subalgebra

containing S; we call this the subalgebra generated by S, and denote it SgA S.
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Now, let I be any (index) set, and let Ai ∈ K for all i ∈ I. We take the direct

product Πi∈IAi of these algebras as the universe of an algebra by interpreting a given

fundamental operation symbol coordinate-wise: Let r be a natural number, and say

that f is a fundamental operation symbol of arity r. Take a0, . . . , ar−1 ∈ ΠIAi; then

we set

fΠIAi(a0, . . . , ar−1) := 〈fA(a0(i), . . . , ar−1(i)) | i ∈ I〉.

In the usual fashion, we shall write A0 ×A1 for ΠIAi, when I = {0, 1}, and so on.

Also, when Ai = A, we write Πi∈IAi = AI , calling such a power of A.

Let h : A→ B be a homomorphism of similar algebras. As is always the case, we

can associate with h an equivalence relation on A, denoted by kerh and defined by

〈x, y〉 ∈ kerh⇔ h(x) = h(y). As h respects the indexing of the operations of A and

B, we get also that kerh respects or is compatible with this indexing. That is to say,

for θ = kerh, we have that if f is any fundamental operation symbol of arity, say, r,

and 〈a0, b0〉, . . . , 〈ar−1, br−1〉 ∈ θ, then 〈fA(a0, . . . , ar−1), fA(b0, . . . , br−1)〉 ∈ θ. Any

equivalence relation θ on A that respects the operations of A in this way is called

a congruence on A. We denote the set of all congruences on A by Con A. Note, in

particular, that every congruence forms the universe of a subalgebra of A×A.

Like the set of all subalgebras of a given algebra, we find that its set of congruences

forms a lattice, where, again the partial order is simply set inclusion. As well in this

case, we also find that the intersection of any collection of congruences on a given

A is again a congruence. Thus, for any set of pairs R ⊆ A2, we can obtain a least

congruence on A containing R; we call this the congruence generated by R, denoting

it CgAR, often choosing to suppress the mention of A in the notation.

It is useful to note that the study of congruences parallels the study of normal

subgroups in group theory and of ideals in ring theory; indeed, it is adequate to

completely replace or reconfigure the study of these concepts in the respective areas

mentioned. Indeed, one can view the kernel of a group homomorphism h as simply
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the equivalence class of the identity element, with the equivalence relation being that

induced by the map h. As the presence of a one element subalgebra is not, in general,

assured, it is not always possible to associate congruence classes with subalgebras in

this way; thus, in most applications, the study of congruences replaces what we might

have taken as the generalization of the study of normal subgroups and the like.

As is the case in many areas of mathematics, we also can develop a notion of

quotient structure. Fix a signature, say ρ. Let A be an algebra, and let θ ∈ Con A.

For any a ∈ A, we shall denote by a/θ the set {b ∈ A | 〈a, b〉 ∈ θ}. We shall then

let A/θ = {a/θ | a ∈ A}. It is not difficult to verify that the fact that θ respects the

operations of A enables us to define an interpretation of the fundamental operations

on A/θ. For any fundamental operation symbol given by ρ, of arity, say, r, and

any elements a0, . . . , ar−1 ∈ A, we let fA/θ(a0/θ, . . . , ar−1/θ) = fA(a0, · · · ar−1)/θ.

It is also not hard to discover that the natural quotient map from A into A/θ is a

homomorphism, and, conversely, any image of A under a given homomorphism h is

isomorphic to the quotient structure on the kerh-classes of A. This series of facts

is usually called the Homomorphism Theorem or the First Isomorphism Theorem.

Another closely related fact is also easily verified: The image of any homomorphism

is a subalgebra of the codomain-algebra. We display these observations here for ease

of reference.

Theorem A.1. (First Isomorphism Theorem) Let h : A → B be a homomorphism.

Let im h denote the image of A under h. Then B′ := im h is closed under the opera-

tions of B. Furthermore, B′ is isomorphic to A/ kerh.

Let A be any algebra in some class K of similar algebras, with set of fundamental

operation symbols F . As is always the case, we may compose any fundamental

operations provided on A to build new ones, calling these derived operations term

operations. It is useful to devise an indexing system for these term operations as

well. To that end, we choose any set of distinct symbols X duplicating the natural
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numbers, which we shall call the set of variables. We shall write X = {xi | i ∈ ω}.

We now let T be smallest set of strings of symbols in the alphabet X ∪ F so that

• T ⊃ X and

• whenever f is a symbol of intended arity r (for whatever r) and t0, . . . , tr−1 ∈ T ,

then ft0 . . . tr−1 ∈ T .

Note that this definition is sound, as, whenever T and T ′ have the bulleted proper-

ties, their intersection does as well. The elements in T are called terms. Observe also

that we can provide the set T with the structure given by the signature of K; that is,

we can interpret each of the fundamental operation symbols for K as operations on

T . Given fundamental operation symbol f of arity, say r, and any t0, . . . , tr−1 ∈ T ,

we set fT(t0, . . . , tr−1) = ft0 . . . tr−1.

We shall extend the meaning of our interpretation map to also include these terms.

We do so recursively. For each xi ∈ X and for any A ∈ K, we let xA
i ∈ AA

ω be the

ith projection function. Then, for any t = ft0 . . . tr−1, where f is a fundamental

operation of a given arity r, and ti is a term operation for each i < r, for any ω-tuple

a of elements of A, we let tA(a) = fA(tA0 (a), . . . , tAr−1(a)).

Even though we interpret each term operation in A as an element of AAω—and

are thus all operations of arity ω, apparently—there is a more useful notion of arity

to associate with a given term t: that of the number of distinct variables that appear

in t. With this basic aim in mind, for set of terms T , we shall let Rank : T → ω be

the function that identifies the highest index, plus one, among variables appearing

in a given term. Of course, for a given t ∈ T , we shall call Rank(t), its rank. (For

instance, if only the variable x0 appears in a term, then it is of rank 1.) We shall

most often adopt a notation for terms to emphasize their rank, writing, for instance,

t = t(x0, . . . , xr−1) for a term t of rank r.
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Fix a signature, and an algebra A of this signature. Let n be a natural number.

We shall let Clon A denote the set of all term operations on A. That is, letting T be

the set of terms, as defined above, we set

Clon A = {tA | Rank(t) = n}.

We shall also denote by Clo A or Cloω A, the set {tA | t ∈ T} = ⋃
n∈ω Clon A. It

is not difficult to see that Clo A and, for any natural number n, Clon A can provide

the universe of an algebra of the same signature as A, and that, furthermore, we get

that, for α ∈ ω ∪ {ω}, Cloα A is a subalgebra of AAα . In fact,

Cloα A = SgAAω{xA
n | n ∈ α};

that is, Cloα A is the subalgebra of AAω generated by the set of projection functions,

{xA
n | n ∈ α}.

Let Λ be any set. For any λ ∈ Λ, let πλ be the λth projection function from AΛ

onto A. We let CloΛA be the subalgebra of AAΛ generated by {πλ | λ ∈ Λ}. We call

the algebra CloΛA the clone of A over Λ.

We shall also like to refer to an operation s formed on a given algebra A by

beginning with a term operation and substituting in fixed elements of A for some of

its variables; we shall call maps formed in this way, polynomials. To be precise, for

any α ∈ ω ∪ {ω}, we shall let

Polα A := SgAAω{xA
n | n ∈ α} ∪ {aA | a ∈ A},

where, for any a ∈ A, aA : Aω → A is the map defined aA(x) = a, for all x ∈ Aω.

It will be our most common practice to write term operations and polynomials

as if they only depend on the variables of index lower than their rank, as in t =

t(x0, . . . , xr−1) for a term t of rank r.

Now, it may happen, given terms t and s, that tA = sA. When this occurs we

say that the equation t ≈ s holds in A. Thus, by “equation,” we mean an ordered
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pair of terms, but writing it in the manner above. Under this circumstance, we also

write A |= s ≈ t, reading it as “A models s ≈ t” or “ϕ is true in A.” Further, if K is

any class of similar algebras and Σ is any set of equations written using the symbols

provided by the signature, then we write K |= Σ provided A |= Σ for all A ∈ K, with

A |= Σ meaning that A |= ϕ for all ϕ ∈ Σ. Let us call the set of equations associated

with a given signature the language provided by the signature.

Now, within a class K of similar algebras, we can consider the subclass of algebras

each of which satisfies a given set of equations. Given Σ, a set of equations written in

the language associated with the signature, we call the subclass of algebras A in K,

such that A |= Σ, the variety based on Σ; denote this by Mod Σ. On the other hand,

for any class K of similar algebras, we can lay our hands on the set of equations ϕ

such that A |= ϕ for all A ∈ K; let us call this the equational theory of K, denoting

it TheqK. Further, for a fixed signature, one can begin with Σ, a set of equations in

the language provided by the signature, and consider Φ = Theq Mod Σ; we then say

that Σ provides a base for Φ. We also write Σ |= Φ, reading it as “Σ logically implies

Φ.” Whenever for a given equational theory Φ or variety V we can find a finite set

Σ of equations such that Σ |= Φ or V = Mod Σ, we say that Φ or V is finitely based.

One of the fundamental goals with we are concerned with in this thesis is to develop

tools that may help in establishing what varieties are finitely based. Such a result we

call a finite basis result.

Let us take an arbitrary class K of similar algebras and denote by VarK the

class of all algebras satisfying each equation true in K, i.e., Mod TheqK. (For K =

{A}, we shall write VarA in place of VarK.) This is the variety generated by K,

and, we might remark, represents the structures satisfying a syntactically-framed

condition holding in K. It is natural to wonder whether one can obtain a structural,

or “semantic,” description of such a class of algebras. Indeed, Birkhoff was able to

show that Mod TheqK is precisely the closure of K under the formation of products,
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subalgebras, and homomorphic images; conversely, any class closed under these three

class operators is also equationally definable—that is, it is a variety. Thus, Birkhoff

gave a semantically-minded description of a natural syntactically-framed notion—

unless what he did was provide a syntactical description of a structurally-focused

condition that we may find natural to consider, namely closure under the three class

operations just mentioned.

To formalize the preceding paragraph, let K be a class of similar algebras. Let C

be the class of all algebras of that signature. Let

HK = {A | A = h(B) for homomorphism h and B ∈ K}.

Let

SK = {A | for some A′ ∈ K, and B ∈ K,A ∼= A′ ≤ B},

and let

PK = {A | for some set I, and Ai ∈ K, for each i ∈ I,A ∼= ΠIAi}.

What Birkhoff showed, then, is the following.

Theorem A.2. (Birkhoff’s HSP -Theorem) Let K be a class of similar algebras.

Then K is a variety if and only if K = HSPK. In particular, VarK = HSPK.

A.1.1 On free algebras

It is useful to prove a part of Birkhoff’s HSP -Theorem, as we are able to extract

from the proof some further important concepts. Let V be a variety. Let Φ be the

set of all equations that fail in V . Then, for any ϕ ∈ Φ, we can find an Aϕ ∈ V such

that Aϕ 6|= ϕ. Let B = ΠΦAϕ. Note that if ϕ is any equation that fails in V , then ϕ

fails in B, since term operations and hence equations are computed coordinate-wise.

Let κ be any cardinal. Let F = CloκB. Recall that CloκB is the subalgebra of

BBκ that is generated by the projection functions {πλ | λ < κ}. We claim that any
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κ-generated algebra A from V is a homomorphic image of F. To see this, we shall

first demonstrate that any equation that fails in B fails also in F. So, suppose that

t ≈ s is an equation in the language of V that fails in B. Suppose that t and s

are of rank r (or less), and write t = t(x0, . . . , xr−1) and s = s(x0, . . . , xr−1). Take

b0, . . . , br−1 ∈ B such that

tB(b0, . . . , br−1) 6= sB(b0, . . . , br−1).

Now, take any λ0, . . . , λr−1 < κ and choose any b ∈ Bκ such that b(λi) = bi for each

i < r. Observe that

tF(πλ0 , . . . , πλr−1)(b) = tB(πλ0(b), . . . , πλr−1(b))

= tB(b0, . . . , br−1)

6= sB(b0, . . . , br−1)

= sB(πλ0(b), . . . , πλr−1(b))

= sF(πλ0 , . . . , πλr−1)(b).

We thus have that tF(πλ0 , . . . , πλr−1) 6= sF(πλ0 , . . . , πλr−1), and hence F 6|= t ≈ s, as

claimed.

Now, let A be any algebra in V that is generated by κ of its elements, say {aλ |

λ < κ}. Let h0 : {πλ | λ < κ} → {aλ | λ < κ} be the map defined by h0(πλ) = aλ for

each λ < κ. Let t ≈ s be any equation that holds in F. As we have just seen, this

implies that B |= t ≈ s. But, by construction, this entails also that A |= t ≈ s: After

all, if A 6|= t ≈ s, then t ≈ s fails in V and hence in B. Thus, we can define a map h

from F onto A as follows. For t, any term for V of rank, say r, and λ0, . . . , λr−1 < κ,

let

h(tF(πλ0 , . . . , πλr−1) = tA(aλ0 , . . . , aλr−1).

It is not hard to see that this map is both onto and a homomorphism (and, as we

have just established, it also well-defined).
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Any κ-generated algebra F ∈ V with the property just demonstrated—namely

that any map from its set of generators onto the cardinality-κ generating set of any

other algebra in V extends to a homomorphism—is called a freely κ-generated algebra

for V . Now, it is clear that any two such algebras will be isomorphic, and so we

typically use the definite article in this case—and it is convenient to think of the

construction just given as the canonical representative. Indeed, the choices made for

each Aϕ ∈ V with ϕ ∈ Φ are immaterial in the sense that any choice will result

in an isomorphic copy of that constructed through another choice. We shall denote

“this” algebra, then, by FV(κ). For an arbitrary set Λ and the algebra B given

above, we write FV(Λ) = CloΛB, again noting that this definition is sound, modulo

isomorphism.

As a special case, consider V = Var B, the variety generated by some given algebra

B. Again, B has the property that for any equation ϕ in the language of V and any

algebra A ∈ V , we have that B |= ϕ entails that A |= ϕ. Thus, we have that CloκB

is, as it was above, freely generated for V . Now, since CloκB is a subalgebra of BBκ

and every κ-generated algebra A in V is a homomorphic image of CloκB, we have

that |A| ≤ |B||B|κ . In particular, if κ is a natural number and B is finite, we find that

A must be finite also. Thus, we see that in any variety that is generated by a finite

algebra—or, which is equivalent, generated by finitely many finite algebras—each of

its finitely generated algebras is finite. Any variety with this last property—that is,

so that each of its finitely generated algebras is finite—is called locally finite.

There is an important, generic finite basis result for certain locally finite varieties—

namely, those that are defined by the n-variables laws that hold in a given variety,

where n is a natural number. Let V be any variety. Let n be a natural number. Let

Σn be the set of equations that hold in V involving terms of rank at most n. Let

V(n) = Mod Σn. The following was found by Birkhoff; it has been used in a majority

of finite basis results since.
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Theorem A.3. For any natural number n and for any variety V of finite signature

such that FV(n) is finite, V(n) is finitely based. In particular, if V is locally finite

and of finite signature, then V(n) is finitely based for all natural numbers, n, and,

furthermore, V is thereby finitely based if and only if, for some n, V = V(n).

Let S and I be any sets, and let Φ = 〈φi | i ∈ I〉 be a system of maps each with

S as its domain and, for each i ∈ I some codomain Si. We say that Φ separates

points provided for each a, b ∈ S such that a 6= b, we have some φ ∈ Φ such that

φ(a) 6= φ(b). The point of this concept is that it provides us with an injection of S

into P := Πi∈ISi, namely, the natural map defined for s ∈ S by s 7→ 〈φi(s) | i ∈ I〉.

Let A be any algebra. Let I = {{a, b} ⊆ A | a 6= b}. For each i = {a, b} ∈ I,

using Zorn’s Lemma, it is not difficult to lay our hands on a maximal congruence θi

such that 〈a, b〉 6∈ θ. For each i ∈ I, let φi be the natural quotient map of A onto

A/θi. It is evident that Φ = 〈φi | i ∈ I〉 separates points. It is also not hard to see

that the map from A into Πi∈IA/θi given, for any a ∈ A, by a 7→ 〈a/θi | i ∈ I〉 is

a homomorphism. Let φ stand for this homomorphism. As noted in Theorem A.1,

given similar algebras A and B and homomorphism h : A→ B, that im h, the image

of A under h, is a subalgebra of B that is also isomorphic to A. It thus follows

from the work above that any algebra A is isomorphic to a subalgebra C of a direct

product of quotients of A. Furthermore, it is easy to see that this subalgebra has the

property that the restriction of any of the projection maps to C is onto. We call any

subalgebra C of a direct product D with this latter property a subdirect product. To

indicate that a given algebra A is isomorphic to a subdirect product, as in the above,

we shall write, for example,

A ↪→sd Πi∈IA/θi.

Note, also, that, for a given algebra A, for any set {θi | i ∈ I} ⊆ Con A, and for

θ = ⋂
i∈I θi, we have that A/θ ↪→sd Πi∈IA/θi.
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When A, {θi | i ∈ I}, and φ are given as above, we say that the image of φ is

a subdirect representation of A. This construction was first given by Birkhoff (1944)

and is now called Birkhoff’s Subdirect Representation Theorem. Note, however, that,

for a given i = {a, b} ∈ I, there is no reason why we might not have that the equality

relation (denoted ‘=,’ of course) on A—that is, the set of all identical pairs from

A—is a maximal congruence with respect to the property that 〈a, b〉 6∈=. Note that,

then, for any θ ∈ Con A different from =, we have that 〈a, b〉 ∈ θ. We shall call a

pair 〈a, b〉 ∈ A2 with this property monolithic for A or, simply, monolithic; we shall

also refer to CgA〈a, b〉 as the monolith of Con A, whenever 〈a, b〉 is monolithic, that

is. Thus, when Con A has a monolith, the subdirect representation of A is a trivial

thing: A is one of the factors of the direct product into which we obtain an injection

of A. As a result, we call algebras with this property—that is, with a monolithic

pair—subdirectly irreducible.

For a given class of similar algebras K, let SdK denote the subdirectly irreducible

quotients of elements of K. As a direct consequence of Birkhoff’s Subdirect Repre-

sentation Theorem we get the following.

Theorem A.4. Let V be any variety. Then Var SdV = V. In particular, if W is any

variety, then V =W if and only if SdV = SdW—that is, if and only if they have the

same subdirectly irreducible members.

A.2 Some general strategies of proof for finite basis results

Oates and Powell established in 1964 that all finite groups have a finitely based

equational theory. Later, it was found that the same holds for finite rings through

the use of a similar argument to that found in the Oates-Powell paper. However,

their strategy does not seem to have been used much since. We have sought to

remedy that by establishing several results for Mal’cev varieties of nilpotent algebras

that parallel those instrumental in the Oates-Powell result. Interestingly, much of the
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underlying mechanics of their proof owes to work of Graham Higman (1959), which he

developed to reprove a result of Lyndon (1952): Every nilpotent group has a finitely

based equational theory. See Neumann (1967) for an exposition of Higman’s work as

well as that of Oates and Powell.

There is another proof-technique for getting finite basis results, which has been

used more recently, namely that of establishing that, for a given variety V and some

(sufficiently large) natural number N , the set of subdirectly irreducibles in V(N) is

precisely the same as the set of subdirectly irreducibles in V . By Birkhoff’s Subdirect

Representation Theorem, any variety is determined by its subdirectly irreducible

members. Thus, this is evidently sufficient to get a finite basis result, provided V is

locally finite and has a finite signature, in light of Birkhoff’s other work that showed

how to find a finite basis for the N -variable laws of any such variety. Any variety

that has this property is said to have a finite residual bound. Some who have used

the technique—such as McKenzie (1987a), Willard (2000), and Kearnes, Szendrei,

and Willard (2013+)—have actually added a finite residual bound as an hypothesis.

However, as has been observed before, it is not a necessary hypothesis. It is well

known that the 8-element quaternion group Q, generates a variety without a finite

residual bound. On the other hand, it is indeed finitely based—or “doubly so,” to

hyperbolize—as can be seen from Lyndon (1952), as Q forms a group of nilpotence

class 2, as well as from Oates and Powell (1964), since they are finite. We have sought

to study whether the results of Lyndon and Oates and Powell generalize further than

is currently known.

The key fact used in the Oates-Powell result is that any locally finite variety of

algebras, say V , is determined by a certain subclass of algebras, the class of all critical

algebras in the variety, which we soon define. Let A be an algebra. We shall say

that any element B of HSA is a proper factor of A provided its cardinality is strictly

less than that of A, while A is called critical provided it is not found in the variety
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generated by its proper factors.1 Equivalently, A is critical if and only if there is an

equation ϕ in the signature of A so that A 6|= ϕ and yet, if B is any proper factor of

A, B |= ϕ. Suppose also that ϕ = s ≈ t is an equation in the variables x0, . . . , xn−1.

Let 〈x0, . . . , xn−1〉 7→ 〈a0, . . . , an−1〉 be an assignment that witnesses the failure of ϕ in

A. Then, evidently, A is generated by S = {a0, . . . , an−1}: after all, by assumption,

SgA S is not a proper factor of A. Thus, if A is critical and lies in a locally finite

variety, then A is finite.

For any class K of algebras, let CritK be the class of critical factors of algebras

in K. For K = {A}, write CritK =: Crit A.

As mentioned above, we have the following.

Theorem A.5. Let V be a locally finite variety. Then V = Var CritV. Moreover,

every nontrivial algebra in V is contained in the variety generated by its critical fac-

tors.

Proof. Let A ∈ V . Let ϕ be an equation in the signature of V that fails in A (hence,

we have tacitly assumed that A is nontrivial). Since this failure involves a finite

witness, and V is locally finite, we may obtain a finite subalgebra B of A in which ϕ

fails. Since B is finite, we can also find a minimal, proper factor C of B—and hence

of A—in which ϕ fails. Evidently, C is critical, since, if D is any proper factor of C,

ϕ is satisfied in D, by the minimality of C. Set Cϕ := C.

Now, let Φ = {ϕ | A 6|= ϕ}, and consider A′ := ΠΦCϕ. We claim that A is in

the variety generated by A′. After all, if A′ |= ϕ, then we must have that A |= ϕ:

Otherwise, we would have ϕ ∈ Φ and hence Cϕ 6|= ϕ whence A′ 6|= ϕ, contrary to our

assumption. We thus see that A is in the variety generated by its critical factors.

The first part of the theorem then easily follows.

1This is not always how such is defined: In Neumann (1967) and MacDonald and Vaughan-Lee
(1978), critical algebras are defined to be finite.
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This fact provides an interesting strategy for demonstrating that a given locally

finite variety has a finite basis. Recall that for a given variety V and natural number

N , V(N) is defined to be the variety based on the N -variable equations true in V .

Recall also that Birkhoff showed how to find a finite basis for V(N), provided V has a

finite signature and FV(N) is finite, which, for instance, occurs whenever V is locally

finite. It turns out, by the following theorem, that V will inherit the finite basis

property for V(N) provided V(N) is locally finite and has, up to isomorphism, only

finitely many critical algebras. Note also that, in the presence of a finite signature,

this last property is equivalent to a finite bound on the cardinality of the critical

algebras; this last property is styled “having a finite critical bound.” Any variety that

is finitely based, locally finite, and has, up to isomorphism, only finitely many critical

algebras is called a Cross variety.

Theorem A.6. Every subvariety of a Cross variety is also a Cross variety.

Proof. Let V be a Cross variety, and let W be a proper subvariety of V . Let Σ be a

finite basis for V .

It is clear that W is both locally finite and has a finite critical bound. What

we need to show is that W is finitely based. Now, by Theorem A.5, we have that

CritW must be a proper subclass of CritV . Let f be a choice function for the set of

isomorphism classes of CritV : for a given C ∈ CritV , we set f(C) to be the uniquely

chosen representative of the isomorphism class of C. Now, let C = {f(C) ∈ CritV |

C /∈ W}. Note that C is a finite set. Now, for each C ∈ C, we can find an equation

ϕ = ϕC so that C 6|= ϕ, whileW |= ϕ. Let Φ = {ϕC | C ∈ C}, noting that Φ is finite.

Note that W ⊆ Mod Σ ∪ Φ. We claim further that Mod Σ ∪ Φ ⊆ W . Let

A ∈ Mod Σ ∪ Φ. Clearly, A ∈ V . By Theorem A.5, A ∈ Var Crit A. Note that

Crit A |= Σ ∪Φ. Thus, Crit A ⊆ CritW : After all, for C′ ∈ CritV \CritW , there is

an equation ϕ = ϕf(C′) ∈ Φ such that C′ 6|= ϕ, which entails that C′ 6|= Φ. It follows
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that A ∈ W , as we claimed. Thus, W = Mod Σ ∪ Φ, which demonstrates that W is

finitely based.

It follows that, in order to show that a given variety V is finitely based, it is

sufficient to show that V(N) is a Cross variety, for some natural number N . If V is

locally finite and of finite signature, using Birkhoff’s finite basis for V(N), available

under these conditions, we find that we need only show that V(N) is locally finite and

has a finite critical bound for all high enough N . We present some results relevant

to this strategy in Chapter 3.

A.3 On congruences, the commutator, and related concepts

We shall often be concerned below with lattices and mainly with congruence lattices.

It may be helpful to formalize what we mean here, as well as establish some useful

notation.

Definition A.7. By a lattice, L, we mean an algebra with a signature that provides

two binary operations, symbolized by ∧ and ∨, referred to as “meet” and “join,”

respectively. Furthermore, we require that ∧ and ∨ are idempotent, commutative,

and associative operations. We also require that L satisfy the equations (x∧y)∨y ≈ y

and x ∧ (x ∨ y) ≈ x

We can also give any lattice L a partial order ≤ by letting, for x, y ∈ L, x ≤ y

if and only if x ∧ y = x. One can also deduce that x ≤ y if and only if x ∨ y = y.

Furthermore, ∧ and ∨ represent “greatest lower bound” and “least upper bound”

relations, respectively. That is, for instance, for any x, y ∈ L, we have that x ≤ x∨ y

and y ≤ x ∨ y, while if z ∈ L with x ≤ z and y ≤ z, then x ∨ y ≤ z.

Let L be any set equipped with a partial order ≤ (such as a lattice), and let

x ≤ z ∈ L. We set I[x, z] = {y ∈ L | x ≤ y ≤ z}. Also, suppose that, for any y ∈ L
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such that x ≤ y ≤ z, we have that y ∈ {x, z}. Then we write x ≺ z and say that z

covers x. We shall call any pair 〈α, β〉 of congruences with α ≤ β a quotient.

Recall from above that the set of all congruences on a given algebra A can be given

a lattice structure, with the order simply that of set inclusion, and that, furthermore,

the greatest lower bound of any set of congruences can be found (and, therefore, the

least upper bound of any set of congruences on A can be found as well). Let A be

an algebra, with set of congruences Con A. We shall denote by 0A, the least element

of Con A (that is, the greatest lower bound of the set of all its congruences), namely

0A = {〈a, a〉 | a ∈ A},

often called the diagonal. We shall denote by 1A the top element of Con A, that is,

A2. We shall use ‘∩’ for the meet-operation on Con A, since it is, after all, simply

the intersection. For C ⊆ Con A, we have that ∨C = ⋂{θ ∈ Con A | ∪C ⊆ θ}. For

C = {α, β} ⊆ Con A, we shall write ∨C = α ∨ β.

Recall the notion of congruence generation, which was defined in the first chapter:

given an algebra A and a set of pairs X ⊆ A2, we can find the least congruence

containing X; we denote it CgAX. For X = {〈a, b〉}, we write CgAX = CgA〈a, b〉.

In common with perhaps all mathematical concepts of “generation,” there is also a

constructive notion of congruence generation. Mal’cev gave a useful description of

CgAX of this kind. Before we give it, we need one further technical concept.

Definition A.8. Let A be an algebra. We shall define the set of translations

on A as a set of unary polynomials of a special type. First, we define the no-

tion of basic translation. Let f be a fundamental operation symbol with given

arity, say, r. Then for any i < r, we say that λ ∈ Pol1 A is a basic translation

when λ(x) = fA(a0, . . . , ai−1, x, ai+1, . . . , ar−1) (with x in the ith position), where

a0, . . . , ai−1, ai+1, . . . , ar−1 ∈ A. Too, we say that the identity is a basic translation.
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We define the set of translations to be the least set of unary polynomials containing

the basic translations and closed under composition.

It is easy to see that this definition is sound and that the set of translations can

be recursively or constructively described as well.

Proposition A.9. (Mal’cev (1954): Congruence generation) Let A be any algebra.

Let X ⊆ A2. Let θ be the set of pairs 〈a, b〉 ∈ A2 for which there exists a natural

number `, pairs 〈ai, bi〉 ∈ X and translations λi on A for i ≤ ` so that

• λ0(a0) = a and λ`(b`) = b and

• λi(bi) = λi+1(ai) for i < `.

Then θ = CgAX.

We call this arrangement of pairs and translations—the witness of 〈a, b〉 ∈ CgX—

a Mal’cev chain. It is convenient to formalize such as a pair of tuples, say C, as in

C = 〈〈〈ai, bi〉 | i ≤ `〉, 〈λi | i ≤ `〉〉,

for given natural number `; we call `+ 1 the length of C.

We shall need the following further fact of an elementary nature concerning con-

gruence generation. In the following, and throughout this text, for any sets A and B

and any map h : A → B, any set I, any X ⊆ AI , and any a = 〈ai | i ∈ I〉 ∈ X, we

shall abuse notation by writing h(a) = 〈h(ai) | i ∈ I〉 and h(X) = {h(a) | a ∈ X}.

Proposition A.10. Let A and B be algebras, and let h be a homomorphism of A

into B. Let θ be a congruence on A, generated by some set X of pairs from A. Let

ψ ∈ Con B be generated by Y , a set of pairs from B. If h(X) ⊆ Y , then h(θ) ⊆ ψ.

If, furthermore, h is onto and kerh ⊆ θ, then Y ⊆ h(X) implies that ψ ⊆ h(θ). In

particular, if h is onto, kerh ⊆ θ, and h maps X onto Y , then h(θ) = ψ.
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Proof. First, suppose that h(X) ⊆ Y , and let 〈b, b′〉 ∈ h(θ). Then we can write

〈b, b′〉 = 〈h(a), h(a′)〉 for some 〈a, a′〉 ∈ θ. As θ = CgAX, we obtain a Mal’cev chain

of some length `+ 1 witnessing this:

〈〈〈xi, yi〉 | i ≤ `〉, 〈λi | i ≤ `〉〉;

that is, we get pairs 〈xi, yi〉 ∈ X and translations on A, λi(x) = tAi (x, ci), for i ≤ `,

such that a = tA0 (x0, c0), a′ = tA` (y`, c`), and tAi (yi, ci) = tAi+1(xi+1, ci+1) for all i < `.

It is easy to check, then, that the Mal’cev chain

〈〈〈h(xi), h(yi)〉 | i ≤ `〉, 〈λ′i | i ≤ `〉〉

witness that 〈b, b′〉 ∈ ψ, where λ′i(x) = tBi (x, h(ci)) for each i ≤ `. Thus, h(X) ⊆ Y

implies that h(θ) ⊆ ψ.

Now, assume that h is onto and that kerh ⊆ θ. Suppose that Y ⊆ h(X). Let

〈b, b′〉 ∈ ψ, and take a Mal’cev chain witnessing this, say,

〈〈〈x′i, y′i〉 | i ≤ `〉, 〈λ′i | i ≤ `〉〉,

where λ′i(x) = tBi (x, c′i), 〈x′i, y′i〉 ∈ Y for each i ≤ `, and 〈b, b′〉 = 〈tB0 (x′0, c′0), 〉tB` (y′`, c′`).

Using that h is onto, get ci such that h(ci) = c′i for each i ≤ `. Using that Y ⊆

h(X), get 〈xi, yi〉 ∈ X so that 〈h(xi), h(yi)〉 = 〈x′i, y′i〉 for each i ≤ `. Let 〈a, a′〉 =

〈tA0 (x0, c0), tA` (y`, c`)〉. Using that h is a homomorphism, we have that, for each i < `,

〈tAi (yi, ci), tAi+1(xi+1, ci+1)〉 ∈ kerh ⊆ θ,

while, clearly, for each i ≤ `, tAi (xi, ci) θ tAi (yi, ci). Thus, 〈a, a′〉 ∈ θ. The second

claim now follows.

Generation of subalgebras is even simpler to characterize than generation of con-

gruences. (After all, congruence generation is a case of subalgebra generation, with

added constraints.) Again, we have that the intersection of any nonempty collec-

tion of subalgebras on a given algebra A is again a subalgebra. Thus, we have the

following.
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Proposition A.11. Let A be any algebra. Let X ⊆ A. Then SgAX is precisely the

set of elements tA(x0, . . . , xr−1) where t is a term of rank, say, r, and xi ∈ X for

i < r.

Definition A.12. For any algebra A, any binary relation θ on A, and any subset B

of A, we set

Bθ = {a ∈ A | b θ a for some b ∈ B}.

We shall call Bθ the expansion of B by θ.

Now, note that if θ is a congruence on a given algebra A, and B ⊆ A, then Bθ is

a union of θ-classes, namely, those that intersect B. As such, one can sensibly define

the symbol (Bθ)/θ to mean the set of θ-classes contained in Bθ.

Before considering the next theorem, note also the following.

Proposition A.13. Let A be any algebra. Let B be a subalgebra of A and let θ be

a congruence of A. Then θ ∩B2 is a congruence of B. We shall denote it by θ �B.

Theorem A.14. (Second isomorphism theorem, and companion results) Let A be an

algebra with subalgebra B. Then Bθ is closed under the operations of A, (Bθ)/θ is

closed under the operations of A/θ, and (Bθ)/θ ∼= B/(θ ∩B2).

The following notation and elementary fact will be used in the next two theorems.

For any algebra A and any congruences δ ≤ θ, we have that

θ/δ := {〈a/δ, b/δ〉 | a θ b}

is a congruence on A/δ.

Theorem A.15. (Third isomorphism theorem) Let A be an algebra with congruences

δ ≤ θ. Then (A/δ)/(θ/δ) ∼= A/θ.
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Theorem A.16. (Correspondence theorem) Let A be an algebra, and take any con-

gruence δ on A. Then the map from I[δ, 1A] into I[0A/δ, 1A/δ] given by θ 7→ θ/δ is a

lattice isomorphism.

We shall also occasionally make use of the following concept.

Definition A.17. For a given algebra A and subset B of A, we say that B is normal

provided it is a class of some congruence on A. In particular, then, B = b/CgAB2,

for any b ∈ B.

There is another description of the join of congruences we shall give, which involves

the following binary operation for binary relations.

Definition A.18. Given two binary relations, R and S on some set A, we let their

composition, denoted R ◦ S be the set {〈x, y〉 | xRuS y, for some u ∈ A}.

For a given binary relation R and for each n > 0, we shall define Rn recursively

by R1 := 1 and Rn−1 ◦ R. (Note that this composition operation is associative, as

well.)

Proposition A.19. Let A be an algebra, and let α, β ∈ Con A. Let γ := α◦β. Then

α ∨ β = ⋃
n>0 γ

n.

This description sometimes simplifies, as it does in the following situation.

Definition A.20. Let A be an algebra. We say that A is congruence permutable

provided α ◦ β = β ◦ α for all α, β ∈ Con A. Any class V such that A ∈ V is

congruence permutable for all A ∈ V is also called congruence permutable.

It is not hard to see that if A is congruence permutable, then for any α, β ∈ Con A,

α ∨ β = α ◦ β.

It turns out that many familiar classes of algebras are congruence permutable:

groups, rings, modules and vector spaces, as are every sort of algebra which has one
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of these as a reduct (meaning, in the event that some of the structure is ignored),

such as Lie algebras and various sorts of structures commonly referred to as “algebras”

(meant in the narrow sense) in the literature. As a less common example, quasigroups

are also congruence permutable. A simple algebra A is one which has no nontrivial

congruences: that is, besides those that are always available, namely 0A and 1A.

Thus, it is easy to see that all simple algebras are congruence permutable. On the

other hand, there are numerous algebras that are not congruence permutable: lattices

are not, in general, congruence permutable, nor are semilattices or semigroups.

For all variety V that are found to be congruence permutable, there is an inter-

esting characterization, given by Mal’cev (1954):

Theorem A.21. Let V be a variety. Then V is congruence permutable if and only

if there is a ternary term p for V such that

V |= p(x, y, y) ≈ x ≈ p(y, y, x).

A congruence permutable variety is thus often referred to as Mal’cev; occasionally

we shall also refer an algebra in a congruence permutable variety as Mal’cev, as

well. This result of Mal’cev has been imitated in many ways: When various lattice

theoretic equations hold in the congruence lattices of algebras across a given variety,

this often implies and is implied by the presence of a set of terms, which are given to

satisfy certain equations. Results of this type are called Mal’cev conditions. There

are two generalizations of congruence permutability, important to the present thesis,

that have been characterized in this way. The first of these we shall now define by

a sentence in the language of lattices; the second is usually defined in terms of the

commutator, and so we leave it for below.

Definition A.22. Let L = 〈L,∧,∨〉 be a lattice with meet operation ∧, join oper-

ation ∨, and associated order ≤. Let x, y, z ∈ L such that z ≤ x. We say that L is

modular provided x ∧ (y ∨ z) = (x ∧ y) ∨ z.
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Definition A.23. Any algebra whose congruence lattice is modular is said to be

congruence modular. For any variety V such that for all A ∈ V we have that A is

congruence modular, we say that V is congruence modular, as well.

The following can be shown through an elementary argument.

Proposition A.24. Congruence permutability entails congruence modularity. That

is, if A is an algebra for which Con A is congruence permutable, then Con A is also

congruence modular.

In Chapter 4, we shall make use of a Mal’cev-type characterization of congruence

modular varieties, given by H.P Gumm, but we defer its statement until then.

Mal’cev varieties (that is, congruence permutable varieties) have many nice prop-

erties, and it seems that the theory of Mal’cev varieties has much left to be discovered,

as well. As a first, consider the following observation.

Proposition A.25. Let A be an algebra in a Mal’cev variety. Any reflexive binary

relation that respects the operations of A is a congruence on A.

In particular, we have that, for any X ⊆ A× A,

CgAX = SgA×AX ∪ 0A.

We shall often make use of the following easy application of Proposition A.25, as

it supplies a nice description of congruence generation in Mal’cev varieties.

Proposition A.26. Let A be an algebra in a Mal’cev variety. Let X ⊆ A×A. Then

CgAX = {〈s(x0, . . . , xn−1), s(y0, . . . , yn−1)〉 | n ∈ ω and s ∈ Poln A}.

A.3.1 A commutator

The commutator, which was originally a group theoretic concept, has found its use-

fulness extended to more general contexts, though with its definition necessarily
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adapted. A pioneer in this study was J.D.H. Smith, who, in 1976, extended many

of the group-theoretic results concerning the commutator to congruence permutable

varieties. Subsequently, a rich theory of the commutator for algebras in a congruence

modular variety was developed by Hagemann and Herrmann (1979), Gumm (1983),

Freese and McKenzie (1987), and others. Much of the strength of their theory has

also been extended to more general settings still. We shall define these more general

settings, shortly, as we have made some further contributions to this effort.

There have been a number of different perspectives or notions put forward as a

generalized “commutator,” each specializing to the concept of the same name when

applied to groups (interpreted in the right way), but we shall mostly only consider

one or two of these. To give the first, we define the so-called “term condition” (see

Freese and McKenzie (1987)).

Definition A.27. (The centralizer relation, or, the “term condition”) Given some

algebra A, we define a ternary relation C over the set of binary relations on A as

follows. For any binary relations α, β and γ on A, we say that C(α, β; γ) holds if

and only if for any natural number n; any n-ary term t; and any pairs 〈x, y〉 ∈ α and

〈u1, v1〉, . . . , 〈un−1, vn−1〉 ∈ β, the following implications hold:

t(x,u) γ t(x,v)

m

t(y,u) γ t(y,v).

However, we shall only be concerned with α, β, γ congruences of the given algebra

A.

We collect here a selection of elementary (meaning they are derivable from the

definition) facts about the centralizer relation, which we put to use in this paper.

Proposition A.28. For any algebra A and congruences α′ ≤ α, β′ ≤ β, γ, γi (i ∈ I),

δ ≤ α ∩ β ∩ γ:
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(a) C(α, β; γi), for each i ∈ I, implies that C (α, β;∩γi);

(b) C(γi, β;α), for each i ∈ I, implies that C(∨γi, β;α);

(c) C(α, β; γ) implies that C(α′, β′; γ);

(d) C(α, β;α ∩ β) always holds;

(e) C(α, β; γ) holds if and only if C(α/δ, β/δ; γ/δ)holds;

(f) and, finally, C(α, β; 1A), C(α, β;α) and C(α, β; β) always hold.

Definition A.29. In light of Proposition A.28 (a) and (f), given algebra A and any

congruences α and β, we obtain the least congruence γ so that C(α, β; γ), referring

to it as the commutator of α and β and denoting it by [α, β].

Similarly, we make use of Proposition A.28 (b) to obtain a largest congruence γ so

that C(γ, β;α). We denote this γ by (α : β). This is typically called the annihilator

of β over α. In particular, we shall be interested in the case of α = 0A and β = 1A.

In this instance, we write ζA = (0A : 1A), referring to this as the center of A.

Here are two more elementary facts owing to Proposition A.28.

Proposition A.30. (Monotonicity of commutator) The commutator respects the lat-

tice order in each coordinate. That is, given algebra A and congruences α′ ≤ α,

β′ ≤ β,

[α′, β′] ≤ [α, β].

Proposition A.31. The commutator of congruences is included in their intersection.

That is, for given algebra A and congruences α, β on A, [α, β] ⊆ α ∩ β.

Here is a third, which is superfluous in the context of congruence modular varieties,

but sometimes comes to the rescue when one leaves the convenience of that assump-

tion behind; it is easy to prove using Proposition A.28 (b) and Proposition A.30.
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Proposition A.32. (Left semi-distributivity of the commutator) Let A be any alge-

bra. Let αi, β, γ ∈ Con A, for some index set I. If [αi, β] = γ, for each i ∈ I, then

[∨i∈I αi, β] = γ.

Definition A.33. Let A be any algebra with α, β, θ ∈ Con A. By Proposition A.28

(a) and (f), it is evident that there is a smallest γ ≥ θ such that C(α, β; γ). We

denote this by [α, β]θ.

The following is no more difficult to see than the propositions it refers to.

Proposition A.34. Let A be any algebra with congruence θ. Propositions A.30

(monotonicity of the commutator) and A.32 (left semi-distributivity of the commuta-

tor) hold with the commutator [·, ·] replaced by [·, ·]θ.

There is one other elementary fact that we shall make use of concerning the

commutator and its interplay with restriction of congruences to a subalgebra. For

any algebra A with subalgebra B and θ ∈ Con A, let θ �B= θ ∩ B × B. One can

easily verify, arguing via elements, that θ �B is a congruence on B.

Theorem A.35. Let A be an algebra with subalgebra B. Let α, β ∈ Con A. Then

[α �B, β �B] ≤ [α, β] �B .

We shall prove a more general result of this kind later (which has not appeared

in print anywhere, to the best of my knowledge); however, both this and the general

case are immediate from an a fortiori argument concerning the centralizer relation.

There is also a useful relational characterization of the commutator, one which

is closer in spirit to its original inception by Smith (1976) and to its elaboration by

Gumm (1983).

Definition A.36. Given any algebra A and congruences α, β on A, we define a

congruence on β by

∆α
β = Cgβ{〈〈x, x〉, 〈y, y〉〉 | xα y}.
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Proposition A.37. For a given algebra A and congruences α, β, and γ on A,

C(α, β; γ) if and only if β ∩ γ is the union of ∆α
β-classes. In particular, [α, β] is

the smallest congruence on A that is the union of ∆α
β-classes.

Proof. First, suppose that C(α, β; γ) holds for congruences α, β, γ of some given al-

gebra. Let 〈a, b〉 ∈ β ∩ γ and suppose that 〈〈a, b〉, 〈c, d〉〉 ∈ ∆α
β . Using Mal’cev’s

characterization of congruence generation, we get x0, . . . , xn and y0, . . . , yn such that

〈xi, yi〉 ∈ α for each i and translations µ0, . . . , µn of β so that

µ0〈x0, x0〉 = 〈a, b〉

µi〈yi, yi〉 = µi+1〈xi+1, xi+1〉, (i = 0, . . . , n− 1)

µn〈yn, yn〉 = 〈c, d〉.

For each translation µi and any 〈x, y〉 ∈ β, we may write

µi〈x, y〉 = 〈ti(x,ui), ti(y,vi)〉,

where ti is a ki + 1-ary term for some natural number ki, and uij β vij for each j < ki.

In particular, it is immediate that 〈c, d〉 ∈ β. Furthermore, from 〈a, b〉 ∈ γ, we get

that

t0(x0,u0) γ t0(x0,v0).

From C(α, β; γ) we then get that

t1(x1,u1) = t0(y0,u0) γ t0(y0,v0) = t1(x1,v1).

Similarly, by induction, we get that

c = tn(yn,un) γ tn(yn,vn) = d.

This establishes the forward direction.

Now, suppose that β ∩ γ is a union of ∆α
β -classes. Pick an arbitrary term t

operation of some rank r for A and suppose that for some a and some ci β di, (i < r),

t(a, c) γ t(a,d).
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Take b such that 〈a, b〉 ∈ α. Let µ be the translation on β defined by

µ〈x, y〉 = 〈t(x, c), t(y,d)〉.

By the definition of ∆α
β , we then get that

〈〈t(a, c), t(a,d)〉, 〈t(b, c), t(b,d)〉〉 = 〈µ〈a, a〉, µ〈b, b〉〉 ∈ ∆α
β .

Note that

〈t(a, c), t(a,d)〉 ∈ β ∩ γ.

Since β ∩ γ is a union of ∆α
β -classes, we then get that

〈t(b, c), t(b,d)〉 ∈ β ∩ γ.

We may conclude that C(α, β; γ) holds, from which the result now follows.

Remark A.38. In particular, we note that, for a given algebra A, [α, β] = 0A if and

only if for any x, y, z ∈ A with 〈x, y〉, 〈x, z〉 ∈ α and 〈y, z〉 ∈ β we have that

〈x, x〉∆α
β 〈y, z〉 ⇒ y = z.

Indeed, this implication says precisely that 0A is a union of ∆α
β -classes. In particular,

a given algebra A is thus abelian if and only if 0A is normal in A2.

The concept of “difference term” is also typically defined with reference to the

commutator (although, it does turn out to have other useful characterizations (see

Kearnes, Szendrei, and Willard (2013+))—a lattice theoretic characterization as well

as a Mal’cev condition.

Definition A.39. We say that V is a variety with a difference term d when d is a

ternary term operation for V , so that for A ∈ V and any a, b ∈ A,

d(b, b, a) = a [θ, θ] d(a, b, b),

where θ = CgA〈a, b〉.
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Thus, one can remark that to say that a variety has a difference term is weaker

than finding that it has a Mal’cev term; a difference term is, in some sense, “half-

Mal’cev.” Less obviously, all congruence modular varieties have a difference term.

A.3.2 Some restricted properties of the commutator

Usually, we shall have one further nontrivial property of the commutator available,

which we now give. Its proof can be found in Kearnes (1995), Lemma 2.2.

Theorem A.40. Let A be an algebra in a variety with a difference term. Let α, β ∈

Con A. Then [α, β] = [β, α].

We shall call this property symmetry of the commutator.

There are two other strong properties of the centralizer relation and commutator

available only in congruence modular varieties, which frequently come in handy.

Theorem A.41. Let A be an algebra in a congruence modular variety. Let α, β, γ ∈

Con A. Then C(α, β; γ) holds if and only if [α, β] ≤ γ.

Theorem A.42. (Additivity of the commutator) Let A be an algebra in a congruence

modular variety. Let α, βi(i ∈ I) ∈ Con A. Then

[α,
∨
i∈I
βi] =

∨
i∈I

[α, βi].

In fact, as noted by Lipparini (1994) as Theorem 3.2, V is congruence modular

if and only if it has a difference term and the commutator is additive, as in Theo-

rem A.42.

A.3.3 Abelian, nilpotence, and solvable congruences

Next, we define abelianness, three types of nilpotence, and solvability.
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Definition A.43. Let A be an algebra, and let α ≤ β ∈ Con A. We say that β

is abelian over α whenever C(β, β;α) holds. (Otherwise, we say that the quotient

〈α, β〉 is nonabelian.) We say that A is abelian whenever 1A is abelian over 0A.

Definition A.44. For a given algebra A and α ∈ Con A, set

[α)0 := α

and for k ≥ 1

[α)k := [[α)k−1, α].

Similarly, set

(α]0 := α

and for k ≥ 1

(α]k := [α, (α]k−1].

We say that α is left nilpotent of class k whenever [α)k = 0A. We say that A is

left nilpotent of class k whenever [1A)k = 0A. We say that algebra A is left nilpotent

provided it is left nilpotent of class k for some natural number k.

We can similarly define right nilpotence, if we should find a use for it; however,

in varieties for which the commutator is symmetric, these definitions in fact coincide.

(One can check this via an easy proof by induction).

We shall also make use of the concept of “solvability,” which is a generalization

of the concept of the same name from group theory.

Definition A.45. For a given algebra A and α ∈ Con A, we define

[α]0 := α,

and for n ≥ 1

[α]n := [[α]n−1, [α]n−1].
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In particular, whenever [1A]k = 0A for some natural number k, we say that A is

solvable of class k; A is said to be solvable if it is solvable of class k for some k.

Note that by the monotonicity of the commutator and Theorem A.31, for any A,

α ∈ Con A, and any natural number n > 0,

· · · ⊆ [α]n+1 ⊆ [α]n ⊆ [α)n ⊆ [1A)n ⊆ [1A)n−1 ⊆ · · · ⊆ [1A)0 = 1A.

In particular, nilpotence of class n implies solvability of class n.

A.3.4 Regarding nilpotent algebras in a Mal’cev variety

There are many reasons for studying nilpotent algebras in the congruence modular

(or, equivalently, weak difference term, difference term, or Mal’cev setting; see Theo-

rem 4.7 in Charpter 4). Now, while the study of nilpotence and solvability in group

theory can be viewed as the effort to generalize some of the desirable properties of

abelian groups, the assumption of nilpotence in the Mal’cev setting allows one to

recover some of the nice properties available in group theory. Among these is the fact

noted by Freese and McKenzie (1987).

Theorem A.46. Let V be a variety with a Mal’cev term (or, by Theorem 4.7, a

weak-difference term), and let A ∈ V be a nilpotent algebra. Then A has uniform

and regular congruences: that is, for any θ ∈ Con A and any a, b ∈ A, we have

|a/θ| = |b/θ| and θ = CgA a/θ, respectively.

See Corollaries 7.5 and 7.7 in Freese and McKenzie (1987) for a proof of this

theorem. These results of Freese and McKenzie (but which have earlier origins) owe

to another result of theirs, which we shall also need.

Theorem A.47. Let V be a variety with a Mal’cev term p. Let n be a natural number.

Then V also possesses a ternary term fn such that for any A ∈ V, and x, b, c ∈ A,

fA
n (pA(x, b, c), b, c) (1A]n x
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and

p(fn(x, b, c), b, c) (1]n x.

Furthermore, one can deduce that if A is nilpotent of class n, then A satisfies

fn(z, x, z) ≈ fn(p(x, y, z), y, z) ≈ p(fn(x, y, z), y, z) ≈ x.

See Theorem 7.3 and Lemma 7.6 of Freese and McKenzie (1987) for proofs of

these facts.

The following is known from Hobby and McKenzie (1988), Theorem 7.2, but it is

also easy enough to show directly, and so we do so now, for convenience.

Theorem A.48. Let A be a solvable algebra in a Mal’cev variety. Let α, β ∈ Con A

such that α ≺ β. Then β is abelian over α.

Proof. We need to show that C(β, β;α). However, since A is in a congruence modular

variety, by Theorem A.41, it is sufficient to show that [β, β] ≤ α. Since α ≺ β and

[β, β] ≤ β, we have that either [β, β] ∨ α = α, as desired, or [β, β] ∨ α = β. We shall

suppose the latter and derive a contradiction.

We claim that, under this assumption, we get that for all n > 0, [β]n ≤ [α, β] ∨

[β]n+1. We shall show this by induction. By the complete additivity (Theorem A.42)

and symmetry (Theorem A.40) of the commutator in congruence modular varieties

(plus, the fact that congruence permutability entails congruence modularity) we get

that

[β]1 = [β, β]

= [α ∨ [β, β], α ∨ [β, β]]

= [α, α ∨ [β, β]] ∨ [[β, β], α ∨ [β, β]]

= [α, α ∨ [β, β]] ∨ [[β, β], α] ∨ [β]2

= [α, β] ∨ [β]2,
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establishing the basis. Now let n > 1 and assume that the claim has been verified for

n = m− 1. Then

[β]m = [[β]m−1, [β]m−1]

≤ [[α, β] ∨ [β]m, [α, β] ∨ [β]m]

= [[α, β], [α, β]] ∨ [[α, β], [β]m] ∨ [β]m+1

≤ [α, β] ∨ [β]m+1.

The claim goes through by induction.

Now, since, by the monotonicity of the commutator we have that [β, β] = [α, β]∨

[β, β] = [α, β] ∨ [β]1, we can apply the above claim inductively to learn that [β, β] ≤

[α, β] ∨ [β]n for all n > 0. But, of course, since A is solvable, we get that for any

high enough n, [β]n ≤ [1A]n = 0A. It follows that [β, β] = [α, β]. Thus, we get that

β = [β, β] ∨ α = [α, β] ∨ α = α, a contradiction which forces α ∨ [β, β] = α, as

desired.
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