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Plant composition is controlled by a combination of environmental, biotic, 

historical and management factors. Although there has been much focus on restoring 

grassland diversity, it is unclear which factors and/or interactions of factors are 

constraining diversity in grasslands and the relative influences of different factors. We 

measured soil fertility, soil texture, grazing intensity, fire frequency and plant cover in 

694 plots, located within 33 remnant and restored fields in managed grasslands in the 

central Great Plains. Using univariate (general linear model) and multivariate 

(PERMANOVA) analyses, we identified significant factors and their relative 

contributions to plant richness, evenness, floristic quality index (FQI) and composition.  

We found that species richness declines with nitrogen across all fields; however, 

remnant fields have higher species richness for any level of soil nitrogen. Remnant fields 

also have significantly more soil nitrogen than restored fields. Increased grazing intensity 

correlates with increased richness. Conversely, evenness and FQI are only affected by 

burn frequency. We found species composition is equitably controlled by environment, 

management and restoration status, explaining over one-third of the total variation. Soil 

nitrogen has the largest effect on composition but it is not exponentially greater than soil 

texture, grazing intensity, fire frequency and restoration status.  



 

 

We performed an indicator species analysis to identify species associated with 

each environmental and management factor. Indicator species analysis reveals that the 

differences in environment and management maintain high beta diversity; the extremes of 

every factor maintain plant communities with similar floristic quality indices (FQI) and 

proportions of native/exotic species. Our results reinforce the premise that a complexity 

of drivers control ecosystems; no single management factor or environmental factor 

controls plant composition. Maintaining a diversity of management intensities and 

regimes helps sustain plant diversity across a variable landscape.  
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Introduction  

For decades, scientists have struggled to understand the mechanisms that control 

plant communities observed in nature. It is clear that multiple factors contribute to the 

structure of communities. The factors that control diversity and composition fit into three 

broad categories: abiotic environment, biotic processes and disturbance. Identifying the 

factors which impact plant species diversity is a first step, but we must also explore the 

relative strength of influences from different factors to best guide conservation and 

management of plant communities. Studies which examine multiple abiotic drivers of 

diversity and their relative contributions to plant diversity and composition are scarce, but 

do find differences in the effect strengths of environment and management. For example, 

in hedgerows, abiotic variables, management factors and origin together explained about 

17% of the variation in species composition, while spatial configuration only explained 

about 3.8% (Deckers, Hermy & Muys 2004). In long leaf pine forests, historical land use, 

historical connectivity and canopy cover explained 35% of variation in composition 

while factors like shrub density and current patch size were not associated with 

composition (Brudvig & Damschen 2011). They also found that management factors 

affected remnant and restored sites differently; in historically forested sites, overstory 

thinning had no effect but was a key driver of composition in post-agricultural forests 

(Brudvig & Damschen 2011). These studies demonstrate the need to quantify the relative 

impacts of environment, management and restoration status on composition; we need to 

know how much environment and management control diversity.  
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The main factors affecting managed grasslands are soil characteristics, restoration 

status and disturbance regime, i.e. grazing and burning (Briggs & Knapp 1995; Baer et al. 

2003; Polley, Derner & Wilsey 2005; Anderson 2006). The studies establishing the 

importance of these factors mostly focus on their significance in predicting univariate 

indices of diversity, like richness, Shannon diversity or evenness.  In three studies which 

examine relative effects, several aspects of management and environment have differing 

relative impacts on plant composition in managed grasslands (Klimek et al. 2007; Marini 

et al. 2007; Grman, Bassett & Brudvig 2013).  

Among soil characteristics, soil nitrogen is an important determinant of plant 

communities, and grasslands are a classic example of the effects of fertilization on 

community structure. As nitrogen availability increases, many nitrophilous, non-native 

C3 grasses increase in dominance (Isbell et al. 2013). These grasses are efficient at 

capturing and utilizing soil nitrogen and form dense colonies with relatively high 

vegetation, effectively eliminating light to any short stature species. For example, 

nitrogen deposition explained 55% of the variation in species richness in British 

grasslands; species associated with infertile conditions were quickly lost with increased 

nitrogen deposition (Stevens et al. 2004).  

Although the relationship between productivity and diversity varies widely 

globally (Adler et al. 2011), North American grasslands show clear patterns of decreased 

diversity with increased productivity (Mittelbach et al. 2001). A negative relationship 

between fertility and diversity poses a risk to prairie communities, as human inputs of 

nitrogen to the environment increase (Vitousek et al. 1997). Atmospheric deposition of 

nitrogen is especially a problem in the Midwestern grasslands of the United States, where 
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ammonium deposition derived from row crop agriculture has substantially increased the 

total atmospheric nitrogen deposition in the last couple of decades (Krupa 2003).  

In addition to soil fertility, other soil characteristics, such as soil texture, may 

have substantial effects on soil structure and plant-soil relations. For example, soil texture 

affects water holding capacity and soil organic matter, can be a key determinant of 

species richness, and also has been linked to the dominance of exotic species (Parton et 

al. 1987; Stohlgren, Schell & Vanden Heuvel 1999; Hanson et al. 2008). Sandy soils are 

less efficient at soil carbon storage than finer silty soils and therefore contain less soil 

organic matter (Parton et al. 1987). In one grassland study, soil texture was a key 

determinant of total and native only species richness (Stohlgren, Schell & Vanden Heuvel 

1999), however, another study found no effect of soil texture on richness but it was a 

predictor of the dominance of exotic species (Hanson et al. 2008). The direction and 

significance of soil texture on richness and composition may be site specific and the size 

of its relative influence on composition is unclear.  

Disturbance can lead to altered community composition with decreased species 

richness and diversity and is especially important in areas with a history of disturbance 

(Hobbs & Huenneke 1992). Management activities that mimic natural disturbances are 

often used on grasslands to enhance diversity, productivity and reduce woody and exotic 

species invasion (Hobbs & Huenneke 1992). In grasslands, prescribed fire and livestock 

grazing are used in place of wild prairie fires and native grazers, such as bison.  

Grazing studies have shown a significant effect on composition, at moderate stocking 

rates, cattle graze preferentially on grasses and ignore most forbs, reducing grass 

dominance and productivity (Milchunas & Lauenroth 1993). As grass biomass is 
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removed, understory forbs get more sunlight, bolstering growth and reproduction. The 

presence of large herbivores also accelerates the nitrogen cycle; altering both physical 

soil properties by compaction through trampling, and the quantity and quality of nutrients 

available for plants (Schrama et al. 2013). Moderately grazed grasslands have greater 

plant species diversity than non-grazed or infrequently grazed fields possibly because of 

light exclusion by long-lived grasses which dominate in undisturbed landscapes (Collins 

et al. 1998).  For example, species richness and diversity at grassland sites in both North 

America and South Africa were highest in grazed versus ungrazed sites, with increased 

cover of forbs and decreased grass cover (Koerner & Collins 2013).  

Worldwide, fire is a formative disturbance that structures the composition of 

ecosystems. The absence of fire can lead to biome shifts from grasslands to savannah or 

forest (Bond & Keeley 2005). However, the impact of fire on species diversity and 

richness is often dependent on study area and scale. In South African grasslands, species 

richness was unaffected by fire frequency but species composition was markedly 

different between burned and unburned sites (Uys, Bond & Everson 2004). Alternatively, 

eucalypt forests displayed a strong increase in diversity in the absence of fire (Gosper, 

Yates & Prober 2013).  Uncovering the direction and relative strength of fire dynamics 

will help guide active management decisions.  

In grasslands, prescribed burning is an increasingly common management activity. 

Periodic fire removes all aboveground standing biomass and litter, creating open soil 

space and ample light for plants, especially species that may have been suppressed but 

present in the understory (MacDougall & Turkington 2007). This leads to higher plant 

richness and diversity in areas with sporadic burning  (Hobbs & Huenneke 1992). In fire-



5 

 

prone landscapes, the suppression of fire leads to species loss, as seen in remnant 

grasslands in Wisconsin (Leach & Givnish 1996). However, the effects of fire can be 

detrimental as well, annually burned areas may have lower total species richness than 

unburned or grazed only areas as fire tolerant C4 grasses become more dominant (Collins 

et al. 1998). If burning is present, the frequency of fires affects ecosystem response, 

diversity in annually burned grasslands may decline in diversity, peak in moderately 

burned grasslands and decline again with infrequent fires (Collins & Wallace 1990; Blair 

1997).  

In North American grasslands, restoring row crop agriculture fields to native species 

is a common conservation goal, but achieving and maintaining plant diversity at the level 

of healthy remnant grasslands is problematic. Remnant fields are often higher in species 

richness, diversity and evenness than restored fields, and are frequently lower in exotic 

species richness and relative biomass than restored fields (Martin, Moloney & Wilsey 

2005; Polley, Derner & Wilsey 2005). These inequalities in plant composition may be 

due to the drastic differences in environmental characteristics between remnant and 

restored fields. Leaching, loss of soil organic matter and annual removal of plant biomass 

have reduced total soil nitrogen and carbon in cultivated fields (Bowman, Reeder & 

Lober 1990; Baer et al. 2002). Cultivation also changes species composition of 

arbuscular mycorrhiza and may exclude rare fungal species that may be important for the 

success of uncommon prairie plants (Stover et al. 2012). Additionally, effects of the soil 

seed bank may be constraining diversity in abandoned agricultural fields, which have 

fewer species and fewer seeds from native species compared to undisturbed grasslands 

(Schott & Hamburg 1997). Although seed is added to many restoration projects, there 
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may be lingering effects of a low density and low diversity seed bank in restored fields. 

In total, restored grasslands often have less resource heterogeneity, overall poorer soil 

fertility, fewer fungal species to help extract soil nutrients, a smaller soil seed bank and 

less plant diversity, all of which may be barriers to restoring diverse plant communities. 

To reestablish grassland ecosystems, we need to examine the environmental 

differences among sites so that we can mitigate the conditions that limit diversity and 

ecological function. Restored fields and fields with high nitrogen may support fewer 

species, while active grazing and burning can increase richness and evenness. The 

relative effects of environment versus management are fairly unexplored. Do historical 

and environmental factors override the effects of management? Or is current management 

the main predictor of species diversity and composition?  

 To address these questions, we must investigate the magnitude of effects of 

current management strategies on species diversity and composition, as well as the 

measure the influence of environment. Comparing the amount of control of management 

and environmental factors on diversity and composition and investigating interactions 

among these factors is essential to understanding and overcoming the constraints on plant 

diversity in both remnant and restored grasslands. Although the relative effects of soil 

nitrogen and soil texture on composition have begun to be explored, we found no studies 

investigating the separate relative contributions of restoration status, burn frequency and 

grazing intensity (Klimek et al. 2007; Marini et al. 2007; Grman, Bassett & Brudvig 

2013). 

Historically, the Platte River Basin was open, bison-grazed grassland; tree 

establishment was controlled by grazing, periodic fire, and flooding  (Johnsgard 2008). 
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By the late 1860s, most bison herds were exterminated and permanent settlements 

established. Because grasslands in the floodplain are relatively flat, with abundant 

accessible water on highly fertile soils, most were converted to agricultural production. 

However, cattle grazing remains an important common practice in the area and is the 

main reason why, relative to other areas in Great Plains, a substantial part of the 

landscape is uncultivated prairie. The remaining grasslands are mostly conservation sites 

nested within an agricultural landscape dominated by large scale row-crop agriculture, 

mostly corn and soybeans.  

Platte River grasslands are an ideal area to examine the relative roles of 

environment, management, and restoration status on multiple measures of plant diversity. 

This data is essential to develop successful grassland management and optimally use 

different management strategies in relation to varying environmental conditions. Our 

objectives were to first explore the relative impacts of soil texture, soil fertility, grazing 

intensity, burn frequency and restoration status on plant composition and diversity. And 

second, to investigate the importance of interactions between these factors.  Specifically 

we addressed the following questions; across all fields, how important are management 

activities in comparison to environment and restoration status? Do restored and remnant 

fields have similar soil characteristics and do they respond similarly to management 

activities?   

Methods 

Study Area  

Our study area is located in mixed grass prairies in the Platte River Basin of south 

central Nebraska, USA (98°34'57"W, 40°44'17"N). Several non-profit agencies have 
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acquired property in the region to restore and preserve ecologically valuable grasslands. 

The Nature Conservancy (TNC) owns 2,000 hectares and the Crane Trust (CT) owns 

4,000 hectares in this area. 

Study fields are located along a 32 km stretch of the Platte river; fields are within 

the flood plain on lowland terraces (within 8 km of the river’s edge), generally flat; with 

an average elevation of 567 m. Sites are in the Great Plains ecoregion with a continental 

climate; growing season is 6 months long, April-October, with mean maximum and 

minimum temperatures of 25.3°C and 12.3°C and mean annual rainfall of 658 mm; all 

climate data are 30 year averages (CLIMOD 2014).  

  These prairies are dominated by warm season grasses but species diversity is 

mostly comprised of cool season grasses, sedges (due to lack of flowering head, most 

sedges were identified only to genus Carex) and forbs (Table 1).  

We collected observational data from a total of 33 grasslands, 25 owned by TNC 

and 8 CT fields. Conservation fields are managed with controlled burns, cattle grazing 

and infrequent haying. In comparison to non-conservation grazed fields, which are 

infrequently or never burned, conservation fields have a high burn frequency at 0.2-0.6 

burns/year, and lower intensity grazing. Although most fields have relatively low 

stocking rates of 0-1.7 AUM/acre, the CT has infrequent periods of intense grazing in 

wetter meadow sites with 3.0-3.7 AUM/acre. Fifteen fields are restored (restoration year 

varies from 1988-2005) and 18 fields are remnant grasslands. 

Vegetation sampling 

In order to capture the heterogeneity of soils and management within a field, we 

established 21 plots within each field, for a total of 694 permanent plots within 33 fields. 
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The average field size is 94 acres, ranging from 15-369 acres. In most fields, plots were 

systematically placed on 3 transects to maximize the spread of plots across the field, 

while minimizing the travel time to plots within each field. Transects were placed 

equidistance from each other and from the edge of the field, they were usually oriented 

North-South. A typical transect was comprised of seven equally spaced plots. There were 

multiple fields that were not square shaped. In order to place plots evenly across the field, 

we placed unequal numbers of plots on transects of different lengths in 15 fields. Four 

fields required four transects. However, each field contained 21 plots; regardless of 

transect number or length.  

All plots were 0.5 x 1 m2. This size reduced the observer time to estimate species 

cover and is comparable to other studies (Inouye et al. 1987; Miles & Knops 2009; 

McGranahan et al. 2012; Li, Zuo & Knops 2013). We used a square plastic frame, 

constructed of 1 cm wide round PVC pipe, covering the 0.5 m2, placed using the two 

metal plot markers.  

Every plant species was identified following Kaul et al. 2006 and questionable 

identifications were verified by the state botanist. The abundance of each species was 

visually estimated; cover estimates totaled to 100% for each plot. All cover estimates 

were integers. Two researchers visited plots together and independently estimated percent 

cover for each species, estimates were compared and a single cover value agreed upon. 

Four researchers formed two teams to record cover; team composition was not static. All 

researchers spent 3 days learning cover estimate method and plant species at the start of 

the 2010 field season. Cover estimates were recorded from early July to late August at the 

peak of warm-season plant production. 
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Richness, evenness, and floristic quality index were calculated for each plot and 

averaged to field (Molles & Cahill 1999). Floristic quality index (FQI) is a quantitative 

measure of community quality for an area; both species richness and an assigned 

coefficient of conservation value (C) for each species are included in FQI (Rooney & 

Rogers 2002). We split plot-level plant richness data into native and exotic species, 

averaged to field and analyzed as separate dependent variables. We examined the relative 

abundance of native species by dividing the cover of native species by total cover in each 

plot and averaging to field.   For all multivariate analysis, we used field averages of cover 

data.   

Soil Sampling 

Soil type in this river floodway is highly variable, both within and among fields, 

due to differential deposition and erosion of sediment as the river location moves within 

the floodplain through time. This produces alternating strips of gravel, clay and sand at 

our sites.  

Soil cores (2 cm x 10 cm) were collected in 2010. Five soil cores were extracted 

from within each plot; core locations were placed evenly inside the entire plot area. The 

five samples were combined, dried to 65° Celsius and sieved through 2 mm to remove 

larger gravel and root pieces. The resulting soil samples were used to determine soil 

texture, soil nitrogen and soil carbon. Soil particle size (percent silt, sand, and clay) was 

determined using the hydrometer method with 50 g soil (Elliot et al. 1999). Total 

nitrogen and carbon were analyzed using a dry combustion GC analysis on a Costech 

Analytical ECS 4010 with 20-25mg finely ground soil. We averaged the plot soil 

characteristics to determine field averages.  
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Scale 

To explore if heterogeneity within a field may impact plant trends, we calculated 

a coefficient of variation (CV) for every continuous factor in each field and included it in 

our analysis of richness, evenness and FQI.   

Management  

 Initially, we explored three current management activities; haying, grazing 

intensity and fire frequency. However, haying was not frequent or common enough at our 

sites for this analysis. In addition to fire frequency and grazing intensity, we included the 

restoration status of the field as a categorical factor. For fire frequency, management 

records from the 5 years previous to plant sampling, 2006-2010, captured more variation 

than a 3 year scale. While even longer time scales captured more variation in burn 

frequency, the decreasing impact of disturbance on vegetation through time prompted us 

to choose more recent management only. For simplicity, we also used a five year time 

scale for grazing intensity. Some management was performed at a subfield level; field 

averages were calculated as follows. 

Grazing intensity was calculated using animal unit months per acre (AUM/acre), a 

common measure of herbivory in range science (Helzer 2010).  AUM/acre records were 

obtained from the TNC and CT. Plot level AUM/acre was determined for each year and 

summed across a field to provide yearly value of AUM/acre for each field. We averaged 

the five yearly AUM/acre values for each field.   

We created a proportional value for fire frequency by examining the number of 

plots burned in each field in each year. For example, if three of twenty one plots burned 
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in a single year, the burn frequency for the field in that year would be 3/21 or 0.142. The 

yearly burn frequencies were averaged for each field across the five year history.  

Data analysis 

 All of the observed correlations found using the following analysis methods are 

based solely on observational data. To simplify the presentation of results, we used 

causative language to describe relationships.   

We used general linear models (GLMs) to test how soil and management 

influenced plant richness, evenness and FQI. We used standardized regression 

coefficients for ANOVA tables (type II) performed in R (Fox 2008; R Core Team 2013). 

Linear models were used and we tested all interactions between factors. 

 We tested how soil and management affected community composition using 

permutational multivariate analysis of variance (PERMANOVA; Anderson 2001). 

Dissimilarity among plant composition in each field was calculated with the Bray-Curtis 

index. To visualize PERMANOVA results, we performed a non-metric multidimensional 

scaling (NMDS) (Kruskal 1964). NMDS also uses the Bray-Curtis index and shows the 

location of each field in two-dimensional space; axes are composites of plant species 

presence and cover. All PERMANOVAs and NMDSs were performed using the vegan 

package in R.  

We used indicator species analysis in the labdsv package in R to identify species 

that were significantly abundant and had high fidelity to sites with specific management 

strategies (Dufre ̂ne & Legendre 1997). Each continuous management or environmental 

factor was divided into two categories at the median of the values for our fields. For burn 

frequency, a large number of fields were never burned in the 5 year management average. 
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Therefore, one category of burn frequency is fields which have not been burned in over 5 

years, while the other is fields which have been burned at least once in the 5 years 

previous to sampling.  

Results 

Soil 

Soil texture within our 33 fields varied from clay loam to silty sand and covered 7 

of 12 soil classes identified by USDA (appendix Figure A1). Because soil texture 

categories (sand, silt and clay) were highly inversely correlated (appendix Table A1), the 

first component of a principle component analysis (PCA), which captured 61% of the 

variation, was used as the soil texture factor in analysis.    

Soil total organic carbon ranged from 0.08-6.5% and was highly correlated with 

soil total nitrogen, which varied from 0.01-0.56% among plots (appendix Table A1). 

Consequently, we used only soil nitrogen throughout the analysis, however, carbon 

showed the identical patterns. Carbon/nitrogen ratio varied much less, from 7.2 to 17.2 

with a mean of 11.5. All soil and management terms are field averages of plot level 

observations.  

Species richness, evenness and FQI 

In total, we identified 187 unique species in 2010, with a range of 2 to 18 species 

per plot, and an average of 7.8 species. Evenness varied from 0.06 to 1.00 with an 

average of 0.59 per plot. Shannon diversity varied from 0.07 to 2.21 with an average of 

1.20 per plot.  FQI varied from 0 to 14.9 per plot with an average of 6.8.   

We also tested the importance of within field variation for soil nitrogen, soil 

texture, burn frequency and grazing intensity by including the coefficient of variation 

(CV) calculated from the 21 replicated plots in each field. Only the CV of soil nitrogen 



14 

 

had a significant impact, solely on richness, evenness and FQI were unaffected by any 

CV. We included the significant CV soil nitrogen in our analyses of richness, evenness 

and FQI to simplify the presentation of results. 

Field average soil nitrogen, CV soil nitrogen, restoration status and grazing 

intensity significantly affect richness and explain about 60% of the variation (Table 2). 

Of these, average soil nitrogen has the largest impact on plant species richness.  Fields 

with higher soil nitrogen CVs have lower species richness than fields with lower nitrogen 

CVs, i.e. fields that have more soil nitrogen variation among plots have lower species 

richness. Increasing average field soil nitrogen and the CV of soil nitrogen has negative 

impact on richness, unlike grazing intensity, which increases richness. Restored fields 

have, on average 2 less species than remnant fields.  

In the analysis of species richness, evenness and FQI, no interaction terms 

between field averaged soil nitrogen, soil texture, burn frequency, grazing intensity and 

restoration status were significant, thus we use backward selection and present only the 

main effects (appendix Table A2). 

Evenness was only marginally positively affected by burn frequency, with 16% of 

variation explained (Table 2). Average soil nitrogen, CV soil nitrogen, average field soil 

texture, grazing intensity and restoration status had no effects on evenness.  

FQI showed nearly the same pattern as evenness; burn frequency had a marginal, 

positive effect on FQI, explaining 18% of the variation (Table 2). Average soil nitrogen, 

CV soil nitrogen, average field soil texture, grazing intensity and restoration status had no 

effects on FQI. In the FQI analysis, when we included both restoration status and soil 
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nitrogen, neither was significant, whereas when only one factor was included, both were 

marginally significant. Thus we excluded the restoration status from the FQI analysis.  

In the analysis of species richness, evenness and FQI, no interaction terms 

between field averaged soil nitrogen, soil texture, burn frequency, grazing intensity and 

restoration status were significant, thus we present only the main effects (appendix Table 

A2). 

To summarize, species richness was affected by average soil nitrogen, CV soil 

nitrogen, restoration status and grazing intensity. In contrast, evenness and FQI were only 

affected by burn frequency.  

Remnant versus restored grasslands 

Species richness declines with increasing field average soil nitrogen (Table 2). At 

a given level of soil nitrogen, remnant fields have 2 more species than restored fields 

(Figure 1). We found that remnants, on average, have twice as much soil nitrogen as 

restored fields. Soil nitrogen captures some of the variation in restoration status that 

affects plant communities, but there is additional variability in restoration status which 

also affects plant diversity. 

Native vs exotic species richness 

Soil nitrogen has opposite effects on native species and exotic species. Native 

species richness decreases by half as nitrogen increases, a trend seen in total species 

richness as well. In contrast, exotic species richness increases by approximately 2 species 

across the range of nitrogen values (Figure 2). Because there are approximately 1/5 as 

many exotic species as native species, native species drive the trends that we see in total 

species richness. 
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Community composition 

 Soil nitrogen, restoration status, grazing intensity and burn frequency were 

significant drivers of composition, explaining roughly 1/3 of the variation (Table 3). 

Composition trends with soil texture (p=0.059). Nitrogen has the largest relative effect 

(R2=0.125), but all other factors are roughly similar, with R2 values of 0.041-0.068 

(Table 3). In other words, environment, management and restoration status all had similar 

contributions to the compositional structure of our grasslands.  

We found a significant relationship between field average soil texture and grazing 

intensity on composition, there were no significant interactions between average soil 

nitrogen, burn frequency and restoration status (appendix, Table A3). The significant 

interaction between soil texture and grazing intensity seems to indicate that the effects of 

soil texture are less important at high grazing intensities (appendix, Figure A2). We 

presented only main effects to avoid correlation between main and interactive factors and 

because of the difficulty of presenting the interactive effect visually.  

 Multiple species were identified as indicator species for high and low values of 

soil nitrogen, restoration status and grazing intensity. High burn frequency and sandy soil 

texture also had multiple indicator species. In contrast, fields which were burned 

infrequently had no significant indicator species and fields with silty/clay soil texture had 

only a single significant indicator species. A complete list of all significant indicator 

species for all factors is in appendix A4.1-5.  

At low soil nitrogen values (0.06-0.23%), there were 15 indicator species; 11 low 

growing forb species and 4 graminoids. In contrast, high levels of soil nitrogen (0.23-
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0.39%) were associated with 7 grass species and only 3 forbs. This is a common trend in 

nitrogen gradients, as competitive, tall grasses shade out short statured forbs in high 

nitrogen conditions (Tilman 1987). Because restoration status is correlated with soil 

nitrogen, we saw many of the same species in remnant/restored fields as in high/low soil 

nitrogen fields. Restored fields and low nitrogen fields had 10 common indicator species, 

restored fields had 6 indicator species not associated with low nitrogen sites. Remnant 

fields and high nitrogen fields had 10 indicator species in common, remnant fields also 

had 6 species not associated with high nitrogen fields. We saw no clear patterns in the 

indicator species unique to remnant or restored fields. 

 Sandy fields, ~73-90% sand, had 11 significant species; eight forbs and 3 

graminoids. In silt/clay fields, ~58-72% sand, only a single forb species, Physalis 

longifolia, was significant. All indicator species in sandy fields are plants we would 

qualitatively associate with dry soils and so these trends may be driven by the water 

holding capacity as well.  

 There were no species associated with infrequently burned fields. In fields that 

were recently burned, there were 5 significant species, all generalist, small-seeded native 

species and one nitrogen fixing species. This is consistent with other remnant grasslands 

where nitrogen fixing and small seeded species were lost with suppression of fire, likely 

because these species are successful in post-fire environments, i.e. open, sunny areas 

(Leach & Givnish 1996).  

 In fields with low grazing intensity, indicator species were mostly forbs and 

highly palatable species in our system (Helzer, personal communication). Alternatively, 

in intensely grazed fields, unpalatable grasses dominate. Herbivore selectivity is a known 
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driver of community composition in grasslands, here we see the increased intensity of 

grazing leading to communities significantly associated with species that cattle avoid 

(Brown & Stuth 1993).  

Discussion 

We found that average field soil nitrogen, soil texture, restoration status, burn 

frequency and grazing intensity explained 1/3 of the composition differences between 33 

remnant and restored fields. Differences in soil (nitrogen and texture), restoration status 

and management (burn frequency and grazing intensity), were similarly important in 

explaining the composition differences. Therefore, it’s clear that in our site, soil 

characteristics, management and restoration status all influence the plant diversity and 

structure of communities in managed grasslands. The relative contributions of 

environment, history and management are only beginning to be studied and understood 

across ecosystems and research sites (Brudvig 2011).  

 Soil nitrogen often has been identified as a significant driver of vegetation 

composition (Wedin & Tilman 1996; Cleland & Harpole 2010). However, only a few 

studies have examined the relative importance of soil nitrogen versus management 

factors. Two grassland studies that examined the relative importance of both management 

and environment (Klimek et al. 2007; Marini et al. 2007), found that management (which 

includes soil nitrogen) explained 1/4 to 1/3 of total vegetation composition variation, 

whereas soil phosphorous and other microsite feature like elevation, slope or solar 

radiation only explained a small amount of the variation. In both these studies, soil 

nitrogen was not examined independently of the other factors. In contrast to our study, 

the soil nitrogen gradient in these studies was created by fertilizing and was done 
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simultaneously with other management actions, and soil nitrogen, grazing and haying 

were analyzed as a single management term. In addition these studies covered a much 

larger topographic gradient and because of the high atmospheric nitrogen deposition in 

Europe, the location of both studies, and additional nitrogen fertilization, phosphorous 

limitation is more common. In contrast, within North American grasslands, nitrogen is 

often the most limiting resource for productivity (Cleland & Harpole 2010).  

Although restoration status and burn frequency are known drivers of species richness 

(Collins & Wallace 1990; Cousins, Lindborg & Mattsson 2009), evenness (Polley, 

Derner & Wilsey 2005; Heslinga & Grese 2010) and composition (Sluis 2002; Uys, Bond 

& Everson 2004), their relative influence on composition when compared to other 

management and environment is rather unstudied. We found restoration status and burn 

frequency had comparable impacts on composition as all other management and soil 

characteristics. The only study quantifying the relative influence of  grazing intensity 

compared to other management or environmental factors on composition found that 

management, which included soil nitrogen and hay cutting frequency, explained an 

equitable amount of variation as the environmental factors measured, similar to our 

findings for grazing and soil characteristics (Klimek et al. 2007). (Grman, Bassett & 

Brudvig 2013) also explored the relative effect of management and soil and found that 

vegetation composition was equitably controlled by site age, soil heterogeneity, seed mix 

and the surrounding landscape type, which explained 36% of the site differences in 

composition. Soil texture did not have a significant effect on composition. This study also 

did not include site differences in soil nitrogen, burn frequency or grazing intensity. Thus, 

surprisingly, even though the identity of the specific management and soil factors differ, 
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both management and soil often explain comparable amounts of variation in species 

composition among grasslands (Klimek et al. 2007; Marini et al. 2007; Grman, Bassett & 

Brudvig 2013). Thus, no single factor controls grassland vegetation species composition, 

and our results and the other studies cited above strongly support the hypothesis that 

many soil, management, historical and landscape factors control grassland composition 

and that the identity of which specific soil and management factors differs among sites.  

We found, associated with differences in restoration status, soil nitrogen and grazing 

intensity, comparable numbers of native and exotic species and roughly similar average 

coefficient of conservatism (C) values, a measure of each species’ fidelity to intact, high 

quality plant communities. In addition, we also found different indicator species and 

species composition associated with differences in restoration status, soil nitrogen and 

grazing intensity. Therefore, the combination of differences in soil, management and field 

history all contributed to environmental and site heterogeneity which increases different 

niches and results in higher beta diversity, without having clearly inferior fields low in 

conservation value and high in exotic species. This indicates that variability in soil, 

management and restoration status are ecologically valuable and should be maintained 

and incorporated into overall site selection and grassland management in order to 

maximize beta diversity. In other words, restored fields and nitrogen rich fields contribute 

unique niches that increase the overall diversity and increases niches available for plant 

species. Variation in grazing also contributes to increased overall species richness. In 

contrast, the lack of indicator species in infrequently burned field’s points to little value 

of having unburned fields within our grasslands. Sporadic burning of all fields lowers 

litter accumulation and conserves valuable short statue forb species. 
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In our study we only explained 1/3 of the field differences in species composition. 

Other factors that we did not examine, such as site restoration age, seed mix and 

surrounding landscape type (Grman, Bassett & Brudvig 2013), also are likely to be 

important drivers of grassland composition and diversity. In addition, we only analyzed 

one year of species composition data and species composition can vary among years, 

both in response to climate variation (Mitchell & Csillag 2001) and ongoing successional 

changes (Connell & Slatyer 1977). Our study is also correlational, and although we had 

relatively high replication at both the plot-level and field-level, particularly in the number 

of remnant and restored fields over a large spatial scale (encompassing 32 km of river 

floodplain grasslands), we did not directly experimentally manipulate soil characteristics 

or management. Beyond experimentally testing the relationships we observed, an 

important next step is to evaluate the ecological function linked to species that are 

associated with each soil, and management factor. In other words, do restored fields 

maintain similar levels of ecological function?  Are there like numbers of functional 

groups in high nitrogen and low nitrogen fields? Answering questions like these 

regarding both environment and management will further guide land managers to 

management practices that create and maintain not only plant diversity and composition, 

but the essential ecological functions that we rely on.  

 We found that species richness was affected by soil nitrogen, CV soil nitrogen, 

restoration status and grazing intensity, while evenness and FQI were only affected by 

burn frequency. In short, we found remnant fields with uniform low soil nitrogen which 

are moderately grazed and burned to have greater values in multiple measures of 

diversity. Exploring multiple measures of plant diversity can shed light on the varying 
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effects of different factors on biodiversity (Ruiz-Jaen & Aide 2005; Anderson et al. 

2011).  

We found restored fields to have significantly lower soil nitrogen than remnant fields 

and also lower species richness. This is a common finding in restored grassland fields 

(Sluis 2002; Hansen & Gibson 2014). Both remnants and restored fields increase richness 

with less soil nitrogen, but restored fields are consistently lower in richness, regardless of 

soil nitrogen. Our inference on richness and nitrogen may be limited because the overlap 

in soil nitrogen in remnant and restored fields is fairly low and we measured total soil 

nitrogen, not the amount of mineralized nitrogen that is available to plants. Differences in 

species richness between remnant and restored field may be due to soil nutrients besides 

carbon and nitrogen, differences in soil microbe diversity or density, soil structure 

differences, effects of species pool and seed limitation (Janssens et al. 1998; Turnbull, 

Crawley & Rees 2000; van der Heijden, Bardgett & van Straalen 2008). Identifying the 

factors that constrain restored communities to relatively low richness values is critical, 

because although restored fields support a unique community with a range of 

conservation values, their deficiency in species richness could have implications for their 

ecological function. High diversity has been positively linked with a number of 

ecological functions including productivity and resistance to invasion (Hooper et al. 

2005; Isbell et al. 2011).  

Interestingly, while soil nitrogen varied between restored and remnant fields, we 

found management factors had the same effect regardless of restoration status. Across all 

fields, we found increased grazing to have a positive effect on species richness, as seen in 

many other grassland studies (Collins et al. 1998; Kruess & Tscharntke 2002; Pykala 
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2003). Light to moderate levels of grazing intensity increase species richness, grazing 

intensities high enough to see the negative impacts of “overgrazing” on diversity are not 

present in this site (Milchunas, Sala & Lauenroth 1988). We found that burn frequency 

had no effect on species richness but does affect evenness. This concurs with other 

grassland research where an increase in evenness was found with burn regime (Heslinga 

& Grese 2010). We also found a positive relationship between FQI and burn frequency, 

which was a result inferred in other grasslands (Jog et al. 2006).  

  Management implications 

We see this study as a first step in evaluating the scope of various factors on plant 

community structure in managed grasslands. Although about 2/3 of explained variation 

explained in plant composition is controlled by abiotic factors and restoration status, 

management activities are significant drivers of composition. Additionally, management 

has positive effects on species richness, evenness and FQI.  

 Our analysis of species diversity indicates that fields with lower soil nitrogen and 

less variation in soil nitrogen have higher potential for species richness than high nitrogen 

fields. Indicator species analysis reveals that silty/clay fields are associated with a single 

common grassland species, while sandy fields support more diverse, uncommon species. 

To support both more species and rarer species, fields with lower soil nitrogen, less 

variance in soil nitrogen within the field and sandier soils should be prioritized for 

restoration and conservation. Additionally, we found moderate grazing intensities 

promote higher richness while moderate burn frequencies increase evenness and FQI. To 

support high species diversity at the field scale, moderate burn frequencies and grazing 

intensities are encouraged.  
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In contrast to field level recommendations, to support diversity on a landscape 

scale, having fields that vary in soil nitrogen content, grazing intensity and restoration 

status are essential to sustain a diverse pool of plant species.  We found that diversity in 

soil characteristics, management strategies and restoration status increases available niche 

space that supports grassland diversity.   
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Table 1. Field characteristics for 33 prairies. Average soil nitrogen and carbon, richness and soil textures values from 21 0.5x1 m2 

plots in each field. The species listed are ten most frequent species across all fields in 2010, if the species is also one of the 10 most 

abundant species found in a field there is an x. 

 

Owner

Field 

area 

(acres)

Restoration 

year

% 

Sand

% 

Clay

% 

Silt

Mean 

field 

species 

richness

TNC 34  R* 0.341 (±0.016) 4.08 (±0.19) 71 4 25 5.7 x x x x

TNC 112 R 0.312 (±0.031) 3.51 (±0.35) 72 4 23 7.6 x x x x

TNC 369 R 0.265 (±0.020) 3.13 (±0.24) 64 10 26 7.0 x x x x x

CT 229 R 0.224 (±0.023) 2.70 (±0.27) 80 3 17 10.2 x x x x x

TNC 56 R 0.272 (±0.023) 2.99 (±0.27) 69 7 23 8.3 x x x x

TNC 125 R 0.381 (±0.026) 4.64 (±0.34) 73 6 21 7.8 x x x x x x

TNC 30 R 0.333 (±0.025) 4.13 (±0.23) 66 7 28 6.0 x x x x x

TNC 168 R 0.225 (±0.024) 2.51 (±0.29) 74 4 21 8.4 x x x x x

TNC 157 R 0.230 (±0.026) 2.90 (±0.30) 73 6 21 10.0 x x x x x

TNC 67 R 0.232 (±0.015) 2.88 (±0.23) 78 5 21 6.9 x x x x x

TNC 214 R 0.314 (±0.020) 3.88 (±0.28) 71 8 21 8.6 x x x x

TNC 15 R 0.383 (±0.013) 4.64 (±0.13) 70 6 23 6.4 x x x x x

TNC 55 R 0.121 (±0.010) 1.41 (±0.12) 82 5 13 10.6 x x x x x

CT 82 R 0.259 (±0.018) 2.91 (±0.21) 74 6 20 6.4 x x x x x x

TNC 138 R 0.333 (±0.013) 3.74 (±0.16) 75 5 20 7.8 x x x x x x

CT 83 R 0.213 (±0.014) 2.44 (±0.21) 82 5 12 9.2 x x x

CT 122 R 0.306 (±0.019) 3.34 (±0.22) 79 5 16 9.1 x x x x

CT 96 R 0.262 (±0.026) 3.19 (±0.32) 79 7 15 8.6 x x x x x

CT 97 1988 0.199 (±0.014) 2.43 (±0.16) 71 7 22 6.9 x x x

CT 40 1992 0.168 (±0.013) 1.87 (±0.17) 68 7 25 7.6 x x x x x

TNC 107 1994 0.251 (±0.011) 3.08 (±0.15) 58 10 33 6.3 x x x x

TNC 49 1995 0.168 (±0.011) 1.97 (±0.13) 69 8 23 6.9 x x x x

CT 65 1995 0.171 (±0.012) 2.00 (±0.15) 68 6 26 6.5 x x x x

TNC 23 1997 0.124 (±0.007) 1.43 (±0.09) 75 5 20 7.0 x x x x

TNC 28 1997 0.130 (±0.008) 1.65 (±0.13) 71 6 22 6.9 x x x

TNC 19 1999 0.100 (±0.015) 1.03 (±0.16) 90 3 7 9.1 x x

TNC 71 1999 0.118 (±0.008) 1.34 (±0.10) 75 7 19 7.7 x x x x x

TNC 64 2000 0.066 (±0.003) 0.70 (±0.40) 83 5 11 8.3 x

TNC 67 2001 0.112 (±0.013) 1.24 (±0.14) 79 6 15 7.3 x x x x x

TNC 69 2002 0.100 (±0.010) 1.07 (±0.12) 78 7 14 7.2 x x x

TNC 108 2002 0.099 (±0.008) 1.09 (±0.10) 71 7 22 8.7 x x x

TNC 30 2003 0.156 (±0.008) 1.72 (±0.10) 66 9 25 7.6 x x x

TNC 120 2005 0.102 (±0.011) 1.18 (±0.14) 73 5 21 7.9 x x x x
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Table 2. General linear model results using field history, soil and management explaining 

richness, evenness and floristic quality index (FQI). (n = 33 restored and remnant 

prairies, 21 plots/field). Environmental data and plant cover are 2010 plot data or field 

average data. Restoration status is a 0/1 relationship where remnant fields=0 and restored 

fields=1. Management records were collected at the plot-level and averaged to field level, 

management parameters shown are from 2006-2010. .p<0.1, *p<0.05, **p<0.005, 

***p<0.0005. 

Richness Estimate 

Sum 

Sq F value p value  

Restoration status -2.06 9.13 15.56 0.00 *** 

Soil nitrogen -1.15 8.98 15.30 0.00 *** 

CV nitrogen -0.38 4.16 7.08 0.01 * 

Soil texture 0.24 1.08 1.84 0.19  

Grazing intensity 0.37 3.92 6.68 0.02 * 

Burn frequency 0.09 0.24 0.41 0.53  

Residuals  15.26    

      

Adjusted R2:   0.59      

      

Evenness Estimate 

Sum 

Sq F value p value  

Restoration status 0.02 0.00 0.32 0.58  

Soil nitrogen -0.01 0.00 0.08 0.78  

CV nitrogen -0.02 0.01 3.15 0.09 . 

Soil texture 0.00 0.00 0.02 0.88  

Grazing intensity 0.01 0.00 0.50 0.48  

Burn frequency 0.02 0.02 5.55 0.03 * 

Residuals  0.08    

      

Adjusted R2:   0.16      

      

FQI Estimate 

Sum 

Sq F value p value  

Soil nitrogen -0.40 3.76 3.82 0.06 . 

CV nitrogen -0.13 0.47 0.47 0.50  

Soil texture -0.17 0.75 0.76 0.39  

Grazing intensity 0.07 0.16 0.16 0.69  

Burn frequency 0.48 6.65 6.75 0.01 * 

Residuals  26.60    

      

Adjusted R2:   0.21      
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Figure 1. Species richness versus soil nitrogen, presented are the averages of 33 fields. 

All data are field averages from data collected from 21 plots/field in 2010. Linear 

regression lines from both remnant fields (F value= 10.13, p value=0.01*, R2=0.35) and 

restored fields (F value= 11.07, p value=0.01*, R2=0.42) are plotted.  
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Figure 2. Native and exotic species richness versus soil fertility and for 33 fields. Linear 

regression lines for exotic richness (F value= 18.83, p value=0.00***, R2=0.36) and native 

richness (F value= 11.52, p value=0.001**, R2=0.25) are plotted.
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Table 3. PERMANOVA results of environment and management impacts on plant 

composition from 33 grasslands. Environmental data and plant cover were collected at in 

2010 at 21 plots/field and averaged for each field. Management records were collected at 

the plot-level and averaged to field level, management parameters shown are from 2006-

2010. Restoration status is a 0/1 relationship where remnant fields=0 and restored 

fields=1. .p<0.1, *p<0.05, **p<0.005, ***p<0.0005. 

 

  Df 

Sum 

Sq 

F 

value R2 

P 

value  

Restoration status 1 0.355 2.715 0.065 0.004 ** 

Soil nitrogen 1 0.680 5.197 0.125 0.001 *** 

Soil texture 1 0.223 1.707 0.041 0.059 . 

Grazing intensity 1 0.369 2.822 0.068 0.003 ** 

Burn frequency 1 0.274 2.097 0.050 0.024 * 

Residuals 27 3.533  0.650   

Total 32 5.435  1.000   

       

 R2: 0.350      
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Figure 3. Nonmetric Multidimensional Scaling (NMDS) with linear vectors of 

environmental and management vectors. Data collected from 33 fields in 2010 at 21 

plots/field and averaged for each field. Management records were collected at the plot-

level and averaged to field level, management parameters shown are from 2006-2010. 

Direction and length of lines indicate species composition at with increasing values of 

predictor value.  
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Appendix 

 

Figure A1.  Soil texture of 33 restored and remnant prairies (0-10 cm for 694 plots, ~21 

plots/field). 
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Table A1. Pearson correlations among predictor variables.   

 Silt Sand Clay 

Soil 

carbon 

Soil 

nitrogen 

C/N 

ratio 

Restoration 

status 

Soil 

texture 

Burn 

frequency 

Sand -0.98         

Clay 0.57 -0.74        

Soil carbon 0.39 -0.33 0.04       

Soil nitrogen 0.37 -0.31 0.02 0.99      

C/N ratio 0.45 -0.41 0.19 0.55 0.46     

Restoration status 0.03 -0.09 0.24 -0.76 -0.78 -0.28    

Soil texture -0.99 1 -0.69 -0.35 -0.33 -0.43 -0.07   

Burn frequency -0.19 0.16 -0.04 -0.25 -0.23 -0.23 0.14 0.17  

Grazing intensity 0.18 -0.14 -0.04 0.26 0.27 0.15 -0.13 -0.15 0.09 
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Table A2.1. Richness. Shown are the ANOVA results for main factors and interactions 

on richness. .p<0.1, *p<0.05, **p<0.005, ***p<0.0005. 

        

Richness Estimate 

Sum 

Sq 

F 

value  

Restoration status -2.72 7.71 9.96 ** 

Soil nitrogen -0.92 7.59 9.81 ** 

CV nitrogen -1.21 3.17 4.09 . 

Soil texture 1.50 0.25 0.32  

Grazing intensity 2.23 1.30 1.68  

Burn frequency 1.02 0.22 0.29  

Restoration status:soil nitrogen -0.28 0.02 0.03  

Restoration status:CV nitrogen 0.54 0.14 0.18  

Restoration status:soil texture -0.96 0.45 0.58  

Restoration status:grazing intensity -1.40 1.25 1.62  

Restoration status:burn frequency -0.63 0.12 0.15  

Soil nitrogen:CV nitrogen 0.06 0.01 0.01  

Soil nitrogen:soil texture -0.22 0.12 0.16  

Soil nitrogen:grazing intensity -0.73 1.10 1.42  

Soil nitrogen:burn frequency -0.13 0.02 0.02  

CV nitrogen:soil texture -0.48 0.92 1.19  

CV nitrogen:grazing intensity -0.32 0.99 1.27  

CV nitrogen:burn frequency 0.01 0.00 0.00  

Soil texture:grazing intensity -0.19 0.13 0.17  

Soil texture:burn frequency -0.24 0.31 0.40  

Grazing intensity:burn frequency -0.07 0.03 0.03  

Residuals  8.51   

     

Adjusted R2: 0.46    
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Table A2.2. ANOVA results for main factors and interactions on evenness. .p<0.1, 

*p<0.05, **p<0.005, ***p<0.0005. 

 

Evenness Estimate 

Sum 

Sq 

F 

value  

Restoration status 0.03 0.00 0.08  

Soil nitrogen -0.13 0.00 0.55  

CV nitrogen 0.13 0.00 0.93  

Soil texture 0.05 0.00 0.02  

Grazing intensity 0.10 0.00 0.95  

Burn frequency -0.10 0.01 1.72  

Restoration status:soil nitrogen 0.08 0.00 0.43  

Restoration status:CV nitrogen -0.11 0.01 1.23  

Restoration status:soil texture -0.04 0.00 0.16  

Restoration status:grazing intensity -0.06 0.00 0.45  

Restoration status:burn frequency 0.08 0.00 0.44  

Soil nitrogen:CV nitrogen -0.06 0.01 1.40  

Soil nitrogen:soil texture -0.03 0.00 0.41  

Soil nitrogen:grazing intensity -0.01 0.00 0.01  

Soil nitrogen:burn frequency 0.03 0.00 0.20  

CV nitrogen:soil texture 0.01 0.00 0.09  

CV nitrogen:grazing intensity 0.02 0.00 0.85  

CV nitrogen:burn frequency -0.01 0.00 0.18  

Soil texture:grazing intensity 0.01 0.00 0.06  

Soil texture:burn frequency -0.01 0.00 0.16  

Grazing intensity:burn frequency -0.01 0.00 0.15  

Residuals  0.05   

     

Adjusted R2: 0.00    
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Table A2.3. ANOVA results for main factors and interactions on FQI. .p<0.1, *p<0.05, 

**p<0.005, ***p<0.0005. 

 

FQI Estimate 

Sum 

Sq 

F 

value  

Restoration status -1.86 0.19 0.16  

Soil nitrogen 0.92 2.11 1.75  

CV nitrogen -1.64 0.22 0.18  

Soil texture 0.48 1.24 1.03  

Grazing intensity 2.07 0.00 0.00  

Burn frequency 1.99 1.51 1.25  

Restoration status:soil nitrogen -1.51 0.70 0.58  

Restoration status:CV nitrogen 0.86 0.35 0.29  

Restoration status:soil texture -0.89 0.39 0.33  

Restoration status:grazing intensity -1.46 1.36 1.13  

Restoration status:burn frequency -1.09 0.35 0.29  

Soil nitrogen:CV nitrogen 0.00 0.00 0.00  

Soil nitrogen:soil texture -0.06 0.01 0.01  

Soil nitrogen:grazing intensity -0.56 0.64 0.53  

Soil nitrogen:burn frequency -0.47 0.26 0.21  

CV nitrogen:soil texture 0.08 0.02 0.02  

CV nitrogen:grazing intensity -0.17 0.28 0.23  

CV nitrogen:burn frequency -0.31 0.38 0.32  

Soil texture:grazing intensity -0.44 0.68 0.56  

Soil texture:burn frequency -0.23 0.27 0.23  

Grazing intensity:burn frequency 0.48 1.35 1.12  

Residuals  13.27   

     

Adjusted R2: 0.00    
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Table A3. PERMANOVA results with 2 way interactions included of environment and 

management impacts on plant composition from 33 grasslands. Environmental data and 

plant cover were collected at in 2010 at 21 plots/field and averaged for each field. 

Management records were collected at the plot-level and averaged to field level, 

management parameters shown are from 2006-2010. Restoration status is a 0/1 

relationship where remnant fields=0 and restored fields=1. .p<0.1, *p<0.05, **p<0.005, 

***p<0.0005. 

  

  Df 

Sum of 

squares 

Mean 

squares 

F 

model R2  

Restoration status  1 0.354 0.354 3.090 0.065 *** 

Soil nitrogen 1 0.670 0.670 5.842 0.123 *** 

Soil texture 1 0.227 0.227 1.977 0.042 * 

Grazing intensity 1 0.365 0.365 3.183 0.067 ** 

Burn frequency 1 0.284 0.284 2.479 0.052 * 

Soil texture:Restoration status 1 0.156 0.156 1.360 0.029  

Soil texture:Burn frequency 1 0.164 0.164 1.427 0.030  

Soil texture:Grazing intensity 1 0.215 0.215 1.879 0.040 * 

Restoration status:Burn frequency 1 0.150 0.150 1.312 0.028  

Restoration status:Grazing intensity 1 0.185 0.185 1.615 0.034 . 

Burn frequency:Grazing intensity 1 0.090 0.090 0.784 0.017  

Soil texture:Soil nitrogen 1 0.099 0.099 0.866 0.018  

Soil nitrogen:Restoration status 1 0.163 0.163 1.422 0.030  

Soil nitrogen:Burn frequency 1 0.173 0.173 1.508 0.032  

Soil nitrogen:Grazing intensity 1 0.182 0.182 1.587 0.034  

Residuals 17 1.949 0.115   0.359  

Total 32 5.426   1.000  
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Table A4.1 Indicator species analysis results for soil nitrogen. Soil nitrogen values are 

0.066-0.230 in cluster 1 and 0.230-0.394 in cluster 2.  

  
Cluster 

Indicator 

value Probability 

Elymus canadensis 1 0.769 0.001 

Solidago rigida 1 0.712 0.006 

Solidago canadensis 1 0.709 0.007 

Helianthus pauciflorus var. 

pauciflorus 1 0.703 0.001 

Bromus tectorum 1 0.661 0.036 

Desmanthus illinoensis 1 0.591 0.032 

Conyza canadensis 1 0.588 0.041 

Oxalis stricta 1 0.576 0.044 

Achillea millefolium 1 0.529 0.002 

Solidago gigantea 1 0.504 0.027 

Lepidium densiflorum 1 0.471 0.01 

Ratibida columnifera 1 0.441 0.046 

Plantago patagonica var. 

patagonica 1 0.435 0.039 

Rumex crispus 1 0.414 0.037 

Calamovilfa longifolia 1 0.353 0.024 

Equisetum laevigatum 2 0.888 0.001 

Agrostis gigantea 2 0.748 0.001 

Poa pratensis 2 0.720 0.002 

Viola pratincola 2 0.678 0.003 

Eleocharis palustris 2 0.667 0.003 

Carex 2 0.638 0.028 

Dicanthelium oligosanthes 2 0.629 0.006 

Apocynum cannabinum 2 0.509 0.009 

Trifolium pratense 2 0.367 0.009 

Dicanthelium acuminatum 2 0.313 0.026 
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Table A4.2. Indicator species analysis results for soil texture. Cluster 1 corresponds to 

soils that are 58-72% sand and cluster 2 are 72-90% sand.  

  
Cluster 

Indicator 

value Probability 

Physalis longifolia 1 0.6057 0.011 

Conyza canadensis 2 0.6579 0.008 

Sporobolus cryptandrus 2 0.6243 0.006 

Plantago patagonica var. 

patagonica 2 0.5683 0.002 

Ratibida columnifera 2 0.5238 0.013 

Silene antirrhina 2 0.5 0.001 

Cannabis sativa 2 0.4316 0.006 

Paspalum setaceum var. 

stramineum 2 0.3968 0.036 

Sphenopholis obtusata 2 0.3739 0.015 

Astragalus canadensis 2 0.3125 0.022 

Ambrosia 2 0.3125 0.02 

Strophostyles helvola 2 0.2977 0.042 
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Table A4.3. Indicator species analysis results for burn frequency. Cluster 1 corresponds 

to fields which have not been burned in the last five years and have no indicator species. 

Cluster 2 has 0.095-0.418 burn frequency.  

  
Cluster 

Indicator 

value Probability 

Symphyotrichum 

ericoides 2 0.7762 0.004 

Solidago rigida 2 0.5918 0.041 

Lotus purshianus 2 0.3122 0.027 

Calamovilfa longifolia 2 0.3094 0.043 

Oenothera biennis 2 0.25 0.038 
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Table A4.4. Indicator species analysis for grazing intensity. Grazing intensity is 0-0.591 

for cluster 1 and 0.592-1.747 for cluster 2.  

  
Cluster 

Indicator 

value Probability 

Bromus inermis 1 0.7097 0.037 

Oxalis stricta 1 0.5899 0.044 

Solidago gigantea 1 0.5684 0.011 

Solidago maximiliani 1 0.542 0.011 

Helianthus pauciflorus 

var. pauciflorus 1 0.4975 0.024 

Silene antirrhina 1 0.3846 0.026 

Ulmus pumila 1 0.348 0.044 

Panicum virgatum 2 0.7239 0.002 

Carex 2 0.7107 0.014 

Spartina pectinata 2 0.6217 0.032 

Agrostis gigantea 2 0.5571 0.018 

Euphorbia maculata 2 0.5243 0.021 

Festuca arundinacea ssp. 

arundinacea 2 0.437 0.008 

Sphenopholis obtusata 2 0.3261 0.048 

Sporobolus cryptandrus 2 0.25 0.044 

 

  



45 

 

Table A4.5. Indicator species analysis for restoration status. Cluster 1 are remnant fields, 

cluster 2 are restored fields.  

  
Cluster  

Indicator 

value  Probability 

Equisetum laevigatum 1 0.9283 0.001 

Dicanthelium oligosanthes 1 0.8462 0.001 

Eleocharis palustris 1 0.8302 0.001 

Ambrosia psilostachya 1 0.7873 0.009 

Agrostis gigantea 1 0.7778 0.001 

Viola pratincola 1 0.7144 0.003 

Carex 1 0.7122 0.006 

Poa pratensis 1 0.6862 0.01 

Callirhoe involucrata 1 0.6576 0.004 

Apocynum cannabinum 1 0.5155 0.016 

Eragrostis spectabilis 1 0.4444 0.004 

Trifolium pratens 1 0.3889 0.018 

Paspalum setaceum var. stramineum 
1 0.3832 0.042 

Sphenopholis obtusatum 1 0.3315 0.047 

Lithospermum incisum 1 0.2778 0.046 

Dicanthelium acuminatum 1 0.2778 0.046 

Elymus canadensis 2 0.9975 0.001 

Solidago canadensis 2 0.8412 0.001 

Solidago rigida 2 0.8303 0.001 

Taraxacum officinale  2 0.7784 0.007 

Bromus tectorum 2 0.6962 0.019 

Desmanthus illinoensis 2 0.6867 0.004 

Solidago gigantea 2 0.6751 0.002 

Helianthus pauciflorus var. pauciflorus 2 0.6347 0.002 

Rumex crispus 2 0.6323 0.001 

Achillea millefolium 2 0.5331 0.001 

Helianthus maximiliana 2 0.5025 0.025 

Lepidium densiflorum 2 0.4657 0.005 

Vulpia octoflora 2 0.3333 0.015 

Erigeron strigosus 2 0.3322 0.031 

Oenothera biennis 2 0.2667 0.029 

Chenopodium album 2 0.2667 0.032 
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Figure A2. Contour plots of grazing intensity, burn frequency, soil nitrogen and soil texture on 2010 plant composition. Lines on each 

plot represent intervals of each factor value, also denoted by shading of symbols, parallel lines represent linear relationships between 

factors shown and changes in species composition.  
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