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Abstract

This dissertation contains work on three main topics.

Chapters 1 through 4 provide complexity results for the single cut-or-join model

for genome rearrangement. Genomes will be represented by binary strings. Let S

be a finite collection of binary strings, each of the same length. Define M to be

the collection of medians – binary strings µ which minimize ∑ν∈S H(µ, ν) where H

is the Hamming distance. For any non-negative function f(x), define Z(f(x),S) to

be ∑µ∈M
∏
ν∈S f(H(µ, ν)). We study the complexity of calculating Z(f(x),S), with

respect to the number of strings in S and their length.

If the leaves of a star are labeled with the strings in S, then Z(x!,S) counts the

pairs of functions where one selects a median µ for S and the other assigns, to each

ν ∈ S, a permutation of coordinates in which µ and ν differ. This relates to the small

parsimony problem for genome rearrangement. We show that it is #P-complete to

calculate Z(x!,S) and give similar results for other functions f(x). We also consider

an analogous problem when the leaves of a binary tree are labeled. This is joint work

with István Miklós.

Chapters 5 and 6 explore tree invariants. In particular, Chapter 5 examines the

eccentricity of a vertex, eccT (v) = maxu∈T dT (v, u) where dT (u, v) is the number of

edges along the path connecting u and v in T . This was one of the first, distance-

based, tree invariants studied (Jordan 1869). The total eccentricity of a tree, Ecc(T ),

is the sum of the eccentricities of its vertices. We determine extremal values and

characterize extremal tree structures for the ratios Ecc(T )/ eccT (u), Ecc(T )/ eccT (v),

eccT (u)/ eccT (v), and eccT (u)/ eccT (w) where u,w are leaves of T and v is in the
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center of T . Analogous problems have been resolved for other tree invariants including

distance (Barefoot, Entringer, and Székely 1997) and the number of subtrees (Székely

and Wang 2013). In addition, we determine the tree structures that minimize and

maximize total eccentricity among trees with a given degree sequence. This is joint

work with László Székely and Hua Wang.

Chapter 6 compares three different middle parts of a tree. Different middle parts

such as center, centroid, subtree core have been defined and studied. We want to

provide some general insights on the difference between them and consider how far

apart (with given order of the tree) two different ‘middle point’ can be and when

such maximum distances are achieved. This study, after conducted on general trees,

is naturally extended to trees with restricted degrees or diameter due to the evident

correlation between these restrictions and the maximum distance between middle

parts. Some related interesting questions arise that may be of interest independently.

This is joint work with László Székely, Hua Wang, and Shuai Yuan.

Chapter 7 studies a problem related to Baranyai’s Theorem. This guarantees that

whenever k divides n, there is a partition of
(

[n]
k

)
into rows such that each row is itself

a partition of [n]. Baranyai (1973) used graph flows to give an existence proof for this

118 year old conjecture. We are interested in the structure of these partitions. For

k = 2, there is a circular configuration which yields a straightforward construction.

Beth (1974) found an algebraic construction for k = 3. However neither method has

a known extension to larger k. We consider a new construction for k = 2 which makes

use of a bijection between partitions and labeled trees. It is our hope that this type

of connection will lead to a more general construction of Baranyai partitions. This is

joint work with László Székely.
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Chapter 1

Genome Rearrangement

Soon after Sturtvant (1913) developed the first genetic map, he published his obser-

vations (Sturtvant 1921) regarding genome rearrangement in the fruit fly Drosophila

melanogaster. Later Dobzhansky and Sturtvant (1938) took a deeper look at genome

rearrangement, analyzing the rearrangement scenarios for two species, Drosophila

pseudoobscura and Drosophila miranda. Palmer and Herbon (1988) focused their

studies on genome rearrangement in plants and began the discussion about most par-

simonious scenarios. We build upon this foundation, exploring the Single Cut-or-Join

model for genome rearrangement.

A genome is represented by an edge-labeled digraph where each vertex has total

degree (sum of in degree and out degree) at most two. Each directed edge represents

a gene (or synteny block). Each gene has a head and a tail, collectively called extrem-

ities. Vertices of degree two are called adjacencies while vertices of degree one are

called telomeres. Because of the degree restriction, each extremity can participate in

at most one adjacency.

There are many ways to represent genomes, each giving a different viewpoint of

the structure. Here we give a representation of genomes through their adjacency

graphs. Fix a set of genes {v1, v2, . . . , vm}. Let hvi denote the head of gene vi and tvi

denote the tail. For a genome G on this set of genes, create an adjacency graph A(G)

where the vertices are precisely the extremities of the genes in (G):

V (A(G)) = {hv1 , tv1 , hv2 , tv2 , . . . , hvm , tvm}.

Connect two extremities with an edge if they form an adjacency in G.

1



While each edge in A(G) represents an adjacency in G, each vertex of A(G) with

degree zero indicates a telomere. Consequently, we may use unordered pairs of gene

extremities to describe an adjacency and a single gene extremity to identify a telomere.

Because each extremity participates in at most one adjacency, the degree of each

vertex is at most one and A(G) must be a matching (possibly empty or perfect).

Observe that the adjacency graph A(G) is uniquely defined by G.

Given a set of m genes, create a graph A with

V (A) = {hv1 , tv1 , hv2 , tv2 , . . . , hvm , tvm}

and an edge set which is a matching. This graph will uniquely describe a genome on

the given genes. It is then evident that genomes can be uniquely described by their

set of genes and their adjacencies, for any extremity which does not appear in an

adjacency must be a telomere.

Next we explore the interaction of multiple genomes on the same set of genes. Fix

a set of m genes {v1, v2, . . . , vm} and a multiset of n genomes G = {G1,G2, . . . ,Gn} on

the same set of specified genes. Draw a single adjacency graph A(G), where V (A(G))

is the set of gene extremities and an edge is drawn between two extremities if there

is at least one genome in G which has the corresponding adjacency. We say that G

has independent adjacencies if E(A) is a matching for A.

The final characterization makes use of binary strings. Fix a set of m genes and

a genome G on these genes. Define a binary string with
(

2m
2

)
coordinates. The

coordinates are in one-to-one correspondence with the possible adjacencies (pairs of

gene extremities). The genome G is then represented by the binary string which has

a 1 in each coordinate that corresponds to an adjacency in G and a 0 in every other

coordinate.

The binary string representation seems to be the most concise representation, but

it is more difficult to verify the vertex degree condition for G. However, given a set

of m genes and a multiset of genomes G on those genes which have independent

2



4 531

2
Genome G

h1 h2 h3 h4 h5

t1 t2 t3 t4 t5

Adjacency graph A(G)

Binary String Representation of G
h1 t1 h2 t2 h3 t3 h4 t4 h5 t5

h1 0 0 0 1 0 0 0 0 0
t1 0 1 0 0 0 0 0 0
h2 0 0 1 0 0 0 0
t2 0 0 0 0 0 0
h3 0 0 0 0 0
t3 0 0 0 0
h4 0 1 0
t4 0 0
h5 0
t5

Figure 1.1 Three representations of a genome. The binary string
representation can be obtaining by reading the rows of the array.

adjacencies, the binary string representation is preferred. In this setting, the number

of different adjacencies that appear in at least one genome in G ism, so we can restrict

our binary strings at most m coordinates. The usefulness of this representation will

become more evidence after we discuss the Single Cut-or-Join model for genome

rearrangement.

From here forward, every multiset of genomes will consist of genomes on the same

set of genes. For a multiset of genomes observed in current species, we use a tree

to represent their phylogenetic history, labeling the leaves of the tree with the given

genomes. The most ancient vertex in the tree can be considered the root, a common

ancestor of the genomes in the leaves. Each internal vertex represents an unknown

species. Given a fixed tree and a labeling of its leaves with genomes, we seek the most

likely genomes with which to label these internal nodes, according to some criterion.

In particular, we use the parsimony criterion to determine likelihood. Before this, we

first define a model for genome rearrangement.
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Along each edge of the tree, subsequent mutations occurred to transform the

genome of the ancestor into the genome of its descendant. To describe these muta-

tions, we use the Single Cut-or-Join model for genome rearrangement.

Definition 1.1 (Feijão and Meidanis (2011)). A Single Cut-or-Join (SCJ) operation

transforms one genome into another genome by altering the set of adjacencies in

exactly one of the following ways:

• Cut: replace adjacency u = {x, y} with telomeres u1 = {x} and u2 = {y};

• Join: replace telomeres u1 = {x} and u2 = {y} with the single adjacency

u = {x, y}.

The parsimony principle asserts that the true phylogenetic history minimizes the

number of mutations that must take place along the edges of the tree. Feijão and

Meidanis (2011) showed that the minimum number of SCJ operations needed to

transform one genome into another is precisely the Hamming distance between their

binary string representations. This is achieved by first cutting all of the adjacencies

in the ancestor’s genome which do not occur in the descendant’s genome. Then

make the necessary joins to obtain the genome of the descendant. As we consider

the possible ancestors which could label the internal nodes of the tree, we use the

parsimony score to determine the likelihood of a labeling. For a tree T and labeling

ϕ of the vertices of T with binary strings, the parsimony score is precisely the sum

of the Hamming distances between labelings on adjacent vertices; symbolically,

∑
uv∈E(T )

H(ϕ(u), ϕ(v))

where H(., .) is the Hamming distance between the two inputs. The labelings with

minimum parsimony score are called “most parsimonious labelings” and are consid-

ered to be the most likely.
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Figure 1.2 Two genomes with 6 possible SCJ scenarios
between them.

Given two genomes on the same set of genes, in the process of one changing

into the other, we assume that only one SCJ operation happens at a time because

mutations are generally rare events. A time-order sequence of these SCJ operations,

transforming one genome into another with the fewest number of SCJ operations is an

SCJ scenario. We may note that the number of SCJ scenarios between two genomes

is at most the factorial of the Hamming distance between their binary strings. In

practice, there may be fewer SCJ scenarios because the digraph produced from each

subsequent cut or join must be a valid genome.

Example 1.2. For the two genomes in Figure 1.2, the number of SCJ operations

needed to transform G into G ′ is 4 because G has two adjacencies which are not in G ′

({h2, t3}, {t1, h4}) and G ′ also has two adjacencies not in G ({h2, t5}, {t5, h4}). While

there are two cuts and two joins that must be made, notice that the first SCJ operation

must be a cut.

An SCJ scenario for G and G ′ must be either follow a cut-cut-join-join pattern (4

different SCJ scenarios) or an alternating cut-join-cut-join pattern (2 different SCJ

scenarios). If, for example, the first SCJ operation was to cut the adjacency {h2, t3},

then the second SCJ operation could be to join {h2} and {t5}, but it could not be to

join {h4} and {h5} because h4 is not a telomere yet. As a result, there are there are

precisely 6 possible SCJ scenarios that will transform G into G ′.

When we restrict our attention to a pair of genomes, {G,G ′}, with independent

adjacencies, then the vertices of an adjacency {x, y} that appears in G ′ but not in G

5
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A({G,G ′})

Figure 1.3 Two genomes with 4! = 24 different SCJ
scenarios that will transform G into G ′. The adjacency
graph A({G,G ′}) shows that {G,G ′} has independent
adjacencies.

must appear in two telomeres, {x} and {y} in G. The same holds for an adjacency

which appears in G but not in G ′. Therefore, among the set of cuts and joins that

must be performed to transform G into G ′, performing one necessary SCJ operation

will not affect the ability to make a different SCJ operation. Therefore, any ordering

is possible and the number of possible SCJ scenarios is the factorial of the Hamming

distance between the binary string representations of G and G ′.

Example 1.3. Figure 1.3 defines two genomes such that the adjacencies of {G,G ′}

are independent as indicated by the adjacency graph A({G,G ′}).

To transform G into G ′, there are 3 cuts and 1 join that must be made. Because

of independence, these operations can be performed in any order. As a result, there

are 4! = 24 different SCJ scenarios.

On the phylogenetic tree endowed with a most parsimonious labeling of the ver-

tices, we will assign to each edge an SCJ scenario which details the transformation

of the ancestral genome at one endpoint to the descendant genome labeling its other

endpoint. We make the assumption that the SCJ scenario on one edge has no influ-

ence over the SCJ scenario on a different edge.
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All of these definitions will be made precise in the next section. Here is a brief

summary of the structures we will be counting. We are given a multiset of genomes, all

on the same set of genes, and an ancestral tree T relating them. These will be viewed

as a tree T with binary strings labeling the leaves. The first goal is to determine

the possible most parsimonious labelings of the internal nodes of T . For each most

parsimonious labeling, we then label each edge of the tree with an SCJ scenario

which details the time order that mutations occurred in transforming the genome at

one endpoint into the genome at the other. The result is a most parsimonious SCJ

scenario.

1.1 Mathematical Model

Now let us fix some notation and formalize a few of the definitions which were in-

troduced above. Throughout the paper, we let [m] := {1, 2, . . . ,m}. For two binary

strings η and η′ of the same length, we let H(η, η′) be the Hamming distance between

η and η′, which is the number of coordinates in which η and η′ differ. Every multiset,

S, of binary strings will have the property that no two strings in S differ in length.

For an arbitrary binary string η of length n and coordinates labeled by the integers 1

through n, we will use the notation η[z] to denote the value of η in the z coordinate

for z ∈ [n]. For a multiset A, we define #[x,A] to be the multiplicity of the element

x in A. (If x 6∈ A then #[x,A] = 0.) To explicitly write out a multiset, we use

subscripts in parentheses to indicate the multiplicity of an element. For example,

{a(3), b(4), c(1)} := {a, a, a, b, b, b, b, c}.

For two multisets A and B, we define A ]B to be the multiset with

#[x,A ]B] = #[x,A] + #[x,B].

Definition 1.4 (Most Parsimonious Labeling). Let T be a tree with s leaves. Let

B = {v1, v2, . . . , vs} be a multiset of binary strings which represent genomes with m

7



genes. Let φ : L(T )→ B be a surjection which assigns a binary string to each leaf of

T . A most parsimonious labeling of the vertices of T , endowed with leaf-labeling φ,

is a labeling φ′ : V (T )→ {0, 1}(
2t
2 ) with

• φ′(`) = φ(`) for each ` ∈ L(T ) (i.e. φ′ extends φ),

• φ′(v) corresponds to a valid genome for each v ∈ V (T ), and

•
∑

uv∈E(T )
H(φ′(u), φ′(v)) is minimum among the possible functions φ′.

Definition 1.5 (SCJ scenarios). Let η and η′ be two genomes on the same set of m

genes. An SCJ scenario for the pair (η, η′) is a minimum length sequence of cuts and

joins to be performed consecutively in order to transform η into η′ with the condition

that each subsequent cut or join creates a valid genome.

In the binary string representation, an SCJ scenario is just a permutation of

the coordinates in which the binary strings differ, telling the order in which the bits

should be flipped. If the adjacencies are independent, then any permutation is an

SCJ scenario. Otherwise, one must verify that the binary string resulting from each

subsequent bit-flip creates a valid genome.

Let T be a tree with most parsimonious labeling φ′. For uv ∈ E(T ), an SCJ

scenario for (φ′(u), φ′(v)) will also be called an SCJ scenario for the edge uv.

Definition 1.6. Let B be a multiset of genomes on the same set of genes. Draw the

adjacency graph A(B) as described in Section 1. If the edges form a matching, then

we say that the adjacencies of multiset B are independent.

Note that if {η, η′} has independent adjacencies, then the number of different SCJ

scenarios for (η, η′) is precisely the factorial of the Hamming distance between their

binary string representations.

Definition 1.7 (Most parsimonious SCJ scenario). Let T be a tree and φ be a function

labeling the leaves of T with binary strings. A most parsimonious SCJ scenario for T

8



and φ consists of a most parsimonious labeling φ′ and an SCJ scenario for each edge

of T under vertex labeling φ′.

Definition 1.8. Given a tree T and leaf labeling φ, let φ′ be a most parsimonious

labeling. We say that the number of SCJ scenarios admitted by φ′ is precisely the

number of ways to assign an SCJ scenario to each edge of T .

When the tree T is a star with leaf labeling φ, each most parsimonious labeling φ′

of the vertices is characterized by the binary string µ it assigns to the center vertex

of the star. We call µ a median. Formally, we define a median as follows:

Definition 1.9 (Median). Let B = {νi}mi=1 be a multiset of binary strings which

represent a multiset of genomes on the same m genes. A binary string µ which rep-

resents a genome on these m genes and minimizes ∑i∈[m] H(νi, µ) is called a median

for B.

If the multiset of genomes has independent adjacencies or if a multiset of binary

strings is given without reference to genomes, then any binary string which minimizes∑
i∈[m] H(νi, µ) is a median.

The next definition will fit into the context of our later proofs. Here we merely

state the definition.

Definition 1.10. For an arbitrary n, t ∈ Z+, let B be an arbitrary multiset of binary

strings of length 2n+ t. We useM(B) to denote the set of all medians for B. If the

strings of B are defined on the coordinates

(x1, y1, x2, y2, . . . , xn, yn, e1, e2, . . . , et),

we use M′(B) to denote the subset of M(B) containing only those medians µ with

µ[xi] 6= µ[yi] for all i ∈ [n].
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While it is possible forM′(B), in the previous definition, to be empty, when we use

the definition later, most of our multisets B are defined so thatM = {0, 1}2n × {0}t

andM = {01, 10}n × {0}t.

1.2 Computational complexity

While P and NP are complexity classes for decision problems, the following classes

are for counting problems.

The classes #P, #P-hard, and #P-complete were first defined by Valiant (1979).

The definition for #P that we give here, while not the original, is an equivalent

definition.

Definition 1.11 (Welsh (1993)). The class #P contains those functions f : Σ∗ → N,

for some alphabet Σ, such that both of the following hold:

• There is a polynomial p, a relation R, and a polynomial time algorithm which,

for each input w ∈ Σ∗ and each y ∈ Σ∗ with |y| ≤ p(|w|), determines if R(w, y).

• For any input w, f(w) = |{y : |y| ≤ p(|w|) and R(w, y)}|.

Definition 1.12 (Cook (1971)). A polynomial time reduction from one decision

(counting) problem A to another decision (counting) problem B is an algorithm which,

for an arbitrary instance of A,

• runs in time polynomial in the inputs of the instance of A,

• creates an instance of B,

• the answer to each instance of A can be computed in polynomial time from the

answer of the instance of B.
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Definition 1.13 (Valiant (1979)). A counting problem is in #P-hard if there is a

polynomial time reduction to it from every problem in #P. A counting problem is in

#P-complete if it is in #P and is in #P-hard.

Next we give a few known computational complexity results. To state these result,

we establish some terminology.

Closed normal form (CNF) is a standard format in which to express Boolean

formulas. A 3CNF is a Boolean formula Γ which is the conjunction of clauses and

each clause is the disjunction of 3 literals. The symbol ∧ is used for conjunction and

the symbol ∨ is for disjunction. A 3CNF, Γ , with n variables {v1, v2, . . . , vn} and k

clauses takes the form Γ = c1 ∧ c2 ∧ . . . ∧ ck where each ci is a clause which is the

disjunction of three literals and the literals are from {vi}ni=1∪{vi}ni=1. Because Γ was

said to have n variables, we may assume that, for each i ∈ [n], vi or vi appears in

some clause of Γ . Each vi is a positive literal while each vi is a negative literal. The

negative literal vi is the negation of vi. We identify vi with the literal vi. We refer

to {vi}mi=1 as the variables of Γ and always assume that the set of variables has an

ordering.

A truth assignment for Γ is a function f : {vi}ni=1 → {T, F} which assigns a value

of true or false to each variable. If a truth assignment makes Γ true, we say it satisfies

Γ . Otherwise, a truth assignment does not satisfy Γ in which case there is at least

one clause which is not satisfied.

Definition 1.14 (3SAT). Given an arbitrary Γ in 3CNF with n variables and k

clauses, decide if there is a truth assignment for Γ which satisfies Γ .

Definition 1.15 (#3SAT). Given an arbitrary Boolean formula Γ in 3CNF with n

variables and k clauses, count the number of truth assignments which satisfy Γ .

Theorem 1.16 (Cook (1971)). 3SAT ∈ NP-complete.

Theorem 1.17 (Cook (1971)). #3SAT ∈ #P-complete.
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Define D3CNF to be the subset of 3CNF containing only those Γ = ∧
i∈[k] ci such

that for each i ∈ [k],

• ci contains three distinct literals, and

• ci does not contain both vj and vj for any j ∈ [n].

This defines the following two problems.

Definition 1.18 (D3SAT). For an arbitrary Γ in D3CNF with n variables and k

clauses, decide if there a truth assignment which satisfies Γ .

Definition 1.19 (#D3SAT). For an arbitrary Γ in D3CNF with n variables and k

clauses, count the number of truth assignments which satisfy Γ .

The following two results are proven through reductions from #3SAT and 3SAT.

Lemma 1.20. #D3SAT ∈ #P-complete.

Proof. This is a reduction from #3SAT. Let Γ be a 3CNF with n variables and k

clauses, n ≥ 3. Let vα, vβ, vγ be literals in Γ with α 6= β 6= γ 6= α. Observe that each

of the following pairs have the same satisfying truth assignments.

(vα ∨ vβ ∨ vβ) and (vα ∨ vβ ∨ vγ) ∧ (vα ∨ vβ ∨ vγ).

(vα ∨ vα ∨ vα) and (vα ∨ vβ ∨ vγ) ∧ (vα ∨ vβ ∨ vγ) ∧ (vα ∨ vβ ∨ vγ) ∧ (vα ∨ vβ ∨ vγ).

Further, a clause of the form (vα ∨ vα ∨ vβ) is alway true, so it can be removed.

Making these replacements in Γ will result in a D3CNF Γ ′ with n′ variables

(n′ ≤ n) and at most 4k clauses. Because some clauses like (vα ∨ vα ∨ vβ) are in Γ

but not in Γ ′, it is possible that n′ < n.

Given a satisfying truth assignment for Γ ′, we may extend it to a satisfying truth

assignment for Γ in 2n−n′ ways. This is because the variables in Γ which are not in

Γ ′ do not affect the ability of a truth assignment to satisfy Γ . On the other hand,
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each satisfying truth assignment for Γ , restricted to the variables of Γ ′, will be a

satisfying truth assignment for Γ ′. �

Lemma 1.21. D3SAT ∈ NP-complete.

Proof. As described in the last proof, for any 3CNF Γ , there is a D3CNF Γ ′ which

is computable in polynomial time such that Γ ′ has at least one satisfying truth as-

signment exactly when Γ has at least one satisfying truth assignment. �

Next, we return our attention to the phylogenetic histories which were introduced

in Section 1 and formalized in Section 1.1. The complexity results of these next 3

chapters address subquestions and analogues of the following problems.

Definition 1.22 (#SPSCJ). Given a tree T and a labeling ϕ of the leaves of T

with binary strings, #SPSCJ asks for the exact number of most parsimonious SCJ

scenarios.

Lemma 1.23. #SPSCJ ∈ #P.

Proof. The input includes a tree T with n vertices, and a function ϕ : L(T )→ {0, 1}`.

A witness is a function ϕ′ : V (T ) → {0, 1}` and a function which assigns an SCJ

scenario (a permutation of a subset of [`]) to each edge of the tree. The size of the

input is at most O(`n).

Feijão and Meidanis (2011) gave a polynomial time algorithm to find one most

parsimonious labeling. The parsimony score for this labeling can be calculated in time

polynomial in the number of edges of T and in the length, `, of the binary strings

labeling the leaves of T . Then we need only compare this parsimony score with the

parsimony score of the possible witness. If they are the same, then ϕ′ is a most

parsimonious labeling. For each edge, we can verify that a permutation assigned to

an edge is an appropriate SCJ scenario for that edge in O(`) time. By Definition 1.11,

#SPSCJ is in #P. �
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The next two definitions are for special cases of #SPSCJ. Notice that they are

stated without mention of genes and genomes. The problems are modeling the case

when a multiset of genomes has independent adjacencies. Since each labeling of an-

cestral genomes is most parsimonious, the genomes assigned to internal vertices will

only contain subsets of the adjacencies appearing in the given multiset of genomes.

Therefore, we restrict our binary string representations to these coordinates. Because

the multiset of genomes has independent adjacencies, no two adjacencies being con-

sidered share a common extremity. Therefore, a binary string, under this coordinate

restriction, may have all ones.

When the tree T is a star and the multiset of genomes labeling the leaves has

independent adjacencies (Definition 1.6), we can state the following special case of

#SPSCJ:

Definition 1.24 (#StarSPSCJ). Given an arbitrary m ∈ Z+, let B = {νi}mi=1 be an

arbitrary multiset of binary strings. Determine the value of

∑
µ∈M(B)

∏
i∈[m]

H(νi, µ)!.

When the tree T is a binary tree and the genomes labeling the leaves have inde-

pendent adjacencies (Definition 1.6), we state one more special case of #SPSCJ:

Definition 1.25 (#BinSPSCJ). Given arbitrary integer m ≥ 2, let T be a binary

tree with m leaves. Let B = {νi}mi=1 be an arbitrary multiset of binary strings and

a surjective function ϕ : L(T ) → B. Define F to be the set of most parsimonious

labelings ϕ′ which extend ϕ to V (T ). Determine the value of

∑
ϕ′∈F

∏
uv∈E(T )

H(ϕ′(u), ϕ′(v))!.
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The results in the next three chapters examine #SPSCJ and some analogues for

classes of trees such as binary trees and star trees. Most of the complexity results are

reductions from #D3SAT. In other words, given a D3CNF Γ with n variables and k

clauses, we create a multiset of m binary strings of length 2n+ t (where t and m are

polynomials of n and k) to label the leaves of the tree. These strings will be chosen

so that the number of most parsimonious SCJ scenarios is related to the number of

satisfying truth assignments for Γ .
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Chapter 2

Result for Star Phylogenetic Trees

This chapter examines the computational complexity of #StarSPSPCJ. The first

section details some tools and constructions that will be needed for the proof of our

main result in Section 2.2. This main result, Theorem 2.18, states that #StarSPSCJ

is #P-complete.

2.1 Encoding a clause

The proof of Theorem 2.18 will define a polynomial reduction from #D3SAT (Defi-

nition 1.19) to #StarSPSCJ (Definition 1.24). Fix an arbitrary D3CNF, Γ , with n

variables and k clauses. Fix a prime p ≤ 5 max{300, n + 5} which will be utilized

later. We will define a multiset of binary strings D(p) to label the leaves of a star.

This multiset will encode Γ . Once the leaves of the star tree are labeled with our

binary strings, we have an instance of #StarSPSCJ. For this instance, #StarSPSCJ

asks us to count the number of most parsimonious SCJ scenarios. To do this, first fix

a most parsimonious labeling and count the number of SCJ scenarios it admits (Def-

initions 1.4 and 1.8). Then sum this quantity over all most parsimonious labelings.

For the star, each most parsimonious labeling is identified by the median (Def-

inition 1.9) which it assigns to the center of the star. As in Definition 1.10, we let

M(D(p)) be the set of all medians for the star tree with leaf labels D(p).

Our task is to define a multiset of binary strings D(p) to encode Γ . The multiset

D(p) will be chosen so thatM(D(p)) will have a set of desired characteristics. First,

each of our strings in D(p) and the medians M(D(p)) will have length 2n + t with
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coordinates

(x1, y1, x2, y2, . . . , xn, yn, e1, e2, . . . , et)

where n is the number of variables in Γ and the t is a polynomial of n and k which

will be defined later. Second, M(D(p)) will be the set of all binary strings µ of

length 2n+ t that have µ[ei] = 0 for each i ∈ [t]. In other words, D(p) will be defined

so that M(D(p)) equals {0, 1}2n × {0}t. Recall M′(D(p)), from Definition 1.10,

is the subset of M(D(p)) with the additional property that µ[xi] 6= µ[yi] for all

i ∈ [n]. Once we have established thatM(D(p)) = {0, 1}2n × {0}t, we can conclude

M′(D(p)) = {01, 10}n × {0}t. This allows for a connection with truth assignments

for Γ .

Definition 2.1. Let n ∈ Z+. For arbitrary Γ in D3CNF with n variables, let S be a

multiset of binary strings on the coordinates (x1, y1, . . . , xn, yn, e1, . . . , et). There is an

injective function f which assigns to each median µ ∈M′(S) a truth assignment for

Γ . In particular, f(µ) will assign a value of true to the ith variable of Γ if µ[xi] = 1

and false if µ[xi] = 0.

Remark 2.2. If multiset S is chosen so that M′(S) = {01, 10}n × {0}t, then Defi-

nition 2.1 provides a bijection betweenM′(S) and the truth assignments for Γ .

Definition 2.3. Let n ∈ Z+. Given an arbitrary D3CNF, Γ , with n variables, let S be

an arbitrary multiset of binary strings on the coordinates (x1, y1, . . . , xn, yn, e1, . . . , et)

for some t ∈ Z+. Define M′
Γ (S) to be a subset of M′(S), containing only those

medians which, through the bijection in Definition 2.1, correspond to a satisfying

truth assignment for Γ . Since a single clause c in Γ is also a D3CNF, this defines

M′
c(S) as well.

For #StarSPSCJ, we are asked to calculate

∑
µ∈M(D(p))

∏
i∈[m]

H(µ, νi)!.
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To do this, we first calculate ∏i∈[m] H(µ, νi)! for each median µ ∈ M(D(p)) where

the product is the number of scenarios admitted by median µ (Definition 1.8). The

multiset D(p) will be constructed so that there is a constant K(p) (specified in

Claim 2.22) which is with each string in M′
Γ (D(p)) admitting exactly K(p) sce-

narios, and K(p) 6≡ 0 mod p. Each string inM(D(p)) \M′
Γ (D(p)) will admit more

or fewer than K(p) scenarios, and further ∏i∈[m] H(µ, νi)! ≡ 0 mod p. As a result

∑
µ∈M(D(p))

∏
i∈[m]

H(µ, νi)! ≡ |M′
Γ (D(p))|K(p) mod p.

Repeating this construction for sufficiently many primes p ≤ 5 max{300, n + 5}, we

obtain enough congruences, which together with the knowledge that there are at most

2n satisfying truth assignment for Γ , uniquely determine the size ofM′
Γ (D(p)) which

is equal to the number of satisfying truth assignments for Γ .

Later we will see that the main work goes into developing a multiset D(p) with

the property that µ ∈M′
Γ (D(p)) and µ′ ∈M′(D(p)) \M′

Γ (D(p)) have

∏
i∈[m]

H(µ, νi)! 6=
∏
i∈[m]

H(µ′, νi)!.

In Section 2.1.1, we define the strings D(p) which are used in the proofs to distinguish

M′
Γ (D(p)) fromM′(D(p)) \M′

Γ (D(p)).

2.1.1 Encoding Boolean clauses in binary strings.

A truth assignment satisfies Γ if and only if it satisfies every clause in Γ . Hence, we

will encode each clause ci of Γ in a set of 50 strings

Ci := {νi1, νi2, . . . , νi50}

which will be defined through Table 2.1. These 50 strings, a subset of D(Γ ), are

designed to distinguish those medians in M′
ci

(Ci) from those in M′(Ci) \ M′
ci

(Ci).

Confirmation of this will come in Section 2.1.3. Because every truth assignment
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which does not satisfy Γ does not satisfy some clause in Γ , we will see that ⊎i∈[k] Ci

distinguishes betweenM′
Γ

(⊎
i∈[k] Ci

)
andM′

(⊎
i∈[k] Ci

)
\M′

Γ

(⊎
i∈[k] Ci

)
.

The following definition gives a guide for defining a multiset of binary strings.

Definition 2.4 (Defining strings). For arbitrary m,n ∈ Z+ and t ∈ Z≥0, to define a

multiset of binary strings {η1, η2, . . . , ηm} on coordinates (x1, y1, . . . , xn, yn, e1, . . . , et),

it suffices to

• define ηj[x`] and ηj[y`] for each j ∈ [m] and ` ∈ [n], and

• define a function e : [m]→ Z≥0.

We say ηj has e(j) additional ones. In order to infer the values ηj[e`] for each j ∈ [m]

and ` ∈ [t], follow this procedure:

Partition [t] into subsets E,E1, E2, . . . , Em so that the size of Ej is precisely

e(j), and E = [t] \⋃j∈[m] Ej. For each j ∈ [m] and each ` ∈ Ej, set ηj[e`] = 1,

and for j′ 6= j, set ηj′ [e`] = 0.

Remark 2.5. Let m ∈ Z+. For an arbitrary multiset {ηj}mj=1 of binary strings built

using Definition 2.4, for each ` ∈ [t], there is a unique j ∈ [m] such that ηj[e`] = 1.

Consequently, each µ ∈M({ηj}mj=1) will have µ[e`] = 0 for all ` ∈ [t] because µ must

minimize ∑j∈[m] H(ηj, µ).

Definition 2.6. Let n ∈ Z+ and t ∈ Z≥0 be arbitrary. Two binary strings η and η

with coordinates (x1, y1, . . . , xn, yn, e1, . . . , et), are said to be complementary on the

first 2n coordinates if η[xi] = 1− η[xi] and η[yi] = 1− η[yi] for each i ∈ [n].

The following fact will be useful.

Fact 2.7. Let η and η be binary strings on coordinates

(x1, y1, . . . , xn, yn, e1, . . . , et).
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Set e(η) := ∑
i∈[t] η[ei], the number of additional ones in η. Define e(η) similarly. If η

and η are complementary on the first 2n coordinates, then for any µ ∈ {0, 1}2n×{0}t,

H(µ, η) +H(µ, η) = 2n+ e(η) + e(η).

Proof. For each i ∈ [n], either µ[xi] = η[xi] or µ[xi] = η[xi], but not both. This is

also true for each yi. This accounts for the 2n in the sum. Because µ[ei] = 0 for all

i ∈ [t], each i ∈ [t] with η[ei] = 1 will contribute one to the sum. Also each i ∈ [t]

with η[ei] will contribute one to the sum. This completes the proof. �

Definition 2.8. Given an arbitrary multiset of binary strings S, we say that a co-

ordinate s is ambiguous if there are exactly 1
2 |S| binary strings η ∈ S, counted with

multiplicity, such that η[s] = 0. Consequently, if you change the value of a median at

an ambiguous coordinate, you obtain another median.

Fact 2.9. Let S be a multiset of binary strings which are defined on the coordinates

(x1, y1, . . . , xn, yn, e1, . . . , et).

If S can be partitioned into pairs of vertices where the two strings in a pair are

complementary on the first 2n coordinates, then each xi and each yi is an ambiguous

coordinate.

Fix an arbitrary D3CNF, Γ , with n variables and k clauses. Fix a clause ci in Γ .

For this clause, we are now ready to define a set of 50 strings

Ci = {νi1, νi2, . . . , νi50}.

First assume that ci = vα ∨ vβ ∨ vγ, a disjunction of three positive literals. Because

Γ is a D3CNF, we may assume α < β < γ.

For each j ∈ [50], we will supply the following three pieces of information for νij:

(a) The values for νij[xα], νij[yα], νij[xβ], νij[yβ], νij[xγ], νij[yγ] will be explicitly defined.
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(b) A constant κij ∈ {0, 1} will be given so that νij[x`] = νij[y`′ ] = κij for all

`, `′ ∈ [n] \ {α, β, γ}.

(c) The string will be assigned some number of additional ones.

By Definition 2.4, this is sufficient to explicitly define νij.

The Table 2.1, there is a row for each string in Ci. The three defining pieces of

information are found in Columns (A), (B), and (C) of Table 2.1. The remainder of

the table will be explained in Subsection 2.1.2.

For each j ∈ [50], row j of Table 2.1 supplies the three ingredients needed to

define νij. By matching the 6-bit string in Column A of row j with

(νij[xα], νij[yα], νij[xβ], νij[yβ], νij[xγ], νij[yγ])

we obtain the 6 values for (a). The constant κij for (b) is found in Column (B) of

row j. For (c), the number of additional ones in νij is found in Column C of row j.

With a slight modification in the reading of Column A, the 50 rows of Table 2.1

will also supply the 50 strings for a clause which contains negative literals. Fix an

arbitrary clause ci in Γ which now may have negative literals. For each j ∈ [50], the

definition of string νij will again be based on Columns A, B, C of row j in Table 2.1.

The same information will be gleaned from Columns B and C as in the case when ci

had no negative literals. The only difference is with Column A which will be explained

next.

Let Si denote the support set of clause ci. If ci contains the variables vα, vβ, vγ,

then Si := {xα, yα, xβ, yβ, xγ, yγ}. Clause ci must be one of the 8 clauses listed in

Column A of Table 2.2. For j ∈ [50], νij is defined on the coordinates Si by matching

the entry in the right column of the ci row of Table 2.2 with the 6-bit string in Column

A of the jth row of Table 2.1.
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Table 2.1 The 50 strings in Ci for a single clause ci along with their Hamming
distance from medians inM′.

A B C M1 M2 M3 M4 M5 M6 M7 M8
Values of νij[x`], 10 10 10 10 10 01 10 01 10 01 10 10 10 01 01 01 10 01 01 01 10 01 01 01

Row νij on its νij[y`] Add’l
# support set (v` 6∈ ci) Ones

N
(+

3)
1

1 01 00 00 0 +3 n+ 4 n+ 4 n+ 4 n+ 2 n+ 4 n+ 2 n+ 2 n+ 2
2 00 01 00 0 +3 n+ 4 n+ 4 n+ 2 n+ 4 n+ 2 n+ 4 n+ 2 n+ 2
3 00 00 01 0 +3 n+ 4 n+ 2 n+ 4 n+ 4 n+ 2 n+ 2 n+ 4 n+ 2

N
1(+

0) 4 10 11 11 1 +0 n− 1 n− 1 n− 1 n+ 1 n− 1 n+ 1 n+ 1 n+ 1
5 11 10 11 1 +0 n− 1 n− 1 n+ 1 n− 1 n+ 1 n− 1 n+ 1 n+ 1
6 11 11 10 1 +0 n− 1 n+ 1 n− 1 n− 1 n+ 1 n+ 1 n− 1 n+ 1

I 2
(+

2)
\
N

2(+
2)

7 10 10 00 0 +2 n n n+ 2 n+ 2 n+ 2 n+ 2 n+ 4 n+ 4
8 10 00 10 0 +2 n n+ 2 n n+ 2 n+ 2 n+ 4 n+ 2 n+ 4
9 00 10 10 0 +2 n n+ 2 n+ 2 n n+ 4 n+ 2 n+ 2 n+ 4
10 10 10 00 0 +2 n n n+ 2 n+ 2 n+ 2 n+ 2 n+ 4 n+ 4
11 10 00 01 0 +2 n+ 2 n n+ 2 n+ 4 n n+ 2 n+ 4 n+ 2
12 00 10 01 0 +2 n+ 2 n n+ 4 n+ 2 n+ 2 n n+ 4 n+ 2
13 10 01 00 0 +2 n+ 2 n+ 2 n n+ 4 n n+ 4 n+ 2 n+ 2
14 10 00 10 0 +2 n n+ 2 n n+ 2 n+ 2 n+ 4 n+ 2 n+ 4
15 00 01 10 0 +2 5 n+ 4 n n+ 2 n+ 2 n+ 4 n n+ 2
16 01 10 00 0 +2 n+ 2 n+ 2 n+ 4 n n+ 4 n n+ 2 n+ 2
17 01 00 10 0 +2 n+ 2 n+ 4 n+ 2 n n+ 4 n+ 2 n n+ 2
18 00 10 10 0 +2 n n+ 2 n+ 2 n n+ 4 n+ 2 n+ 2 n+ 4
19 10 01 00 0 +2 n+ 2 n+ 2 n n+ 4 n n+ 4 n+ 2 n+ 2
20 10 00 01 0 +2 n+ 2 n n+ 2 n+ 4 n n+ 2 n+ 4 n+ 2
21 00 01 01 0 +2 n+ 4 n+ 4 n+ 2 n+ 4 n n+ 2 n+ 2 n
22 01 10 00 0 +2 n+ 2 n+ 2 n+ 4 n n+ 4 n n+ 2 n+ 2
23 01 00 01 0 +2 n+ 4 n+ 2 n+ 4 n+ 2 n+ 2 n n+ 2 n
24 00 10 01 0 +2 n+ 2 n n+ 4 n+ 2 n+ 2 n n+ 4 n+ 2
25 01 01 00 0 +2 n+ 4 n+ 4 n+ 2 n+ 2 n+ 2 n+ 2 n n
26 01 00 10 0 +2 n+ 2 n+ 4 n+ 2 n n+ 4 n+ 2 n n+ 2
27 00 01 10 0 +2 n+ 2 n+ 4 n n+ 2 n+ 2 n+ 4 n n+ 2

I 2
(+

1)
\
N

2(+
1)

28 10 10 11 1 +1 n− 1 n− 1 n+ 1 n+ 1 n+ 1 n+ 1 n+ 3 n+ 3
29 10 11 01 1 +1 n+ 1 n− 1 n+ 1 n+ 3 n− 1 n+ 1 n+ 3 n+ 1
30 11 10 01 1 +1 n+ 1 n− 1 n+ 3 n+ 1 n+ 1 n− 1 n+ 3 n+ 1
31 10 01 11 1 +1 n+ 1 n+ 1 n− 1 n+ 3 n− 1 n+ 3 n+ 1 n+ 1
32 10 11 10 1 +1 n− 1 n+ 1 n− 1 n+ 1 n+ 1 n+ 3 n+ 1 n+ 3
33 11 01 10 1 +1 n+ 1 n+ 3 n− 1 n+ 1 n+ 1 n+ 3 n− 1 n+ 1
34 01 10 11 1 +1 n+ 1 n+ 1 n+ 3 n− 1 n+ 3 n− 1 n+ 1 n+ 1
35 01 11 10 1 +1 n+ 1 n+ 3 n+ 1 n− 1 n+ 3 n+ 1 n− 1 n+ 1
36 11 10 10 1 +1 n− 1 n+ 1 n+ 1 n− 1 n+ 3 n+ 1 n+ 1 n+ 3
37 10 01 11 1 +1 n+ 1 n+ 1 n− 1 n+ 3 n− 1 n+ 3 n+ 1 n+ 1
38 10 11 01 1 +1 n+ 1 n− 1 n+ 1 n+ 3 n− 1 n+ 1 n+ 3 n+ 1
39 11 01 01 1 +1 n+ 3 n+ 1 n+ 1 n+ 3 n− 1 n+ 1 n+ 1 n− 1
40 01 10 11 1 +1 n+ 1 n+ 1 n+ 3 n− 1 n+ 3 n− 1 n+ 1 n+ 1
41 01 11 01 1 +1 n+ 3 n+ 1 n+ 3 n+ 1 n+ 1 n− 1 n+ 1 n− 1
42 11 10 01 1 +1 n+ 1 n− 1 n+ 3 n+ 1 n+ 1 n− 1 n+ 3 n+ 1
43 01 01 11 1 +1 n+ 3 n+ 3 n+ 1 n+ 1 n+ 1 n+ 1 n− 1 n− 1
44 01 11 10 1 +1 n+ 1 n+ 3 n+ 1 n− 1 n+ 3 n+ 1 n− 1 n+ 1
45 11 01 10 1 +1 n+ 1 n+ 3 n− 1 n+ 1 n+ 1 n+ 3 n− 1 n+ 1
46 01 01 11 1 +1 n+ 3 n+ 3 n+ 1 n+ 1 n+ 1 n+ 1 n− 1 n− 1
47 01 11 01 1 +1 n+ 3 n+ 1 n+ 3 n+ 1 n+ 1 n− 1 n+ 1 n− 1
48 11 01 01 1 +1 n+ 3 n+ 1 n+ 1 n+ 3 n− 1 n+ 1 n+ 1 n− 1

N
(+

1)
3 49 01 01 01 0 +1 n+ 3 n+ 2 n+ 2 n+ 4 n n n n− 2

N
3(+

2)

50 10 10 10 1 +2 n− 1 n+ 1 n+ 1 n+ 1 n+ 3 n+ 3 n+ 3 n− 3

For a clause ci, the left three columns define the 50 strings in Ci. In row j, the 6-bit string gives the values of
νij on the support set Si as described by Table 2.2. The second column gives the constant value to be assigned
to all x` and y` which are not in Si. The third column specifies the number of extra ones in νij . The collection
{01, 10}3 is listed along the top row. The entry in row j and column ` is the number of additional ones in νij
added to the Hamming distance between the 6-bit string in row j and the 6-bit string at the top of column `.
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Example 2.10. For an example, when ci = vα ∨ vβ ∨ vγ, the last row of Table 2.1

says that the string νi50 must have

(νi50[xα], νi50[yα], νi50[yβ], νi50[xβ], νi50[yγ], νi50[xγ]) = (101010).

Therefore, νi50[xα] = 1, νi50[yα] = 0, νi50[xβ] = 0, νi50[yβ] = 1, νi50[xγ] = 0, and

νi50[yγ] = 1. Further, Column B implies νi50(x`) = νi50(y`) = 1 for all ` ∈ [n]\{α, β, γ}

and, from Column C, νi50 will have 2 additional ones.

Now that we have defined Ci for any clause ci, let us analyzeM(Ci). By Fact 2.5,

for every µ ∈M(Ci) and ` ∈ [t], µ[e`] = 0.

In Column B of Table 2.1, it is evident that for any ` ∈ [n]\{α, β, γ}, the number

of strings νij with νij[x`] = 0 is 25 = 1
2 |Ci|. Therefore, by Definition 2.8, the coordinates

x` and y` are ambiguous. Through careful inspection of the strings in Column A of

Table 2.1, we see that coordinates x′` and y′` are also ambiguous for each `′ ∈ {α, β, γ}.

Therefore we have proven the following fact, which was one of our goals:

Fact 2.11. For an arbitrary clause ci with three distinct variables,

M(Ci) = {0, 1}2n × {0}t.

Remark 2.12. By visual inspection of Table 2.1, the binary strings Ci can be parti-

tioned into pairs where the two strings in a pair are complementary on the first 2n

coordinates.

2.1.2 Hamming distances between Ci and possible medians

Here we explain the remainder of Table 2.1. Fix a clause ci in Γ which will be used

throughout this subsection. Suppose ci has variables vα, vβ, and vγ. By Fact 2.11,
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Table 2.2 A key for interpreting Column A of Table 2.1.

Clause Key to interpret Column A of Table 2.1
vα ∨ vβ ∨ vγ (νij[xα], νij[yα], νij[xβ], νij[yβ], νij[xγ], νij[yγ])
vα ∨ vβ ∨ vγ (νij[yα], νij[xα], νij[xβ], νij[yβ], νij[xγ], νij[yγ])
vα ∨ vβ ∨ vγ (νij[xα], νij[yα], νij[yβ], νij[xβ], νij[xγ], νij[yγ])
vα ∨ vβ ∨ vγ (νij[xα], νij[yα], νij[xβ], νij[yβ], νij[yγ], νij[xγ])
vα ∨ vβ ∨ vγ (νij[yα], νij[xα], νij[yβ], νij[xβ], νij[xγ], νij[yγ])
vα ∨ vβ ∨ vγ (νij[yα], νij[xα], νij[xβ], νij[yβ], νij[yγ], νij[xγ])
vα ∨ vβ ∨ vγ (νij[xα], νij[yα], νij[yβ], νij[xβ], νij[yγ], νij[xγ])
vα ∨ vβ ∨ vγ (νij[yα], νij[xα], νij[yβ], νij[xβ], νij[yγ], νij[xγ])

For any clause in the left column, the corresponding entry
in the right column above will be matched with the 6-bit
string in Column A of row j of Table 2.1 to determine the
value of νij at each bit in the support set Si.

M(Ci) = {0, 1}2n × {0}t. Therefore, M′(Ci), from Definition 1.9, must be equal to

{01, 10}n × {0}t. For this subsection, define

M :=M(Ci), M′ :=M′(Ci).

Define an equivalence relation ∼i on M′ such that two medians are equivalent

if they agree on the coordinates in the support set Si of ci. The result will be 8

equivalence classes because µ[x`] 6= µ[y`] for each ` ∈ {α, β, γ} for each µ ∈M′.

Here we define a one-to-one correspondence between the equivalence classes ofM′

under ∼i and the 6-bit strings heading Columns M1 through M8 in Table 2.1.

Definition 2.13. Fix a clause ci and an integer ` ∈ [8]. Consider the 6-bit string

δ which heads column M`. In Table 2.2, locate the tuple in the right column corre-

sponding to our fixed clause ci. After replacing each νij with µ in the tuple, match

this tuple with δ. This gives six values that a median µ ∈M′ must have if it is in the

equivalence class represented by the column heading δ.

In Definition 2.1, we defined a correspondence betweenM′ and truth assignments

for Γ . In Definition 2.3, we introduced the notation M′
Γ (Ci) for the collection of

medians inM′ which correspond to satisfying truth assignments for Γ . Similarly, we
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definedM′
ci

(Ci) for each clause ci in Γ . For the remainder of this subsection, set

M′
Γ :=M′

Γ (Ci), M′
ci

:=M′
ci

(Ci).

The following claim uses the correspondence in Definition 2.13 to connectM′ \M′
ci

with a particular equivalence class.

Claim 2.14. Let ci be a clause in Γ . For any µ ∈ M′, µ is in the equivalence class

represented by Column M8 of Table 2.1 if and only if µ ∈M′ \M′
ci
.

Proof. Fix a clause ci with variables vα, vβ, vγ. This clause may have some negative

literals. We focus our attention on vα. The arguments for vβ and vγ are exactly the

same.

There are two cases depending on whether vα appears as a positive literal or a

negative literal in ci.

In the case where vα appears in ci as a positive literal, the truth assignment which

makes ci false assigns a value of false to vα. A corresponding median µ ∈ M′ has

µ[xα] = 0 and µ[yα] = 1. Because vα appears as a positive literal in ci, the entry

in the second column of Table 2.2 has µ[xα] followed by µ[yα]. So, in this case, the

6-bit string which heads the column for medians inM′ \M′
ci
has 01 in the first two

entries.

In the case where vα appears as a negative literal in ci, the non-satisfying truth

assignments for ci must have vα true. The corresponding medians µ ∈ M′ will have

µ[xα] = 1 and µ[yα] = 0. For the clauses with variable vα appearing as a negative

literal in ci, a quick glance at Table 2.2 reveals that µ[yα] immediately precedes µ[xα]

in the 6-bit column headings in Table 2.1. As a result, the column representing

medians inM′ \M′
ci
has 01 in the first two entries.

Repeating this argument for vβ and vγ, we see that medians in M′ \ M′
ci

are

represented by the column with heading 010101. �
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Now that we have defined the rows and columns of Table 2.1, we conclude this

subsection by defining the entries within Table 2.1 for fixed clause ci.

Let µ ∈M′ be an arbitrary median that falls into the equivalence class represented

by Column M` for some ` ∈ [8]. The entry aj` in Row j and Column M` of Table 2.1

is H(µ, νij). This value can be calculated as follows:

• First, take the Hamming distance between the 6-bit string in Column A of

Row j and the 6-bit string in the header of Column M`. This is equal to the

Hamming distance between the restrictions of µ and νij to the support set Si

for ci.

• For any s 6∈ {α, β, γ}, µ[xs] 6= µ[ys] and νij[xs] = νij[ys]. Therefore the Hamming

distance between (µ[xs], µ[ys]) and (νij[xs], νij[ys]) is 1 for each s ∈ [n]\{α, β, γ}.

• Finally, because µ[es] = 0 for all s ∈ [t], the Hamming distance between the

restrictions of µ and νij to the coordinates (e1, e2, . . . , et) is the number of addi-

tional ones in νij which is found in Column C of Row j.

Adding these three values together gives the entry aj`.

2.1.3 Distinguishing the satisfying truth assignments

Fix a clause ci in arbitrary D3CNF Γ . For this subsection, we again setM′ :=M′(Ci),

M′
Γ :=M′

Γ (Ci), andM′
ci

:=M′
ci

(Ci). For each µ ∈M′\M′
ci
, µ is in the equivalence

class represented by 010101 according to Claim 2.14. Then reading the entries in

Column M8 of Table 2.1, we find

{H(µ, νij) : j ∈ [50]} = {(n− 2)(1), (n− 1)(6), n(3), (n+ 1)(15),

(n+ 2)(15), (n+ 3)(3), (n+ 4)(6), (n+ 5)(1)}. (2.1)
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Otherwise, for each median µ ∈M′
ci
, µ is in one of 7 equivalence classes represented

in Columns M1 through M7. The entries in each of these columns yields

{H(µ, νij) : j ∈ [50]} = {(n− 1)(7), n(6), (n+ 1)(12), (n+ 2)(12), (n+ 3)(6), (n+ 4)(7)}.

(2.2)

Therefore,we can use Ci to distinguish between the medians inM′
ci
and the me-

dians inM′ \M′
ci
. For example, given µ ∈ M′ = {01, 10}n × {0}t, if we determine

that (n+ 5) ∈ {H(µ, νij) : j ∈ [50]}, then we can conclude µ ∈M′ \M′
ci
.

Now we wish to consider all of the Ci multisets together. It is clear that each

xi and each yi coordinates will remain ambiguous in the multiset ⊎i∈[k] Ci. For the

additional ones, we will take t large enough to maintain the property that, for each

i ∈ [t], there is at most one binary string η in ⊎i∈[k] Ci with η[ei] = 1. As a result,

M

 ⊎
i∈[k]
Ci

 = {0, 1}n × {0}t.

Further,

M′
ci

:=M′
ci

(Ci) =M′
ci

 ⊎
i∈[k]
Ci

 ,
M′

Γ :=M′
Γ (Ci) =M′

Γ

 ⊎
i∈[k]
Ci

 .
By definition of the setsM′

ci
andM′

Γ ,

M′
Γ =

⋂
i∈[k]
M′

ci
, (2.3)

M′ \M′
Γ =M′ \

⋂
i∈[k]
M′

ci
=

⋃
i∈[k]
M′ \M′

ci
. (2.4)

Therefore the multiset ⊎i∈[k] Ci will serve as a tool to distinguishM′
Γ fromM′ \M′

Γ .
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2.2 Complexity result for #StarSPSCJ

Before stating Theorem 2.18, we need a result which is equivalent to the Prime

Number Theorem. Define

θ(x) :=
∑
p≤x

p prime

log p.

Theorem 2.15. θ(x) ∼ x.

As a result, the next lemma and corollary hold.

Lemma 2.16 ( Rosser (1941) ). For 2 ≤ x,(
1− 2.85

log x

)
x ≤ θ(x) ≤

(
1 + 2.85

log x

)
x.

Corollary 2.17. For any n ≥ 300,

en/2 ≤
∏
p≤n

p prime

p ≤ e3n/2.

Now we can prove the main result for this chapter.

Theorem 2.18. #StarSPSCJ is #P-complete.

Proof. We have already verified that #StarSPSCJ, which is a subproblem of #SPSCJ,

is in #P in Lemma 1.23. To show #P-complete, we give a polynomial time reduction

from #D3SAT. Fix an arbitrary D3CNF Γ = c1 ∧ c2 ∧ . . . ∧ ck where each ci is a

clause and Γ has n variables.

Using the bound in Corollary 2.17, let n′ = max{300, n+ 5}. Fix a prime number

p which is greater than n′ and at most 5n′. Let

q := p− (n+ 5).
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We will explicitly define a multiset D(p) = A(p) ∪ ⋃i∈[n] Bi(p) ∪
⋃
i∈[k] Ci(p) con-

sisting of 2 + 2n+ 50k binary strings with coordinates

(x1, y1, x2, y2, . . . , xn, yn, e1, . . . , et(p))

where

t(p) := 2(q + 4) + 2n(q + 3) + k(75 + 50q). (2.5)

The coordinates e1, e2, . . . , et(p) are for the additional ones. In order to define each

η ∈ D(p), we will give exact values for η[xj] and η[yj] for each j ∈ [n] and specify

the number of additional ones that η will have. Definition 2.4 tells how to obtain the

values of η[ej] for each j ∈ [t(p)] from this information.

All strings in D(p) will come in pairs which are complementary on the first 2n

entries (Definition 2.8). As a result, we can use Fact 2.9 to see that each of the first

2n coordinates are ambiguous in D(p).

Now we begin defining the strings in multiset that together create D(p). The set

A(p) consists of two strings, α and α. Define α to have α[xi] = α[yi] = 1 for all

i ∈ [n] and q + 4 additional ones. Define α to be complementary to α on the first 2n

entries and have q + 4 additional ones.

For each j ∈ [n], the set Bj(p) will consist of two strings, βj and βj. Define βj to be

the string with βj[xj] = βj[yj] = 1 and for all j′ ∈ [n] with j′ 6= j, βj[xj′ ] = βj[yj′ ] = 0

and q+3 additional ones. Define βj to be complementary to βj on the first 2n entries

and have q + 3 additional ones.

For each i ∈ [k], the set Ci(p) will have 50 strings. These are obtained by adding

q more additional ones to the 50 strings in Ci which were defined through Table 2.1

(see Section 2.1.1). In other words, increase each entry in Column C of Table 2.1 by

q to obtain Ci(p).

In summary, we have constructed the strings

D(p) := A(p) ∪
⋃
i∈[n]
Bi(p) ∪

⋃
i∈[k]
Ci(p).
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As described in Definitions 1.10 and 2.3 and for each clause ci in Γ , set

M(p) :=M(D(p)), M′(p) :=M′(D(p)),

M′
ci

(p) :=M′
ci

(D(p)), M′
Γ (p) :=M′

Γ (D(p)).

As stated in Fact 2.5, each µ ∈ M(p) has µ[ej] = 0 for all j ∈ [t(p)]. Additionally,

because all of the strings in D(p) come in complementary pairs, the coordinates xj

and yj are ambiguous for each j ∈ [n] (Fact 2.9). Thus there are 22n medians µ. More

precisely,

M(p) = {0, 1}2n × {0}t(p) and (2.6)

M′(p) = {01, 10}n × {0}t(p).

Define

H(µ,A(p)) :=
∏

a∈A(p)
H(µ, a)!

and likewise define H(µ,Bj(p)) and H(µ, Ci(p)) for each j ∈ [n] and i ∈ [k]. Therefore

the number of SCJ scenarios admitted by µ (Definition 1.8) can be expressed by

H(µ) := H(µ,A(p)) ·
∏
i∈[n]
H(µ,Bi(p)) ·

∏
i∈[k]
H(µ, Ci(p)).

At this point, we wish to calculate d(µ) mod p for each median µ ∈ M(p). To

analyze H(µ) for each µ ∈ M, we define the following 3 properties that a median

µ ∈M(p) may have.

Property 1. ∑i∈[n](µ[xi] + µ[yi]) = n.

Property 2. µ ∈M′(p).

Property 3. µ ∈M′
Γ (p).

First notice that these properties are nested. Any µ ∈ M(p) with Property 2

must also have Property 1. Likewise, if µ has Property 3, it will also have Property

2. The next 4 claims divide M(p) into 4 classes and examine H(µ) for medians in

each class.
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Claim 2.19. For arbitrary µ ∈M(p), if µ does not have Property 1, and consequently

does not have Property 2 or 3, then H(µ) ≡ 0 mod p.

Proof. Let µ be an arbitrary median inM(p). For α ∈ A(p), Fact 2.7 gives

H(µ, α) +H(µ, α) = 2n+ (q + 4) + (q + 4) = 2p− 2.

Hence, there is an integer r such that q + 4 ≤ r ≤ 2n+ q + 4 and H(µ, α) = r with

H(µ,A(p)) = r!(2p− 2− r)!.

Since µ does not have Property 1, we can conclude that exactly one of the following

holds:

H(µ, α) ≥ (n+ 1) + (q + 4) = p

H(µ, α) ≥ (n+ 1) + (q + 4) = p.

Therefore, either r ≥ p or (2p− 2− r) ≥ p. In the first case, r! is divisible by p and,

in the second, (2p − 2 − r)! is divisible by p. Therefore H(µ,A(p)) ≡ 0 mod p and

consequently H(µ) ≡ 0 mod p. �

Claim 2.20. For an arbitrary µ ∈ M(p), if µ has Property 1, but does not have

Property 2, then H(µ) ≡ 0 mod p.

Proof. Suppose µ ∈ M(p) \ M′(p) but µ has Property 1. Because µ 6∈ M′(p),

there is an integer j0 ∈ [n] such that µ[xj0 ] = µ[yj0 ]. In the case when µ[xj0 ] = 0,

we have H(µ, βj0) = (n + 2) + (q + 3) = p. Otherwise µ[xi] = 1 which implies

H(µ, βj0) = (n+ 2) + (q + 3) = p. In either case,

H(µ,Bj0) = p!(p− 4)!

and consequently H(µ) ≡ 0 mod p. �

Claim 2.21. For an arbitrary µ ∈ M(p), if µ has Properties 1 and 2, but does not

have Property 3, then H(µ) ≡ 0 mod p.
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Proof. Let µ be inM′(p) \M′
Γ (p). Since µ corresponds to a truth assignment which

does not satisfy Γ , there is a clause ci0 in Γ which is not satisfied by this truth

assignment. Therefore µ ∈M′(p)\M′
ci0

(p). By (2.1), before adding the q additional

ones to each string from Ci0 , we have

{H(µ, νi0j ) : νi0j ∈ Ci0} = {(n− 2)(1), (n− 1)(6), n(3), (n+ 1)(15),

(n+ 2)(15), (n+ 3)(3), (n+ 4)(6), (n+ 5)(1)}. (2.7)

To create Ci0(p), we added q additional ones to each string in Ci0 which increased

each Hamming distance by q. Therefore

{H(µ, νi0j ) : νi0j ∈ Ci0(p)} = {(p− 7)(1), (p− 6)(6), (p− 5)(3), (p− 4)(15),

(p− 3)(15), (p− 2)(3), (p− 1)(6), p(1)}.

As a result,

H(µ, Ci0(p)) = (p− 7)!(p− 6)!6(p− 5)!3(p− 4)!15(p− 3)!15(p− 2)!3(p− 1)!6p!

which is divisible by p. Therefore H(µ) ≡ 0 mod p. �

Claim 2.22. For an arbitrary µ ∈M(p) having Properties 1, 2, and 3, the value

H(µ) = (p− 6)!7k(p− 5)!6k(p− 4)!12k(p− 3)!12k(p− 2)!6k+2n(p− 1)!7k+2,

which is not congruent to 0 modulo p.

Proof. Let µ ∈M′
Γ (p). Because it has Property 1,

H(µ,A(p)) = (n+ (q + 4))!2 = (p− 1)!2.

Since µ has Property 2, for any i ∈ [n],

H(µ,Bi(p)) = (n+ (q + 3))!2 = (p− 2)!2.

Finally, µ satisfies Property 3 which means µ ∈M′
ci

(p) for all clauses ci in Γ .
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Recall that each string η ∈ Ci(p) is created from a string η′ ∈ Ci by adding q more

additional ones. Therefore H(µ, η) = H(µ, η′) + q. So, the multiset H(µ, Ci(p)) can

be obtained from H(µ, Ci) found in (2.2) by adding q to each element. As a result,

H(µ, Ci(p)) = (p− 6)!7(p− 5)!6(p− 4)!12(p− 3)!12(p− 2)!6(p− 1)!7.

Therefore

H(µ) = (p− 6)!7k(p− 5)!6k(p− 4)!12k(p− 3)!12k(p− 2)!6k+2n(p− 1)!7k+2. (2.8)

Because p is prime, H(µ) 6≡ 0 mod p. �

Set

T (p) :=
∑

µ∈M(p)
H(µ).

Set S(p) equal to the function of p displayed in (2.8). Thus S(p) is precisely the value

of the number of SCJ scenarios admitted by an arbitrary µ ∈M′
Γ (p). If we calculate

T (p) mod p, the four claims show that

T (p) ≡
∑

µ∈M′Γ (p)
H(µ) ≡ |M′

Γ (p)| · S(p) mod p. (2.9)

If γ is the number of satisfying truth assignments for Γ , then γ = |M′
Γ (p)| by

Definition 2.3. Therefore

γ · S(p) ≡ T (p) mod p.

Since p does not divide S(p) (Claim 2.22), there exists an integer S ′(p) such that

S(p) · S ′(p) ≡ 1 mod p. Thus

γ ≡ S ′(p) · T (p) mod p.

While this alone is not sufficient to determine the value of γ, we can repeat this

construction for many different prime values to obtain more congruences.
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Recall p was fixed to be a prime greater than n′ and at most 5n′. Repeat the

above construction for each prime p1, p2, . . . , pm in this range. The result is a list of

congruences:

γ ≡ S ′(p1) · T (p1) mod p1,

γ ≡ S ′(p2) · T (p2) mod p2,

...

γ ≡ S ′(pm) · T (pm) mod pm.

Because p1, p2, . . . , pm are all prime, the Chinese Remainder Theorem guarantees

a solution for γ which is unique modulo ∏i∈[m] pi. By the Corollary 2.17,

∏
i∈[m]

pi =

∏
p≤5n′
p prime

p

∏
p≤n′
p prime

p
≥ e5n′/2

e3n′/2 = en
′ ≥ en.

Since γ is the number of satisfying truth assignments for Γ , and there are only n

literals which can realize one of two values, γ ≤ 2n. Since ∏i∈[m] pi ≥ en > 2n ≥ γ,

the Chinese Remainder Theorem gives the exact value of γ.

In summary, for D3CNF Γ with n variables and k clauses, we use the Sieve of

Eratosthenes to identify the primes between n′ and 5n′. This runs in O(n2) time.

Then for each prime p in this interval (which is at most max{2n, 600} primes), we

create 50k+ 2n+ 2 binary strings of length 2n+ t(p) where t(p) is a polynomial (2.5)

in n and p with p ∈ O(n). Finally, the Chinese Remainder Theorem will solve the

system of congruences in O(log(p1p2 . . . pm))2 time (Bach and Shallit 1996). For us,

this is O(n log n)2 because each prime is at most 5n and m ≤ 2n.

Therefore, if we had a polynomial time algorithm to determine the total number

of most parsimonious scenarios for a collection of binary strings, then we have created

here a polynomial time algorithm to determine the number of satisfying truth assign-
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ments for a D3CNF, a problem which is known to be #P-complete. This finishes the

proof. �

2.3 Torpidly mixing Markov chain

In the previous section, we proved that #StarSPSCJ is a #P-complete problem.

The natural next question is whether or not the number of most parsimonious SCJ

scenarios can be approximated. More important, can we sample from the most par-

simonious SCJ scenarios almost uniformly? In this way, one can test hypotheses on

a sample random sample since there are too many most parsimonious SCJ scenarios

to test hypotheses on all of them.

Definition 2.23. A counting problem #A in #P has an FPAUS (fully polynomial

almost uniform sampler) if there is a randomized algorithm such that, for any instance

of #A and any ε > 0, the algorithm outputs an element x ∈ X, the solution space for

#A, with probability p(x) where

1
2
∑
x∈X
|p(x)− U(x)| ≤ ε

where U is the uniform distribution on X and the algorithm runs in time polynomial

in the size of the instance of #A and − log ε.

The technique which was used to prove that #StarSPSCJ is in #P-complete has

been used to show that other problems are #P-complete. For example, Brightwell

and Winkler (1991) used this technique to prove that counting the number of linear

extensions of a partially order set is #P-complete. For this same problem, Karzanov

and Khachiyan (1991) found a rapidly mixing Markov chain to sample the linear ex-

tensions.This would suggest that #StarSPSCJ also has an FPAUS. However, here we

give a straightforward Markov chain to sample the most parsimonious SCJ scenarios

that turns out to be torpidly mixing, suggesting that #StarSPSCJ may not have an
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FPAUS. With evidence for both the positive answer and the negative answer, the

question of whether or not #StarSPSPCJ has an FPAUS remains open.

The Markov chain that we define here is stated for the more general #SPSCJ

problem on the star tree T where the multiset of genomes labeling the leaves is not

required to have independent adjacencies. Then we prove that this Markov chain is

torpidly mixing for a class of instances in which the adjacencies are independent.

2.3.1 Defining the Markov Chain

Fix a multiset G of genomes to label the leaves of star tree T . Consider the set

of median genomes that could label the center of the star in a most parsimonious

labeling.

Note that if G has an odd number of strings, then there is exactly one median.

Here we assume that the size of G is even.

Given the binary string representations {ν1, ν2, . . . , νm} for the genomes in G,

a median µ must minimize ∑i∈[m] H(νi, µ). Each majority adjacency, an adjacency

which appears in more than half of the genomes in G, must also appear in every

median. Because these appear in more than half of the genomes, for every pair of

majority adjacencies, there is a genome in G that contains both of them. Therefore,

containing all majority adjacencies does not conflict with the requirement that a

median is a valid genome. If an adjacency appears in fewer than half of the genomes

in G, then it must not appear in any median.

Among the ambiguous adjacencies, adjacencies that appear in exactly half of the

genomes in G, medians may contain any subset of these as long as the result is a valid

genome. Each median is characterized by its ambiguous adjacencies. If we draw the

adjacency graph A with vertices for the extremities and edges just for the ambiguous

adjacencies for G, then the medians are in one-to-one correspondence with the subsets

of edges that form a matching (not necessarily maximal and possibly empty).
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Here we define a primer Markov chain, P , to transition between the medians. As

mentioned, the medians are in one-to-one correspondence with the matchings of A.

So it suffices to define our Markov Chain on the state space of matchings in A.

Define the Markov chain P . From any matching M0 ⊆ E(A) (corresponding to

medianM0), we may transition to another matching with the following probabilities:

• With probability 1/2, remain in the current state.

• With probability 1/2, randomly and uniformly choose an edge from A.

– If the edge is already in matching M0, then remove it.

(i.e. If the adjacency is in medianM0, then cut it, replacing the adjacency

with two telomeres.)

– If the edge is not in matching M0 and adding the edge will extend M0 to

a larger matching in A, then include it.

(i.e. If the join of two telomeres ofM0 will create the selected adjacency,

then join them.)

– Otherwise, do nothing.

Because we remain at the current state with probability 1
2 , by definition we have

created a lazy Markov chain.

Observation 2.24. The primer Markov chain P is irreducible and aperiodic.

Proof. Every matching M can be reached from every other matching N by removing

all edges from N one at a time and then adding the edges of M one at a time. Each

step in this process is completed with positive probability. By definition, the primer

Markov chain is irreducible.

Because we have a lazy Markov chain, the probability that we remain at the

current state is at least 1/2 and thus the period is 1 for every state. Consequently P

is an aperiodic Markov chain. �
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For two genomes, G andM, the number of different SCJ scenarios that transform

M into G is notated by S(M,G). In particular S(M,G) is at most H(M,G)! where

M and G are the binary string representations ofM and G respectively. The factorial

bound is achieved precisely when {M,G} has independent adjacencies. For a fixed

multiset of genomes G = {G1,G2, . . . ,Gm} and median M, the number of scenarios

admitted by this median is defined by the function f as

f(M) :=
m∏
i=1

S(M,Gi).

With this new function and the primer Markov chain P , we employ the Metropolis-

Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953) to

obtain a secondary Markov chain C with a desired limit distribution. The states

remain the same, but the transition probabilities are changed in the following way.

From state M, we propose a next state Mnew which is reachable from M in one

step as described in the state space for P . IfMnew is different fromM, accept this

transition with probability

min
{

1, f(Mnew)
f(M)

}
.

In other words, ifMnew was reached fromM with probability P (Mnew|M), then in

the secondary Markov chain C the transition from M to Mnew will be made with

probability

C(Mnew|M) = P (Mnew|M) ·min
{

1, f(Mnew)
f(M)

}
.

Given the function f on the medians for a given collection of genomes, we obtain a

probability distribution θ on these medians by taking θ(M) to be directly proportional

to f(M). In other words,

θ(M) ∝ f(M) (2.10)

or θ(M) = kf(M) for some constant k and any medianM.

Observation 2.25. Markov chain C is reversible and converges to the limit distri-

bution θ.
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Proof. A Markov chain is reversible if

θ(Mi)C(Mj|Mi) = θ(Mj)C(Mi|Mj)

where C(Mj|Mi) is the probability that stateMj is reached from stateMi in one

step. This is trivially true ifMi andMj cannot reach one another in one transition

step. Otherwise, there is a single edge that can be added or removed from Mi to

obtainMj. Without loss of generality, we assume f(Mi)
f(Mj) ≤ 1 ≤ f(Mj)

f(Mi) . Observe the

following:

θ(Mi)C(Mj|Mi) = kf(Mi)
1
2

1
|E(H)| min

{
1, f(Mj)
f(Mi)

}

= kf(Mi)
1

2|E(H)|

= k
f(Mi)
f(Mj)

f(Mj)
1

2|E(H)|

= kf(Mj)
1

2|E(H)| min
{

1, f(Mi)
f(Mj)

}

= θ(Mj)C(Mi|Mj)

Therefore the Markov chain C is reversible.

As a result of reversibility, we can quickly confirm that θC = θ by the properties

of matrix multiplication. Therefore θ is a stationary distribution.

Notice in Markov chain C we can reach any state from any other state. Therefore

it is irreducible. In addition, it is finite. Because C is lazy, it is aperiodic. These

properties, together with the fact that a stationary distribution exists, imply that C

has a limiting distribution which is precisely the stationary distribution. �

Therefore, we have a Markov chain on the state space of medians which, in the

limit, will sample medians with distribution proportional to the number of scenarios

each median admits. Once we have a median, it is easy to uniformly sample from the

scenarios that it admits.
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Now we will show that the Markov chain C is torpidly mixing (not rapidly mixing).

In fact, it is torpidly mixing even when the number of genomes is fixed while the

number of genes and adjacencies is allowed to grow. To prove this result, we will use

the following:

For any nonempty subset S of the set of medians M , the capacity of S is

π(S) :=
∑
µ∈S

π(µ)

and the ergodic flow out of S is

F (S) :=
∑
µ∈S

ν∈M\S

π(µ)C(µ|ν).

The conductance is

Φ := min
{
F (S)
π(S) : S ⊆M, 0 < π(S) ≤ 1

2

}
.

Theorem 2.26 (Mélykúti (2006)). A Markov chain is rapidly mixing if and only if

Φ ≥ 1
p(n) for some polynomial p(n) which is not identically zero.

Consider the following example. Select genomes G0 and G1 which are represented

by matchings G0 and G1 in the adjacency graph A. Further, assume that {G0,G1}

have independent adjacencies. More specifically, assume G0 is represented by the

empty matching and G1 is represented by a maximum matching on A. Therefore

each median for {G0,G1} will be characterized by a subset of the adjacencies in G1.

In their binary string representations, it suffices to only consider the coordinates

that represent adjacencies in G1 since these are the only adjacencies of interest. There-

fore, we may view G0 as a binary string with all zeros, {0}n, and G1 as the binary

string of all ones, {1}n. The set of medians will be {0, 1}n.

Consider the star tree with 2t leaves, t of which are labeled G0 and the other t are

labeled G1. First observe that every binary string in {0, 1}n is still a median. Further,
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a median µ with exactly k ones admits (k!(n− k)!)t scenarios. The total number of

scenarios, added over all medians, is T := ∑n
k=0

(
n
k

)
(k!(n− k)!)t. Therefore

θ(µ) = (k!(n− k)!)t

T
.

Suppose n is odd. Consider the subset S which contains all medians with at most⌊
n
2

⌋
ones. For this subset, the capacity is

π(S) =1
2 .

For the ergodic flow out of S, we have

F (S) =
∑
µ∈S

ν∈M\S

π(µ)C(µ|ν)

=
∑
µ∈S

ν∈M\S

1
T

(⌊
n

2

⌋
!
⌈
n

2

⌉
!
)t 1

2
1
n
· 1

= 1
2nT

(
n⌊
n
2

⌋)( n⌈
n
2

⌉)(⌊n
2

⌋
!
⌈
n

2

⌉
!
)t

= 1
2nT (n!)2

(⌊
n

2

⌋
!
⌈
n

2

⌉
!
)t−4

≤ 1
2n

1
(n!)t (n!)2

(⌊
n

2

⌋
!
⌈
n

2

⌉
!
)t−4

= 1
2n

1
(n!)2

1(
n

bn2 c
)t−4

≤ 1
2nt−3

1
(n!)2 .

This implies

Φ ≤F (S)
π(S) ≤

1
nt−3(n!)2

Therefore, if t ≥ 1, then as n grows, we see that Φ cannot be lower-bounded by a

function of the form 1
p(n) where p is a polynomial in n. Therefore the Markov chain

C is torpidly mixing by Theorem 2.26.
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Chapter 3

Generalizations for the Star Tree

In this chapter, we consider a generalization of #StarSPSCJ.

First, fix a continuous function f : R→ R. Then define the following problem:

Definition 3.1 (#StarSPSCJ(f)). Given an arbitrary m ∈ Z+, let S = {νi}mi=1 be an

arbitrary multiset of binary strings. Determine the value of

∑
µ∈M(S)

∏
i∈[m]

f(H(νi, µ)).

3.1 Calculating #StarSPSCJ(f) exactly

In the previous section, we showed that #StarSPSCJ(f) is #P-complete when f(x)

is the function x!. Here we work toward the determining the computational complex-

ity of #StarSPSCJ(f) for various functions f . First, we formalize a definition and

develop a couple of tools.

Definition 3.2. A function g : R → R is strictly concave up if for any x, y, z ∈ R,

x < y < z,
g(z)− g(x)
z − x

> g(y).

Equivalently, g′(x) is a strictly increasing function.

Lemma 3.3. If log f(x) is a strictly concave up function, then for any x < y and

a > 0,
f(x)f(y)

f(x− a)f(y + a) < 1.
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Proof. By the intermediate value theorem, there are real values c, d with c ∈ (x−a, x)

and d ∈ (y, y + a) such that

(log f)′(c) = 1
a

(log f(x)− log f(x− a)) and

(log f)′(d) = 1
a

(log f(y + a)− log f(y)).

Because log f(x) is strictly increasing, g′(c) < g′(d). Therefore,

1
a

(log f(x)− log f(x− a)) < 1
a

(log f(y + a)− log f(y))

log f(x)− log f(x− a) < log f(y + a)− log f(y)

log f(x)
f(x− a) < log f(y + a)

f(y)
f(x)

f(x− a) <
f(y + a)
f(y)

f(x)f(y)
f(x− a)f(y + a) < 1.

�

Fact 3.4. Fix k ∈ Z≥0. Let f(x) be a function such that log f(x) is strictly concave

up. Then

min
α,β∈Z≥0

a+b=k

f(a)f(b) = f

(⌊
k

2

⌋)
f

(⌈
k

2

⌉)
.

Proof. Let x =
⌊
k
2

⌋
and y =

⌈
k
2

⌉
. By Lemma 3.3, f(x− a)f(y+ a) < f(x)f(y) which

gives the desired result. �

Theorem 3.5. Fix a function f(x) : Z≥0 → R≥0 which satisfies the following prop-

erties:

• log f(x) is strictly concave up,

• the function values of f can be computed in polynomial time, and
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• for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) > 1.

For arbitrary m, s ∈ Z>0 and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of binary

strings, each of length s. Then it is #P-complete to determine how many medians µ

for S have

∏
i∈[m]

f (H(νi, µ)) ≤ D. (3.1)

Proof. Fix a function f(x) with the properties listed in the theorem.

If is straightforward to see that #StarSPSCJ(f) is in #P. Fix an instance consist-

ing of integer m, s, real number D, and a multiset S of binary strings of length `. Let

µ be a binary string of the same length as each νi. We can verify that µ is a median

in time O(m`). Each H(νi, µ) can be computed in time O(`). Because H(νi, µ) ≤ `,

we can compute f(H(νi, µ) in time polynomial in the size of the input by the condi-

tions on f . Finally, checking if the product is at most D is also a polynomial time

calculation. Therefore #StarSPSCJ(f) is in #P.

To prove NP-hardness, we will provide a reduction from #D3SAT. For Γ , a

D3CNF with n variables and k clauses, set

κ(n) =[f(n)]9k[f(n+ 1)]22k+2kn[f(n+ 2)]48k+12kn

· [f(n+ 3)]48k+12kn[f(n+ 4)]22k+2kn[f(n+ 5)]9k

The idea is to define a multiset, D, of binary strings with the following properties:

• Each median which corresponds to a satisfying truth assignment for Γ will have

∏
η∈D

f(H(η, µ)) = κ
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• Each other median will have

∏
η∈D

f(H(η, µ)) > κ.

For arbitrary n, k ∈ Z>0, fix Γ = c1 ∧ c2 ∧ . . . ∧ ck be an arbitrary D3CNF with

n variables.

Create a total of 158k+ 28kn strings of length 2n+ 260k+ 35kn with coordinates

(x1, y1, x2, y2, . . . , xn, yn, e1, e2, . . . , et)

where t = 260k + 35kn.

This multiset of binary strings will be defined as the union of three multisets:

D = A ]
⊎
i∈[n]
Bi ]

⊎
i∈[k]
Ci.

As in Definition 2.4, we will define each string η ∈ D by explicitly giving the values

of η[xj] and η[yj] for each i ∈ [n] and telling the number of additional ones in η.

The collection A contains 108k strings. For a ∈ [t], let α(+a) be the string with

α[xi] = α[yi] = 1 for all 1 ≤ i ≤ n and a additional ones. Define α(+a) to be the

binary string which is complementary to α(+0) on the first 2n coordinates and has a

additional ones. The multiset A will consist of the following strings:

• k copies each of α(+0) and α(+0),

• 8k copies each of α(+1) and α(+1),

• 18k copies each of α(+2) and α(+2),

• 18k copies each of α(+3) and α(+3),

• 8k copies each of α(+4) and α(+4),

• k copies each of α(+5) and α(+5).
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The collection B = ⊎
i∈[n] Bi contains 28kn strings. For each i ∈ [n], a ∈ [t], let

β
(+a)
i be the string with βi[xi] = βi[yi] = 1, βi[xj] = βi[yj] = 0 for j 6= i, and with

a additional ones. Define the binary string βi
(+a) to be complementary to β(+0)

i on

the first 2n coordinates and have a additional ones. The collection Bi consists of the

following 28k strings.

• k copies each of β(+1)
i and βi

(+1),

• 6k copies each of β(+2)
i and βi

(+2),

• 6k copies each of β(+3)
i and βi

(+3),

• k copies each of β(+4)
i and βi

(+4).

The collection C = ⊎
i∈[k] C ′i contains 50k strings. Each set C ′i, which is associated

with clause ci, consists of 50 strings. In Section 2.1.1, we defined set Ci through

Table 2.1. For each νij ∈ Ci, create ν̂ij by increasing the number of additional ones in

νij by one. Then

C ′i := {ν̂ij : νij ∈ Ci}.

LetM be the set of all medians for D. From Definitions 1.10 and 2.3 and for each

clause ci in Γ , set

M :=M(D) M′ :=M′(D)

M′
ci

:=M′
ci

(D) M′
Γ :=M′

Γ (D)

According to Remark 2.4, all medians µ must have µ[ei] = 0 for all i ∈ [t]. In A,

B, and C, the strings come in pairs where one is complementary to the other on the

first 2n coordinates. By Fact 2.9, each of the xi and yi coordinates are ambiguous.

Therefore

M = {0, 1}2n × {0}t,

M′ = {01, 10}n × {0}t.
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Define

H(µ,A) :=
∏
a∈A

f(H(µ, a)).

Similarly define H(µ,Bi) and H(µ, C ′j). Set

H(µ) := H(µ,A) ·
∏
i∈[n]
H(µ,Bi) ·

∏
j∈[k]
H(µ, C ′j).

For each µ ∈ M, we obtain a lower bound for H(µ) and for each µ ∈ M′
Γ we

describe an exact value for H(µ). DivideM into 4 classes using the following three

properties which a median µ ∈M may have.

Property 1. ∑i∈[n](µ[xi] + µ[yi]) = n.

Property 2. µ ∈M′.

Property 3. µ ∈M′
Γ .

Notice that these properties are nested. Any median µ ∈ M with Property 2,

must also have Property 1. Further, any µ ∈ M with Property 3 must also have

Property 2. The following claims provide lower bounds for medians according to

their properties.

Claim 3.6. If µ ∈M has Property 1, then

H(µ,A) =[f(n)]2k[f(n+ 1)]16k[f(n+ 2)]36k

· [f(n+ 3)]36k[f(n+ 4)]16k[f(n+ 5)]2k (3.2)

=:αgood.

Otherwise,

H(µ,A) ≥[f(n− 1)f(n+ 1)]k[f(n)f(n+ 2)]8k[f(n+ 1)f(n+ 3)]18k

· [f(n+ 2)f(n+ 4)]18k[f(n+ 3)f(n+ 5)]8k[f(n+ 4)f(n+ 6)]k (3.3)

=:αbad.
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Proof. If µ ∈ M has Property 1, then H(µ, α(+0)) = H(µ, α(+0)) = n because

α(+0)[xi] = α(+0)[yi] = 1 for all i ∈ [n] while µ only has n ones in the first 2n

entries. Because µ[ei] = 0 for all i ∈ [t], by Definition 2.4,

H(µ, α(+a)) = H(µ, α(+a)) = n+ a.

Recalling the exact strings that appear in A, we quickly obtain (3.2).

If µ does not have Property 1, then either µ has more than n ones in the first 2n

entries, implying H(µ, α(+0)) > n, or µ has less than n ones in the first 2n entries,

implying H(µ, α(+0)) > n. By Fact 2.7, H(µ, α(+0)) +H(µ, α(+0)) = 2n. By Fact 3.4

and the above observations,

f
(
H
(
µ, α(+0)

))
· f
(
H(µ, α(+0))

)
≥ f(n− 1)f(n+ 1),

f
(
H
(
µ, α(+a)

))
· f
(
H
(
µ, α(+a)

))
≥ f(n− 1 + a)f(n+ 1 + a).

Recalling the exact strings in B, we obtain the lower bound in (3.3). �

Claim 3.7. For each µ ∈M and each i ∈ [n],

H(µ,Bi) ≥[f(n+ 1)]2k[f(n+ 2)]12k[f(n+ 3)]12k[f(n+ 4)]2k =: βgood. (3.4)

If µ has Property 2, then for every i ∈ [n],

H(µ,Bi) = βgood.

If µ satisfies Property 1, but not Property 2, then there exists i0 ∈ [n] such that

H(µ,Bi0) =[f(n− 1)f(n+ 3)]k[f(n)f(n+ 4)]6k

· [f(n+ 1)f(n+ 5)]6k[f(n+ 2)f(n+ 6)]k (3.5)

=:βbad.
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Proof. For any µ ∈M, by Fact 2.7,

H(µ, β(+0)) +H(µ, β(+0)) = 2n.

By Fact 3.4, for each a ∈ Z≥0,

f
(
H
(
µ, β(+0)

))
· f
(
H
(
µ, β

(+0)
))
≥ [f(n)]2 , and

f
(
H
(
µ, β(+a)

))
· f
(
H
(
µ, β

(+a)
))
≥ [f(n+ a)]2 .

Therefore, for any µ ∈M,

H(µ,Bi) ≥ βgood.

If µ ∈M′, then for each i ∈ [n], µ[xi] 6= µ[yi]. On the other hand, for each i ∈ [n],

j ∈ [n], β(+a)
i [xj] = β

(+a)
i [yj]. Therefore for any i, j ∈ [n],

H((µ[xj], µ[yj]), (β(+a)
i [xj], β(+a)

i [yj])) = 1.

The same holds if β(+a)
i is replaced with β(+a)

i . Therefore,

H
(
µ, β

(+0)
i

)
= H

(
µ, β

(+0)
i

)
= n,

H
(
µ, β

(+a)
i

)
= H

(
µ, β

(+a)
i

)
= n+ a.

As a result H(µ) = βgood.

If µ satisfies Property 1 but not Property 2, then we can define a tighter lower

bound on H(µ,Bi). In particular, because µ 6∈ M′, there exists i0 ∈ [n] such that

µ[xi0 ] = µ[yi0 ]. Recall β(+a)
i [xi0 ] = β

(+a)
i0 [yi0 ] = 1 and β

(+a)
i0 [xi0 ] = β

(+a)
i0 [yi0 ] = 0.

Therefore,

µ[xi0 ] = 1⇒H((µ[xi0 ], µ[yi0 ]), (β(+a)
i0 [xi0 ], β(+a)

i0 [yi0 ])) = 0,

H((µ[xi0 ], µ[yi0 ]), (β(+a)
i0 [xi0 ], β(+a)

i0 [yi0 ])) = 2, and

µ[xi0 ] = 0⇒H((µ[xi0 ], µ[yi0 ]), (β(+a)
i0 [xi0 ], β(+a)

i0 [yi0 ])) = 0,

H((µ[xi0 ], µ[yi0 ]), (β(+a)
i0 [xi0 ], β(+a)

i0 [yi0 ])) = 2.
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Because µ satisfies Property 1, there are exactly n ones among the first 2n coor-

dinates. Without loss of generality, µ[xi0 ] = µ[yi0 ] = 1. Set

S := {xj, yj : j ∈ [n], j 6= i0}.

Then µ has n − 2 ones and n zeros among the coordinates in S. However, β(+a)
i0

takes the value 0 on each of the coordinates of S and β(+a)
i0 takes the value 1 on the

coordinates of S. Therefore,

µ[xi0 ] = 1⇒H(µ, β(+0)
i0 ) = 0 + (n− 2),

H(µ, β(+0)
i0 ) = 2 + n, and

µ[xi0 ] = 0⇒H(µ, β(+0)
i0 ) = 0 + (n− 2),

H(µ, β(+0)
i0 ) = 2 + n.

As a result,

H(µ, β(+0)
i0 )H(µ, β(+0)

i0 ) = (n− 2)(n+ 2),

H(µ, β(+a)
i0 )H(µ, β(+a)

i0 ) = (n− 2 + a)(n+ 2 + a).

Taking into account all binary strings in Bi0 , we concludeH(µ,Bi0) = βbad in (3.5). �

Fact 3.8. For the quantities defined in Claim 3.7, βgood < βbad. Consequently, if

µ ∈M\M′ and satisfies Property 1, then ∏i∈[n]H(µ,Bi) ≥ βbadβ
k−1
good. If µ ∈M\M′

and does not satisfy Property 1, then ∏i∈[n]H(µ,Bi) ≥ βkgood.

Proof. Observe

βbad
βgood

=
[
f(n− 1)f(n)6f(n+ 1)4f(n+ 4)4f(n+ 5)6f(n+ 6)

f(n+ 2)11f(n+ 3)11

]k

=
[
f(n− 1)f(n+ 6)
f(n+ 2)f(n+ 3)

]k
·
[

f(n)f(n+ 5)
f(n+ 2)f(n+ 3)

]6k [
f(n+ 1)f(n+ 4)
f(n+ 2)f(n+ 3)

]4k

> 1

where the last inequality follows from Lemma 3.3. �
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Claim 3.9. For any µ ∈M and for each j ∈ [k],

H(µ, C ′i) ≥ [f(n+ 2)]25[f(n+ 3)]25 =: γmin.

If µ ∈M′
Γ , then for each j ∈ [k],

H(µ, C ′i) =[f(n)]7[f(n+ 1)]6[f(n+ 2)]12[f(n+ 3)]12[f(n+ 4)]6[f(n+ 5)]7 =: γgood.

(3.6)

If µ ∈M′ \M′
Γ , then there exists i0 ∈ [k] such that

H(µ, C ′i0) =f(n− 1)[f(n)]6[f(n+ 1)]3[f(n+ 2)]15

· [f(n+ 3)]15[f(n+ 4)]3[f(n+ 5)]6f(n+ 6) (3.7)

= : γbad.

Proof. Let µ be an arbitrary median in M. By Remark 2.12, the binary strings

in Ci come in pairs that are complementary on the first 2n entries. With a careful

examination of Table 2.1, if η, η′ ∈ Ci are complementary on the first 2n coordinates,

then e(η)+e(η′) = 3 where e is the function specifying the number of additional ones.

By the definition of C ′i, the strings still come in complementary pairs, (η̂, η̂′), but here

e(η̂) + e(η̂′) = 5 because the number of additional ones in η̂ and η̂′ is precisely one

more than the number in η and η′. By Fact 2.7, for each of the 25 pairs in C ′i,

H(µ, η̂) +H(µ, η̂′) = 2n+ 5.

Then by Fact 3.4,

f(H(µ, η̂))f(H(µ, η̂′)) ≥ f(n+ 2)f(n+ 3)

which gives the general bound γmin.
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Now suppose µ ∈ M′
Γ . This implies µ ∈ M′

ci
for all clauses ci in Γ . By the

definition of C ′i, for each ν̂ij ∈ C ′i, H(µ, ν̂ij) = H(µ, νij) + 1 where νij ∈ Ci. From (2.2),

we see

{H(µ, ν̂ij) : j ∈ [50]} = {n(7), (n+ 1)(6), (n+ 2)(12), (n+ 3)(12), (n+ 4)(6), (n+ 5)(7)}.

This immediately implies H(µ, C ′i) = γgood in (3.6).

Finally, suppose µ ∈ M′ \ M′
Γ . Using the bijection in Definition 2.1, µ must

correspond to a truth assignment which does not satisfy Γ . So there is a clause ci0

in Γ which is not satisfied. Therefore µ ∈ M′ \M′
ci0
. From (2.1), adding 1 to each

H(µ, νi0j ) to obtain H(µ, ν̂i0j ), we obtain

{H(µ, νi0j ) : j ∈ [50]} = {(n− 1)(1), n(6), (n+ 1)(3), (n+ 2)(15),

(n+ 3)(15), (n+ 4)(3), (n+ 5)(6), (n+ 6)(1)}. (3.8)

This directly implies H(µ, Ci0) = γbad in (3.7). �

Fact 3.10. For the quantities defined in Claim 3.9, γgood < γbad. As a result, when

µ ∈M′ \M′
Γ ,

H(µ, C) ≥ γbadγ
k−1
good.

Proof. Indeed, this was our initial assumption:

γbad
γgood

= f(n− 1)[f(n+ 2)]3[f(n+ 3)]3f(n+ 6)
f(n)[f(n+ 1)]3[f(n+ 4)]3[f(n+ 5)] > 1.

The bound for H(µ, C) results from the fact that µ ∈ M′ either corresponds to a

satisfying truth assignment for ci or a non-satisfying truth assignment for each clause

ci. �

In summary, Claims 3.6, 3.7, and 3.9 along with Facts 3.8 and 3.10, we give the

following bounds. If µ ∈M′
Γ ,

H(µ) = αgoodβ
n
goodγ

k
good =: h3.
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If µ ∈M′ \M′
Γ ,

H(µ) ≥ αgoodβ
n
goodγbadγ

k−1
good =: h2.

If µ ∈M \M′ and has Property 1,

H(µ) ≥ αgoodβbadβ
n−1
goodγ

k
min =: h1.

If µ ∈M but does not have Property 1,

H(µ) ≥ αbadβ
n
goodγ

k
min =: h0.

In order to complete, the proof, we only need to show h3 < hi for i ∈ {0, 1, 2}.

By one of our assumptions about f(x), we have already verified in Fact 3.10 that

h2

h3
= γbad
γgood

> 1.

Next observe

h1

h2
= βbad
βgood

· γkmin
γbadγ

k−1
good

>
βbad
βgood

· γ
k
min

γkbad

=
f(n− 1)f(n+ 3)

[f(n+ 1)]2

[
f(n)f(n+ 4)
[f(n+ 2)]2

]6 [
f(n+ 1)f(n+ 5)

[f(n+ 3)]2

]6
f(n+ 2)f(n+ 6)

[f(n+ 4)]2

k

·
[

[f(n+ 2)]10[f(n+ 3)]10

f(n− 1)[f(n)]6[f(n+ 1)]3[f(n+ 4)]3[f(n+ 5)]6f(n+ 6)

]k

=
[
f(n+ 1)f(n+ 4)
f(n+ 2)f(n+ 3)

]k

>1

where the last inequality follows from Lemma 3.3.
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Finally we prove that h0 > h2.

h0

h2
= αbad
αgood

γkmin
γbadγ

k−1
good

>
αbad
αgood

· γ
k
min

γkbad

=
f(n− 1)f(n+ 1)

[f(n)]2

[
f(n)f(n+ 2)
[f(n+ 1)]2

]8 [
f(n+ 1)f(n+ 3)

[f(n+ 2)]2

]18

·
[
f(n+ 2)f(n+ 4)

[f(n+ 3)]2

]18 [
f(n+ 3)f(n+ 5)

[f(n+ 4)]2

]8
f(n+ 4)f(n+ 6)

[f(n+ 5)]2

k

·
[

[f(n+ 2)]10[f(n+ 3)]10

f(n− 1)[f(n)]6[f(n+ 1)]3[f(n+ 4)]3[f(n+ 5)]6f(n+ 6)

]k

=[f(n− 1)]k[f(n)]8k[f(n+ 1)]19k[f(n+ 2)]26k

[f(n)]2k[f(n+ 1)]16k[f(n+ 2)]36k

· [f(n+ 3)]26k[f(n+ 4)]19k[f(n+ 5)]8k[f(n+ 6)]k
[f(n+ 3)]36k[f(n+ 4)]16k[f(n+ 5)]2k

· [f(n+ 2)]10k[f(n+ 3)]10k

[f(n− 1)]k[f(n)]6k[f(n+ 1)]3k[f(n+ 4)]3k[f(n+ 5)]6kf(n+ 6)k

=1.

Therefore for any µ̂ ∈ M′
Γ and µ ∈ M \M′

Γ , then H(µ̂) < H(µ). Thus, if we

could determine, in polynomial time, how many medians µ ∈M have h(µ) ≤ h3, then

we could determine how many satisfying truth assignments exist for Γ in polynomial

time. �

Corollary 3.11. Fix a function f(x) : Z≥0 → R≥0 which satisfies the following

properties:

• log f(x) is strictly concave up,

• the function values of f can be computed in polynomial time, and

• for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) > 1.
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For arbitrary m, s ∈ Z>0 and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of

binary strings, each of length s and let M be the set of medians for S. Then it is

NP-complete to determine if

min
µ∈Γ

∏
i∈[m]

f (H(νi, µ)) ≤ D. (3.9)

This next theorem gives the same result as Theorem 3.5 with one change in the

conditions on f . While Theorem 3.5 required that

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) > 1,

Theorem 3.12 switches the inequality to consider functions in which the ratio is less

than 1.

Theorem 3.12. Fix a function f(x) : Z≥0 → R≥0 which satisfies the following

properties:

• log f(x) is strictly concave up,

• the function values of f can be computed in polynomial time, and

• for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) < 1.

For arbitrary m, s ∈ N and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of binary

strings, each of length s. Then it is #P-complete to determine how many medians µ

for S have ∏
i∈[m]

f (H(νi, µ)) ≤ D.
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Proof. This proof closely mirrors the proof of Theorem 3.5. Here we will note the

changes that need to be made.

This time, we define 98k + 24kn binary strings, each of length 2n+ 245k + 60kn

with coordinates

(x1, y1, . . . , xn, yn, e1, . . . , et).

Let α(+a) and α(+a) be defined as before. The collection A will now consist of the

following 72k strings:

• 4k copies each of α(+1) and α(+1),

• 14k copies each of α(+2) and α(+2),

• 14k copies each of α(+3) and α(+3),

• 4k copies each of α(+4) and α(+4).

Define β(+a)
i and β(+a)

i as before. The collection Bi now consists of the following

24k strings:

• 6k copies each of β(+2)
i and β(+2)

i ,

• 6k copies each of β(+3)
i and β(+3)

i .

Following the explanation found in Section 2.1.1, Table 3.1 defines 26 binary

strings Ci for a clause. As in the proof of Theorem 3.5, we will add 1 additional one

to each of the 26 strings in Ci to create C ′i.

Using the same Properties 1, 2, and 3 as before, we obtain the following values

which are analogous to the bounds in Claims 3.6, 3.7, and 3.9:

αgood :=[f(n+ 1)]8k[f(n+ 2)]28k[f(n+ 3)]28k[f(n+ 4)]8k,

αbad :=[f(n)f(n+ 2)]4k[f(n+ 1)f(n+ 3)]14k

· [f(n+ 2)f(n+ 4)]14k[f(n+ 3)f(n+ 5)]4k,
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βgood :=[f(n+ 2)]12k[f(n+ 3)]12k,

βmin :=[f(n+ 2)]12k[f(n+ 3)]12k,

βbad :=[f(n)f(n+ 4)]6k[f(n+ 1)f(n+ 5)]6k,

γgood :=f(n− 1)[f(n)]3[f(n+ 1)]3[f(n+ 2)]6

· [f(n+ 3)]6[f(n+ 4)]3[f(n+ 5)]3f(n+ 6),

γbad :=[f(n)]4[f(n+ 1)]6[f(n+ 2)]3[f(n+ 3)]3[f(n+ 4)]6[f(n+ 5)]4,

γmin :=[f(n+ 2)]13[f(n+ 3)]13.

By our assumption about f(x),

γbad
γgood

= f(n)[f(n+ 1)]3[f(n+ 4)]3f(n+ 5)
f(n− 1)[f(n+ 2)]3[f(n+ 3)]3f(n+ 6) > 1

which implies γbad > γgood.

Next we determine the values of h0, h1, h2, h3 in this setting. As before, if µ has

Property i, but not property i + 1, then H(µ) ≥ hi. Further, if µ has Property 3,

H(µ) = h3. If µ does not have Property 1, then H(µ) ≥ h0.

h3 := αgoodβ
n
goodγ

k
good.

h2 := αgoodβ
n
goodγbadγ

k−1
good.

h1 := αgoodβbadβ
n−1
minγ

k
min.

h0 := αbadβ
n
minγ

k
min.

As in the proof of Theorem 3.5, we will show h3 < h0, h1, h2.

By our assumption about f(x),

h2

h3
= γbad
γgood

> 1.
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Also

h1

h2
= βbad
βgood

· γkmin
γbadγ

k−1
good

>
βbad
βgood

· γ
k
min

γkbad

=
[f(n)f(n+ 4)

[f(n+ 2)]2

]6 [
f(n+ 1)f(n+ 5)

[f(n+ 3)]2

]6
k

·
[

[f(n+ 2)]10[f(n+ 3)]10

[f(n)]4[f(n+ 1)]6[f(n+ 4)]6[f(n+ 5)]4

]k

=
[

f(n)f(n+ 5)
f(n+ 2)f(n+ 3)

]2k

>1 by Lemma 3.3.

Finally we show h0 > h2.

h0

h2
= αbad
αgood

γkmin
γbadγ

k−1
good

>
αbad
αgood

· γ
k
min

γkbad

=
[f(n)f(n+ 2)

[f(n+ 1)]2

]4 [
f(n+ 1)f(n+ 3)

[f(n+ 2)]2

]14

·
[
f(n+ 2)f(n+ 4)

[f(n+ 3)]2

]14 [
f(n+ 3)f(n+ 5)

[f(n+ 4)]2

]4
k

·
[

[f(n+ 2)]10[f(n+ 3)]10

[f(n)]4[f(n+ 1)]6[f(n+ 4)]6[f(n+ 5)]4

]k

=[f(n)]4k[f(n+ 1)]14k[f(n+ 2)]18k[f(n+ 3)]18k[f(n+ 4)]14k[f(n+ 5)]4k
[f(n+ 1)]8k[f(n+ 2)]28k[f(n+ 3)]28k[f(n+ 4)]8k

· [f(n+ 2)]10k[f(n+ 3)]10k

[f(n)]4k[f(n+ 1)]6k[f(n+ 4)]6k[f(n+ 5)]4k

=1.

Making each of these changes in the proof of Theorem 3.5, we complete the proof of

Theorem 3.12. �

58



Table 3.1 The 26 strings to complement the collection in Table 2.1 along with
their Hamming distance from medians inM′.

A B C M1 M2 M3 M4 M5 M6 M7 M8
Values of νij[x`], 10 10 10 10 10 01 10 01 10 01 10 10 10 01 01 01 10 01 01 01 10 01 01 01

Row νij on its νij[y`] Add’l
# support set (v` 6∈ ci) Ones
1 01 00 00 0 +0 n+ 1 n+ 1 n+ 1 n− 1 n+ 1 n− 1 n− 1 n− 1
2 00 01 00 0 +0 n+ 1 n+ 1 n− 1 n+ 1 n− 1 n+ 1 n− 1 n− 1
3 00 00 01 0 +0 n+ 1 n− 1 n+ 1 n+ 1 n− 1 n− 1 n+ 1 n− 1
4 10 11 11 1 +3 n+ 2 n+ 2 n+ 2 n+ 4 n+ 2 n+ 4 n+ 4 n+ 4
5 11 10 11 1 +3 n+ 2 n+ 2 n+ 4 n+ 2 n+ 4 n+ 2 n+ 4 n+ 4
6 11 11 10 1 +3 n+ 2 n+ 4 n+ 2 n+ 2 n+ 4 n+ 4 n+ 2 n+ 4
7 01 01 00 0 +2 n+ 4 n+ 4 n+ 2 n+ 2 n+ 2 n+ 2 n n
8 01 00 01 0 +2 n+ 4 n+ 2 n+ 4 n+ 2 n+ 2 n n+ 2 n
9 00 01 01 0 +2 n+ 4 n+ 2 n+ 2 n+ 4 n n+ 2 n+ 2 n
10 10 10 11 1 +1 n− 1 n− 1 n+ 1 n+ 1 n+ 1 n+ 1 n+ 3 n+ 3
11 10 11 10 1 +1 n− 1 n+ 1 n− 1 n+ 1 n+ 1 n+ 3 n+ 1 n+ 3
12 11 10 10 1 +1 n− 1 n+ 1 n+ 1 n− 1 n+ 3 n+ 1 n+ 1 n+ 3
13 10 01 01 0 +1 n+ 2 n n n+ 4 n− 2 n+ 2 n+ 2 n
14 01 10 01 0 +1 n+ 2 n n+ 4 n n+ 2 n− 2 n+ 2 n
15 01 01 10 0 +1 n+ 2 n+ 4 n n n+ 2 n+ 2 n− 2 n
16 10 10 01 0 +1 n n− 2 n+ 2 n+ 2 n n n+ 4 n+ 2
17 10 01 10 0 +1 n n+ 2 n− 2 n+ 2 n n+ 4 n n+ 2
18 01 10 10 0 +1 n n+ 2 n+ 2 n− 2 n+ 4 n n n+ 2
19 10 10 10 0 +1 n− 2 n n n n+ 2 n+ 2 n+ 2 n+ 4
20 01 01 01 1 +2 n+ 5 n+ 3 n+ 3 n+ 3 n+ 1 n+ 1 n+ 1 n− 1
21 10 01 01 1 +2 n+ 3 n+ 1 n+ 1 n+ 5 n− 1 n+ 3 n+ 3 n+ 1
22 01 10 01 1 +2 n+ 3 n+ 1 n+ 5 n+ 1 n+ 3 n− 1 n+ 3 n+ 1
23 01 01 10 1 +2 n+ 3 n+ 5 n+ 1 n+ 1 n+ 3 n+ 3 n− 1 n+ 1
24 10 10 01 1 +2 n+ 1 n− 1 n+ 3 n+ 3 n+ 1 n+ 1 n+ 5 n+ 3
25 10 01 10 1 +2 n+ 1 n+ 3 n− 1 n+ 3 n+ 1 n+ 5 n+ 1 n+ 3
26 01 10 10 1 +2 n+ 1 n+ 3 n+ 3 n− 1 n+ 5 n+ 1 n+ 1 n+ 3

The information in this table is to be read in the same way as the information
in Table 2.1. This is detailed in Section 2.1.1.

Corollary 3.13. Fix a function f(x) : Z≥0 → R≥0 which satisfies the following

properties:

• log f(x) is strictly concave up,

• the function values of f can be computed in polynomial time, and

• for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) < 1.

For arbitrary m, s ∈ Z>0 and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of

binary strings, each of length s and let M be the set of medians for S. Then it is
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NP-complete to determine if

min
µ∈M

∏
i∈[m]

f (H(νi, µ)) ≤ D. (3.10)

We can also state the following corollaries for functions which are strictly concave

down.

Corollary 3.14. Fix a function f(x) : Z≥0 → R≥0 which satisfies the following

properties:

• log f(x) is strictly concave down,

• the function values can be computed in polynomial time, and

• for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) 6= 1.

For arbitrary m, s ∈ Z>0 and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of binary

strings, each of length s. Then it is #P-complete to determine if how many medians

µ for S have

∏
i∈[m]

f (H(νi, µ)) ≥ D. (3.11)

Proof. If the function f(x) has the property that log f(x) is strictly concave down,

then log 1
f(x) is strictly concave up. Therefore by Theorems 3.5 and 3.12 for the

function 1
f(x) , it is #P-hard to determine the number of medians µ which satisfy∏

i∈[m]
1

f(H(νi,µ)) ≤
1
D
. This is equivalent to asking for the number of medians µ have∏

i∈[m] f(H(νi, µ)) ≥ D. �
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Corollary 3.15. Fix a function f(x) : Z≥0 → R≥0 which satisfies the following

properties:

• log f(x) is strictly concave down,

• the function values of f can be computed in polynomial time, and

• for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) 6= 1.

For arbitrary m, s ∈ Z>0 and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of binary

strings, each of length s whereM is the set of medians for S. Then it is NP-complete

to determine if

min
µ∈M

∏
i∈[m]

f (H(νi, µ)) ≥ D. (3.12)

3.2 Stochastic Approximations

We have seen several proofs showing that it is hard to calculate many of these quan-

tities. However, we may further ask if any of the quantities can be approximated.

One method of approximation is by an FPRAS:

Definition 3.16. A counting problem #A in #P has an FPRAS (fully polynomial

randomized approximation scheme) if there is a randomized algorithm such that, for

any instance of #A and any ε, δ > 0, the algorithm outputs an approximation f̂ for

the solution f satisfying

P

(
f

1 + ε
≤ f̂ ≤ f(1 + ε)

)
≥ 1− δ

and the algorithm runs in time polynomial in the size of the instance, 1
ε
, and log 1

δ
.

Before stating our results, we define a couple more complexity classes for decision

problems:

61



Definition 3.17 (Gill (1977)). A decision problem, A, is in the class RP (randomized

polynomial time) if there is a probabilistic Turing machine that runs in polynomial

time in the size of the input, returns “true” with probability at least 1
2 when the answer

for A is true, and returns “false” with probability 1 when the answer for A is false.

Definition 3.18 (Gill (1977)). A decision problem, A, is in the class BPP (bounded-

error probabilistic polynomial time) if there is a probabilistic Turing machine that

runs in polynomial time in the size of the input, returns “true” with probability at

least 2
3 when the answer for A is true, and returns “false” with probability 2

3 when the

answer for A is false.

One result connecting these classes is the following:

Theorem 3.19 (Papadimitriou (1994)). If the intersection of NP and BPP is non-

empty, then RP=NP.

Note that each result below holds for functions f(x) with log f(x) strictly concave

down. The analogous results for the functions whose logarithm is concave up are still

open. Now for our first result regarding sampling of medians for #StarSPSCJ(f).

Theorem 3.20. Fix a function f(x) : Z≥0 → R≥0 which satisfies the following

properties:

• log f(x) is strictly concave down,

• the function values of f can be computed in polynomial time, and

• there exists ε > 0 such that for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) < 1− ε.

For arbitrary m, s ∈ Z>0 and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of binary

strings, each of length s. If there is a rapidly mixing Markov chain with stationary

distribution proportional to ∏i∈[m] f (H(νi, µ)), then RP=NP.
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Proof. Fix a function f as described in the theorem. Because log f(x) is strictly

concave down, log(f(x))−1 is strictly concave up. Set g(x) := (f(x))−1.

Now recall the proof of Theorem 3.5 for strictly concave up functions. Take a

D3CNF Γ with n variables and create a multiset of binary strings, D. The set of

medians for D isM = {0, 1}2n×{0}t. There is a one-to-one correspondence between

the medians in the subset M′ = {01, 10}n × {0}t and the truth assignments for Γ .

Those medians which correspond to satisfying truth assignments for Γ form the set

M′
Γ . The multiset D is constructed so that each µ ∈M′

Γ has

∏
η∈D

1
f(H(η, µ)) =

∏
η∈D

g(H(η, µ)) = αgoodβ
n
goodγ

k
good =: h3

and all other medians have

∏
η∈D

1
f(H(η, µ)) =

∏
η∈D

g(H(η, µ)) > αgoodβ
n
goodγbadγ

k−1
good =: h2.

Equivalently, if µ ∈M′
Γ , then

∏
η∈D

f(H(η, µ)) = 1
h3
.

Otherwise, ∏
η∈D

f(H(η, µ)) < 1
h2
.

Further,

h2

h3
= γbad
γgood

= g(n− 1)[g(n+ 2)]3[g(n+ 3)]3g(n+ 6)
g(n)[g(n+ 1)]3[g(n+ 4)]3[g(n+ 5)]

= f(n)[f(n+ 1)]3[f(n+ 4)]3[f(n+ 5)]
f(n− 1)[f(n+ 2)]3[f(n+ 3)]3f(n+ 6)

>
1

1− ε

where the last inequality is a result of the assumption in the theorem statement. As

a result
1
h2

( 1
1− ε

)
<

1
h3
.
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Now select an integer r, dependent only on the values of n and ε, such that(
1

1−ε

)r
> 22n+2. Create a new multiset D(r) of binary strings such that

D(r) = D ] . . . ] D︸ ︷︷ ︸
r times

.

The set of medians for D(r) is the same as the set of medians for D. However this

time, for a median µ ∈M′
Γ ,

∏
η∈D(r)

f(H(η, µ)) =
( 1
h3

)r
.

Otherwise, if µ ∈M \M′
Γ ,

∏
η∈D(r)

f(H(η, µ)) <
( 1
h2

)r
.

By the choice of r,

( 1
h2

)r
22n <

( 1
h2

)r
22n+2 <

( 1
h2

( 1
1− ε

))r
<
( 1
h3

)r
.

SinceM = {0, 1}2n × {0}t, |M| = 22n and the above inequality shows that for each

µ0 ∈M′
Γ , ∏

η∈D
f(H(η, µ0)) >

∑
µ∈M\M′Γ

∏
η∈D

f(H(η, µ)).

Further, ∏
η∈D

f(H(η, µ0)) >
1
2
∑
µ∈M

∏
η∈D

f(H(η, µ)).

Now suppose that we had a rapidly mixing Markov chain for this instance of

#StarSPSCJ(f), as stated in the theorem. From the calculations above, it must

sample medians which correspond to satisfying truth assignments for Γ with prob-

ability at least 1
2 . This is precisely an RP for D3SAT. However, this immediately

implies RP=NP because D3SAT is NP-complete. �

The following theorem gives the same result as the last one for different functions

f . In particular, it switches the inequality that f is required to satisfy.
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Theorem 3.21. Fix a function f(x) : Z≥0 → R≥0 which satisfies the following

properties:

• log f(x) is strictly concave down,

• the function values of f can be computed in polynomial time, and

• there exists ε > 0 such that for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) > 1 + ε.

For arbitrary m, s ∈ Z>0 and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of binary

strings, each of length s. If there is a rapidly mixing Markov chain with distribution

proportional to ∏i∈[m] f (H(νi, µ)), then RP=NP.

Proof. The proof for this theorem follows the same line of reasoning as the proof

for Theorem 3.20. However, it makes use of details in Theorem 3.12 rather than

Theorem 3.5. �

When f is a function with log f(x) is concave down, we examine the possibility

of an FPRAS (Definition 3.16) for #StarSPSCJ(f) .

Theorem 3.22. Fix a function f(x) : Z≥0 → R≥0 for which:

• log f(x) is strictly concave down,

• the function values of f can be computed in polynomial time, and

• there exists ε > 0 such that for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) < 1− ε.

For arbitrary m, s ∈ Z>0 and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of binary

strings, each of length s. If there is an FPRAS for calculating

∑
µ∈M

∏
i∈[m]

f(H(νi, µ)),
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then RP=NP.

Proof. Let r be an integer so that
(

1
1−ε

)r
> 22n+2. In the proof of Theorem 3.20, we

created a new multiset of genomes D(r). The set of mediansM for D(r) is precisely

{0, 1}2n × {0}t and each median µ ∈ M′
Γ which corresponds to a satisfying truth

assignment for Γ has ∏
η∈D(r)

f(H(η, µ)) =
( 1
h3

)r
.

All other medians have ∏
η∈D(r)

f(H(η, µ)) <
( 1
h2

)r
.

Therefore, if Γ has no satisfying assignments,

∑
µ∈M

∏
η∈D(r)

f(H(η, µ)) < 22n
( 1
h2

)r
.

If there is a satisfying assignment for Γ , then

∑
µ∈M

∏
η∈D(r)

f(H(η, µ)) ≥
( 1
h3

)r
.

By the choice of r, we have the following inequality to relate the two quantities:
( 1
h2

)r
22n+2 <

( 1
h3

)r
.

Now suppose that there is an FPRAS for T := ∑
µ∈M

∏
η∈D(r) f(H(η, µ)). In other

words, for any ε, δ > 0, there is a randomized algorithm as described in Definition 3.16

which outputs a quantity T̂ such that

P
(

T

1 + ε
≤ T̂ ≤ T (1 + ε)

)
≥ 1− δ.

Consider the case when δ = 1
3 and ε = 1. Therefore,

P
(1

2T ≤ T̂ ≤ 2T
)
≥ 2

3 .

Therefore, if Γ can be satisfied, then T ≥
(

1
h3

)r
and the probability that T̂ is at least

1
2T = 1

2

(
1
h3

)r
> 22n+1

(
1
h2

)r
is 2

3 . On the other hand, if Γ cannot be satisfied, then
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T < 22n
(

1
h2

)r
and the probability that T̂ is at most 2T = 22n+1

(
1
h2

)r
is 2

3 . Therefore,

we have a BPP algorithm (Definition 3.18) for 3SAT.

Because 3SAT is NP-complete, Papadimitriou’s Theorem 3.19 implies RP=NP. �

A similar result holds for functions f(x) which satisfy the opposite inequality. We

do not give a proof as it follows the reasoning in the proof of Theorem 3.22.

Theorem 3.23. Fix a function f(x) : Z≥0 → R≥0 for which:

• log f(x) is strictly concave down,

• the function values of f can be computed in polynomial time, and

• there exists ε > 0 such that for all but finitely many n ∈ Z, n ≥ 2,

f(n− 2)[f(n+ 1)]3[f(n+ 2)]3f(n+ 5)
f(n− 1)[f(n)]3[f(n+ 3)]3f(n+ 4) > 1 + ε.

For arbitrary m, s ∈ Z>0 and D ∈ R, let S := {ν1, ν2, . . . , νm} be a multiset of binary

strings, each of length s. If there is an FPRAS for calculating

∑
µ∈M

∏
i∈[m]

f(H(νi, µ)),

then RP=NP.
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Chapter 4

Result for Binary Phylogenetic Trees

In this chapter, we return our attention to counting most parsimonious SCJ scenarios,

but this time our phylogenetic trees are binary trees. We use the following definition.

Definition 4.1. A tree is a binary tree if it is rooted and every non-leaf vertex has

exactly two children.

Recall the statement of #BinSPSCJ:

Definition 1.25. Given arbitrary integer m ≥ 2, let T be a binary tree with m leaves.

Let B = {νi}mi=1 be an arbitrary multiset of binary strings and a surjective function

ϕ : L(T )→ B. Define F to be the set of most parsimonious labelings ϕ′ which extend

ϕ to V (T ). Determine the value of

∑
ϕ′∈F

∏
uv∈E(T )

H(ϕ′(u), ϕ′(v))!.

The main result of Section 4.2 is the theorem which states #BinSPSCJ is in #P-

complete. In the first section, we develop several tools and algorithms which lay the

foundation for our main theorem.

4.1 Algorithms for finding most parsimonious labelings

Let Γ = c1 ∧ c2 ∧ . . . ∧ ck be a D3CNF with variables {v1, v2, . . . , vn}. Select new

variables {w1, w2, . . . , wn} which do not occur in Γ . For each i ∈ [n], understanding

subscript n+ 1 as 1, define the following D3CNF,

Φi := (vi ∨ wi ∨ vi+1) ∧ (vi ∨ wi ∨ vi+1) ∧ (vi ∨ wi ∨ vi+1) ∧ (vi ∨ wi ∨ vi+1). (4.1)
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Observe that Φi is equivalent to the “exclusive or” (vi ∨ wi) ∧ (vi ∨ wi). Define

Ψ(Γ ) := Γ ∧
n∧
i=1

Φi.

Necessarily, if Γ is a D3CNF then so is Ψ(Γ ).

Lemma 4.2. For Γ , an arbitrary D3CNF, it is #P-complete to determine the number

of satisfying truth assignments for Ψ(Γ ).

Proof. We have already shown in Lemma 1.20 that #D3SAT is in #P-complete. So

to prove this result, we will show that the satisfying truth assignments for Γ and for

Ψ(Γ ) are in one-to-one correspondence.

Any truth assignment which satisfies Ψ(Γ ), when restricted to {v1, v2, . . . , vn} will

necessarily satisfy Γ .

For the other direction, recall that Φi is equivalent to the “exclusive or” for vi

and wi. Therefore, given a satisfying truth assignment for Γ , we can create a unique

satisfying truth assignment for Ψ(Γ ) by assigning to each wi the opposite value of

vi. �

Next we provide two different algorithms for creating most parsimonious labelings

given a rooted binary tree and a leaf-labeling ϕ : L(T )→ {0, 1}s. If we restrict ϕ(`)

to a single coordinate c for every leaf `, we obtain a labeling ϕc : L(T )→ {0, 1}. Each

algorithm presented below will consider leaf labels from the set {0, 1} and output a

most parsimonious labeling ϕ′c : V (T ) → {0, 1}. Obtaining a most parsimonious

labeling for each coordinate in this way, we combine these labelings to create a most

parsimonious labeling ϕ′ : V (T )→ {0, 1}s for T and the original leaf-labeling ϕ.

Let T be a binary tree with root ρ and let ϕ : L(T ) → {0, 1} be a labeling

for the leaves. Let ϕ′ : V (T ) → {0, 1} be a most parsimonious labeling (Def-

inition 1.4) which extends ϕ. Because each vertex is labeled with a single bit,

H(ϕ′(u), ϕ′(v)) ∈ {0, 1}. By definition, the most parsimonious labeling ϕ′ mini-
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mizes the sum ∑
uv∈E(T ) H(ϕ′(u), ϕ′(v)). Consequently, ϕ′ must minimize the number

of edges uv such that ϕ′(u) 6= ϕ′(v).

First, we have Fitch’s algorithm to find most parsimonious labelings.

Fitch’s Algorithm (Fitch (1971)). Let T be a binary tree with root ρ and leaf-

labeling ϕ : L(T )→ {0, 1}. The following algorithm, completed in two parts, will find

a most parsimonious labeling ϕ′ : V (T )→ {0, 1} which extends ϕ.

Part 1: Define a function B on the vertices of T as follows: For each leaf `, set

B(`) := {ϕ(`)}. Extend this assignment to all vertices of T by the following

rule: For a vertex u with children v1, v2 such that B(v1) and B(v2) have been

defined, set

B(u) :=


B(v1) ∩B(v2) if B(v1) ∩B(v2) 6= ∅,

B(v1) ∪B(v2) otherwise.
(4.2)

Part 2: Select a single element α ∈ B(ρ). Define a function ϕ′ on the vertices of T

as follows: Set ϕ′(ρ) := α. Extend ϕ′ to V (T ) by the following rule: If v is

a child of u and ϕ′(u) is defined, then

ϕ′(v) :=


ϕ′(u) if ϕ′(u) ⊆ B(v),

1− ϕ′(u) if ϕ′(u) 6∈ B(v).
(4.3)

The resulting ϕ′ is a most parsimonious labeling extending ϕ and is called a Fitch

solution.

While Fitch solutions are most parsimonious labelings, there are cases when

Fitch’s algorithm finds some of the most parsimonious labelings but not all of them.

However, Sankoff’s algorithm, described below, will produce all most parsimonious

labelings (Erdős and Székely 1994).
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Sankoff’s Algorithm (Erdős and Székely (1994); Sankoff and Rousseau (1975)).

Let T be a binary tree with root ρ and leaf labeling ϕ : L(T )→ {0, 1}. This algorithm

is completed in two steps.

Part 1: Define functions s0 and s1 on the vertices of T as follows: For each leaf `,

s0(`) :=


0 if ϕ(`) = 0,

∞ otherwise.
(4.4)

s1(`) :=


0 if ϕ(`) = 1,

∞ otherwise.

Extend these functions recursively to all vertices by the following: If v0 and

v1 are children of u and si(vj) has been defined for all i, j ∈ {0, 1}, then

s0(u) := min{s0(v0), s1(v0) + 1}+ min{s0(v1), s1(v1) + 1}, (4.5)

s1(u) := min{s0(v0) + 1, s1(v0)}+ min{s0(v1) + 1, s1(v1)}. (4.6)

Note: For any v ∈ V (T ), si(v) counts the minimum number of edges, within

the subtree containing v and its descendants, that will witness a change if

a most parsimonious solution labeled v with the value i. A leaf will have

s0(`) =∞ (or s1(`) =∞ if it is impossible for a most parsimonious labeling

to label ` with a 0 (1), because most parsimonious labelings must agree with

the original leaf label.

Part 2: For each v ∈ V (T ), select αv ∈ {0, 1}. Define the function ϕ′ on the vertices

of T as follows: For root ρ, define

ϕ′(ρ) :=



0 if s0(ρ) < s1(ρ),

αρ if s0(ρ) = s1(ρ),

1 if s0(ρ) > s1(ρ).
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Extend ϕ′ to V (T ) by the following rule: If v is a child of u and ϕ′(u) is

defined, then define ϕ′(v) as follows: If ϕ′(u) = 0, then

ϕ′(v) :=



0 if s0(v) < s1(v) + 1,

αv if s0(v) = s1(v) + 1,

1 if s0(v) > s1(v) + 1.

(4.7)

If ϕ′(u) = 1, then

ϕ′(v) :=



1 if s1(v) < s0(v) + 1,

αv if s1(v) = s0(v) + 1,

0 if s1(v) > s0(v) + 1.

(4.8)

The resulting ϕ′ is a most parsimonious labeling for T extending ϕ and is called a

Sankoff solution.

The following lemma draws a connection between the solutions found from each

algorithm.

Lemma 4.3. Let T be a binary tree with leaf-labeling ϕ : L(T ) → {0, 1}. Suppose

that, for each u, v ∈ V (T ) with v a child of u, the function B in Fitch’s algorithm

satisfies

B(v) = {0, 1} ⇒ B(u) = {0, 1}. (4.9)

Then for T and ϕ, all Sankoff solutions are Fitch solutions. In other words, Fitch’s

algorithm finds all most parsimonious labelings.

In order to prove Lemma 4.3, we first establish a series of claims (4.4 through 4.7)

under the assumptions of Lemma 4.3.

Claim 4.4. For any non-leaf vertex v, if B(v) = {x} for some x ∈ {0, 1}, in Sankoff’s

algorithm s0(v) = 0 and s1(v) = 2.
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Proof. The proof proceeds by reverse induction on the distance from the root. For

the base case, we consider those vertices whose children are both leaves. Let v be such

a vertex with children v` and vr. By symmetry of the argument, assume B(v) = {0}.

Then B(v`) = B(vr) = {0} which only happens for leaves if ϕ(v`) = ϕ(vr) = 0.

By (4.4), s0(v`) = s0(vr) = 0 and s1(v`) = s1(vr) = ∞. As desired, (4.5) implies

s0(v) = 0 and (4.6) implies s1(v) = 2.

For the inductive hypothesis, assume that each vertex v of distance at least d ≥ 1

from the root has either s0(v) = 0 and s1(v) = 2 or s0(v) = 2 and s1(v) = 0. Let u

be a vertex of distance d − 1 from the root. Again, we assume B(u) = {0} as the

argument for the case when B(u) = {1} is very similar. This vertex has two children,

u` and ur. There are three cases to consider.

(1) If u` and ur are leaves, then the argument in the base case gives s0(u) = 0 and

s1(u) = 2 as desired.

(2) If u` is a leaf and ur is not a leaf, then s0(ur) = 0 and s1(ur) = ∞ and, by

the inductive hypothesis s0(u`) = 0 and s1(u`) = 2. Therefore (4.5) implies

s0(u) = 0 and (4.6) implies s1(u) = 2.

(3) If u` and ur are not leaves, then by the inductive hypothesis, s0(u`) = s0(ur) = 0

and s1(u`) = s1(ur) = 2. Again, (4.5) implies s0(u) = 0 and (4.6) implies

s1(u) = 2.

This complete the proof of the claim. �

Claim 4.5. For any vertex v with B(v) = {0, 1} from Fitch’s algorithm, we will have

s0(v) = s1(v) in Sankoff’s algorithm.

Proof. This claim is also proven by induction on distance from the root where the

base case examines those vertices with greatest distance from the root.
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For the base case, let v be a vertex with B(v) = {0, 1} and none of its descendants

u have B(u) = {0, 1}. For children v` and vr of v we may assume B(v`) = {0} and

B(vr) = {1} by (4.2). By Claim 4.4,

s0(v`) = s1(vr) = 0 and s0(vr) = s1(v`) = 2.

Therefore s0(v) = s1(v) = 1.

For the inductive hypothesis, suppose all vertices u with B(u) = {0, 1} of distance

at least d ≥ 1 from the root have s0(u`) = s1(ur). Let v be a vertex at distance d− 1

from the root with B(v) = {0, 1}. There are three cases to consider:

(1) If v has a child v` with B(v`) = {0}, then by (4.2) the other child vr must have

B(vr) = {1} and we can use the argument in the base case to see s0(v`) = s1(vr).

(2) If v has a child v` with B(v`) = {1}, then by (4.2), v must have another child

vr with B(vr) = {0}. This puts us back in case 1.

(3) If v has a child v` with B(v`) = {0, 1}, then by (4.2), v must have another

child vr with B(vr) = {0, 1}. By the inductive hypothesis, s0(v`) = s1(v`) and

s0(vr) = s1(vr). By (4.5) and (4.6), s0(v) = s1(v).

This completes the proof of the claim. �

Claim 4.6. For any non-leaf vertex v with B(v) = {i} (i ∈ {0, 1}), both Fitch’s

algorithm and Sankoff’s algorithm will define ϕ′(v) = i.

Proof. In Fitch’s algorithm, this is an immediate consequence of (4.3).

Now consider Sankoff’s algorithm. If B(v) = {0} then, by Claim 4.4, s0(v) = 0

and s1(v) = 2. Observe s0(v) < s1(v) + 1 and s1(v) > s0(v) + 1. Therefore ϕ′(v) = 0

by (4.7) and (4.8). �

Claim 4.7. Suppose B(ρ) = {0, 1}. For any vertex v with B(v) = {0, 1}, if both

algorithms set ϕ′(ρ) := 0, then both Fitch’s algorithm and Sankoff’s algorithm will

set ϕ′(v) = 0. Likewise, if ϕ′(ρ) = 1, then both algorithms will set ϕ′(v) = 1.
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Proof. For any vertex v with B(v) = {0, 1}, there is a path ρ = u0, u1, . . . , ut−1, ut = v

of vertices such that B(ui) = {0, 1} for each i ∈ [t]. It suffices to show that, in both

algorithms, if ϕ′(ui) = 0 for some 0 ≤ i < t, then ϕ′(ui+1) = 0.

In Part 2 of Fitch’s algorithm, if ϕ′(ui) = 0 and B(ui+1) = {0, 1}, then (4.2)

implies ϕ′(ui+1) = 0 .

In Sankoff’s algorithm, if ϕ′(ui) = 0 and B(ui+1) = {0, 1}, then by Claim 4.7,

s0(ui+1) = s1(ui+1). Thus s0(ui+1) < s1(ui+1) + 1. Since ϕ′(ui) = 0, (4.7) implies

ϕ′(ui+1) = 0.

A similar argument can be used to show that if ϕ′(ρ) = 1, then ϕ′(v) = 1.

Therefore Fitch’s algorithm and Sankoff’s algorithm will agreed on ϕ′(v) if they agree

on ϕ′(ρ). �

Proof of Lemma 4.3. In each algorithm, once ϕ(ρ) has been set, the algorithm deter-

ministically outputs a most parsimonious labeling of all vertices. Therefore, it suffices

to prove that both algorithms have the same choices for labeling the root and both

algorithms output the same most parsimonious labeling for the same choice for ϕ′(ρ).

If B(ρ) = {0} or B(ρ) = {1}, then there is only one choice in Fitch’s algorithm

for ϕ′(ρ). By Claim 4.4, Sankoff’s algorithm has the same determined value for ϕ′(ρ).

Further, all vertices v ∈ V (T ) will have either B(v) = {0} or B(v) = {1} by condition

(4.9) and Claim 4.6 completes the proof.

If B(ρ) = {0, 1}, then in Fitch’s algorithm, there are two choices for ϕ′(ρ). By

Claim 4.5, s0(ρ) = s1(ρ) in Sankoff’s algorithm, which means there are also two

choices for ϕ′(ρ). Claim 4.7 implies that if we make the same choice for the root,

both algorithms give the same most parsimonious labeling ϕ′.

Sankoff’s algorithm is guaranteed to find all most parsimonious labelings and

the most parsimonious labelings from Fitch’s algorithm coincide with those from

Sankoff’s algorithm, this implies that Fitch’s algorithm finds all most parsimonious

labelings. �
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As mentioned earlier, these algorithms are designed for a tree T with leaf-labeling

ϕ : L(T )→ {0, 1}. However, given a tree T with leaf-labeling φ : L(T )→ {0, 1}N , we

can restrict all strings to a single coordinate and run one of the above algorithms to

find a most parsimonious labelings for V (T ) in that coordinate. Repeat this for each

coordinate. The most parsimonious labelings found for each coordinate can then be

combined into a most parsimonious labeling of V (T ) that extends φ.

4.2 Complexity result for #BinSPSCJ

Here is our main result on binary trees.

Theorem 4.8. #BinSPSCJ is #P-complete.

Proof. In Lemma 1.23 we saw that #SPSCJ is in #P. To prove #SPSCJ is in #P-

hard, we provide a polynomial reduction from #D3SAT.

Fix a D3CNF, Γ = ∧
i∈[k] ci with k clauses and n variables. Let

Ψ(Γ ) :=
∧
i∈[k]

ci ∧
∧
i∈[n]

Φi

with 2n variables, {v1, v2, . . . vn, w1, w2, . . . , wn}, where each clause ci has three dis-

tinct literals from {vi, vi : i ∈ [n]}, and Φi is the D3CNF in (4.1) which guarantees

that, for each i ∈ [n], vi and wi have different truth values. By Lemma 4.2, Γ and

Ψ(Γ ) have the same satisfying truth assignments. We will construct a binary tree B

and define a labeling ϕ of its leaves such that the number of satisfying truth assign-

ment for Ψ(Γ ) is directly computable from the number of most parsimonious SCJ

scenarios on B.

Each Φi has 4 clauses, so Ψ(Γ ) has k+4n clauses. Assign the names ck+1, . . . , ck+4n

to the 4n clauses of ∧i∈[n] Φi. Then

Ψ(Γ ) =
∧

i∈[k+4n]
ci.
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For each i ∈ [k+4n], we define a binary tree Bi which encodes clause ci. The final

binary tree B will join B1,B2, . . . ,Bk+4n by a comb. For t = 148(16n2 + 8kn)(k+ 4n),

the leaf-labeling ϕ : L(B) → {0, 1}2n+t, will assign a binary string with coordinates

(x1, y1, . . . , xn, yn, e1, . . . , et) to each leaf. The xi coordinates will correspond to the

vi variables and the yi coordinates will correspond to the wi variables of Ψ(Γ ). The

ei coordinates will be for additional ones, used in a manner similar to the additional

ones in the previous two chapters for star trees.

In this chapter, we denote the left child of a non-leaf vertex v by v` and the

right child by vr. The height of a vertex is its graph distance from the root. The

construction of Bi with its leaf labeling ϕ will come in Definition 4.12, but first we

need some preliminary definitions.

For any clause ci = vα ∨ vβ ∨ vγ which is the disjunction of 3 distinct literals,

Miklós, Kiss, and Tannier (2014) defined a unit subtree, Ui, with 248 leaves. They

also defined a leaf-labeling ϕ̂ : L(Ui)→ {0, 1}151 where the binary strings in the range

have coordinates (x̂α, x̂β, x̂γ, ê1, ê2, . . . , ê148). The first three coordinates correspond

to the variables in ci and the remaining 148 coordinates are for additional ones. This

unit subtree has some useful properties which will be discussed after Definition 4.12.

For each i ∈ [k + 4n], let Ui be the unit subtree for clause ci. If i ≤ k where ci

relates vα, vβ, vγ, then Ui will have leaf labels with coordinates {xα, xβ, xγ} and 148

coordinates for additional ones. If i > k where ci relates variables vα, wα, vα+1, Ui will

have leaf labels with coordinates {xα, yα, xα+1} and 148 coordinates for additional

ones.

Definition 4.9. The tree Ti in Step 5 of Definition 4.11 is a comb joining 16n2 +8kn

copies of Ui, as in Figure 4.1.

Definition 4.10. For three literals a, b, c, we define S(a, b, c) to be the complete binary

tree of height 3 with root ρ with the vertices labeled with equations as follows:
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Ui Ui

Ui

Ui

Figure 4.1 Comb connecting
16n2 + 8kn copies of Ui to create Ti

1. Assign the label “a = 0” to vertex ρ` and “a = 1” to ρr.

2. For each vertex u of height 1, assign the label “b = 0” to u` and “b = 1” to ur.

3. For each vertex v of height 2, assign the label “c = 0” to v` and “c = 1” to vr.

This tree is pictured on the right in Figure 4.2. We will use the representation on the

left in place of S(a, b, c) in future figures.

Next we construct B̂i which will have the same tree structure as Bi. However, B̂i

will have all of its vertices labeled with equations while Bi will only have leaf labels

which are binary strings. The leaf labeling of Bi will be induced by the vertex labels

of B̂i. Each leaf will essentially inherit the labels of its ancestors.

Definition 4.11. Fix i ∈ [k + 4n]. Construct B̂i, a binary tree with vertex labels, as

follows.

A. If i ∈ [k], then say clause ci has variables vα, vβ, vγ. The construction of B̂i

described below is drawn in Figure 4.2.

a) Draw a vertex ρi with two children, ρi` and ρir.

b) Label vertex ρi` with the equations “xj = yj = 0” for each j ∈ [n]\{α, β, γ}.

Label ρir with “xj = yj = 1” for all j ∈ [n] \ {α, β, γ}.

c) From each of ρi` and ρir, hang a copy of S(yα, yβ, yγ).
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c = 0 c = 0c = 1 c = 1 c = 0 c = 0c = 1 c = 1

b = 0 b = 0b = 1 b = 1

a = 0 a = 1a

b

c
:=

Figure 4.2 The labeled binary tree on the right is S(a, b, c). The
representation on the left will be used in place of S(a, b, c) in future
figures.

d) From each leaf of each copy of S(yα, yβ, yγ), hang a copy of S(xα, xβ, xγ).

e) Delete the left-most copy of S(xα, xβ, xγ), the one which hangs below the

vertices with labels “yα = 0,” “yβ = 0,” “yγ = 0,” and with ancestor ρi`,

and replace it with a copy of Ti from Definition 4.9.

B. If i ∈ {k + 1, . . . , k + 4n}, then clause ci relates variables vα, wα, vα+1. The

construction of B̂i described below requires only a change of variables from the

previous construction.

a) Draw a vertex ρi with two children, ρi` and ρir.

b) Label ρi` with “xj = yj = 0” for all j ∈ [n]\{α, α+ 1, α+ 2}. Label ρir with

the system of equations “xj = yj = 1” for each j ∈ [n] \ {α, α + 1, α+ 2}.

c) From each of ρi` and ρir, hang a copy of S(yα+1, xα+2, yα+2).

d) Hang a copy of S(xα, yα, xα+1) from each leaf of each and every copy of

S(yα+1, xα+2, yα+2).

e) Delete the left-most copy of S(xα, yα, xα+1) and replace it with a copy of

Ti from Definition 4.9.

Recall B is a comb connecting binary trees Bi. The binary tree B has a leaf

labeling ϕ : L(B)→ {0, 1}2n+t where

t = 148(16n2 + 8kn)(k + 4n).
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Ti
x1
x2
x3

x1
x2
x3

· · ·

y1
y2
y3

x1
x2
x3

x1
x2
x3

x1
x2
x3

· · ·

y1
y2
y3

xj = yj = 0
∀j ∈ [n], j ≥ 4

xj = yj = 1
∀j ∈ [n], j ≥ 4

Figure 4.3 The binary tree B̂i, for i ∈ [k] created for
clause ci = x1 ∨ x2 ∨ x3.

Each leaf label will have coordinates (x1, y1, . . . , xn, yn, e1, . . . , et). In the next defini-

tion, we define Bi and values of ϕ on the leaves of Bi.

Definition 4.12. For each i ∈ [k + 4n], the binary tree Bi will have the same tree

structure as B̂i. We only need to explain the labeling ϕ : L(Bi)→ {0, 1}2n+t.

Partition [t] into classes Eij with |Eij| = 148 for each i ∈ [k + 4n] and each

j ∈ [16n2 + 8kn]. Identify the set Eij with the jth copy of Ui in Ti. Here we define

ϕ(`) for each ` ∈ L(Bi).

There are two cases:

• If leaf ` is not in subtree Ti, then ϕ(`)[es] = 0 for all s ∈ [t]. The value of each

ϕ(`)[xw] and ϕ(`)[yw] for w ∈ [n] is inherited from the labels of the ancestors of

` as they appeared in B̂i.

• If leaf ` is in the subtree Ti within B̂i, then it is a leaf within the jth copy of

unit subtree Ui for some j ∈ [16n2 + 8kn]. Recall ϕ̂(`) ∈ {0, 1}151 Identify

the coordinates {ê1, ê2, . . . , ê148} with the indices in the 148 coordinates of Eij

in any order. If ês corresponds to coordinate er for r ∈ Eij, then we require

ϕ(`)[er] = ϕ̂(`)[ês]. For each coordinate z which corresponds to a variable in ci,

we also require that ϕ(`)[z] = ϕ̂(`)[ẑ]. Set ϕ(`)[es] = 0 for s 6∈ Eij. All other
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coordinates of ϕ(`) will take the value 0 (the value inherited from the labeling

of their ancestors in B̂i.

Define ϕxj : L(B)→ {0, 1} so that ϕxj(`) = ϕ(`)[xj]. Define ϕyj and ϕej similarly.

We want to examine the Fitch solutions on B for each ϕxj , ϕyi , and ϕej . We will first

prove that the conditions of Lemma 4.3 hold and thus Fitch’s algorithm find all most

parsimonious labelings for ϕ on B.

We first explore the Fitch solutions for ϕej , j ∈ [t].

Fact 4.13. Fix j ∈ [t]. There is only one ` ∈ L(B) with ϕej(`) = 1. After running

Part 1 of Fitch’s algorithm, B(`) = {1}, the parent v of ` has B(v) = {0, 1}, and

B(u) = {0} for all other vertices. Consequently, Part 2 of Fitch’s algorithm will

output a most parsimonious labeling ϕ′ej such that ϕ′ej(`) = 1 and for all other vertices

u ∈ V (B), ϕ′ej(u) = 0.

Proof. These values of B follow directly from the description of ϕ(`)[ej], for leaf `,

which was given in Definition 4.12. The conclusion follows from the definition of ϕ′

(4.3). �

Fact 4.14. For j ∈ [t], there is only one most parsimonious labeling ϕ′ej which extends

leaf labeling ϕej of B.

Proof. Recall that most parsimonious labelings minimize the sum of Hamming dis-

tances between adjacent vertices in the tree. The most parsimonious labeling obtained

from Fitch’s algorithm has

∑
uv∈E(B)

H(ϕ′ej(u), ϕ′ej(v)) = 1.

Because there is only one leaf ` with ϕej(`) = 1, the ϕ′ej obtained from Fitch’s

algorithm is the only extension of ϕej with the sum of Hamming distances equal

1. �
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Fix j ∈ [n]. Next we consider the most parsimonious labelings for ϕxj on B. The

same arguments will hold for each ϕyj .

Run Part 1 of Fitch’s algorithm on B with leaf labeling ϕxj . For those clauses ci

which contain variable vj, we have the following result.

Proposition 4.15 (Miklós, Kiss, and Tannier (2014)). Fix a clause ci. Suppose

variable vj is in ci with coordinate xj corresponding to variable vj. Let ri be the root

of unit subtree Ui for ci. Run Fitch’s algorithm on Ui with leaf labeling ϕxj . The

following hold:

1. B(ri) = {0, 1}.

2. For u, v ∈ V (Ui), if v is a child of u, then B(v) = {0, 1} ⇒ B(u) = {0, 1}.

In a single copy of S(a, b, c), all vertices of the same distance from the root either

have B(v) ∈ {{0}, {1}} or all of them have B(v) = {0, 1}. This fact together with

Proposition 4.15 implies that, when Fitch’s algorithm is run on B with leaf-labeling

ϕ(xi), for any u, v ∈ V (T ) with v a child of u,

B(v) = {0, 1} ⇒ B(u) = {0, 1}.

With this result and the structure of each S(a, b, c), By Lemma 4.3, we can con-

clude that Fitch’s algorithm finds all most parsimonious labelings of B that extend

ϕxj . Further, B(ρ) = {0, 1} implies there are exactly two such most parsimonious

labelings.

As mentioned earlier, these results also hold for coordinate yi. Fitch’s algorithm

finds the only two most parsimonious labelings that extend ϕyj on B.

For most parsimonious labeling ϕ′ that extends ϕ, on each v ∈ V (T ), notate

ϕ′(v)[xj] by ϕ′xj . Likewise, define the notations ϕ′yj and ϕ
′
es .
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Lemma 4.16. For leaf labeling ϕ of B, Fitch’s algorithm finds all most parsimonious

labelings. Each is characterized by the string it assigns to the root ρ of B and there are

precisely 22n most parsimonious labelings, one for each root label in {0, 1}2n × {0}t.

Proof. Given a most parsimonious labeling ϕ′ that extends ϕ, each ϕ′xj , ϕ
′
yj
, and ϕ′es

is a most parsimonious labeling for that coordinate. So it suffices to first find all most

parsimonious scenarios for the leaf labelings ϕxj , ϕyj , ϕes for all j ∈ [n] and s ∈ [t]

and take combinations of these labelings.

We have already seen that Fitch’s algorithm will find all most parsimonious la-

belings for ϕxj and ϕyj , and there are exactly 2 of each. Fitch’s algorithm will also

find the one and only most parsimonious labeling for ϕes . Therefore, there are 22n

most parsimonious labelings of B that extend ϕ. Part 2 of Fitch’s algorithm shows

that each most parsimonious labeling is characterized by the string it assigns to ρ.

Since B(ρ) = {0, 1} for each ϕxj and ϕyj and B(ρ) = {0} for each ϕes , the possible

strings for ϕ′(ρ) are {0, 1}2n × {0}t. �

SetM := {0, 1}2n × {0}t.

Definition 4.17. There is a bijection betweenM and the possible truth assignments

for Ψ(Γ ). In particular, given any µ ∈ M, define a truth assignment for variables

{vi}ni=1 ∪ {wi}ni=1 as follows:

• For each i ∈ [n], let vi be assigned the value true if µ[xi] = 1 and false otherwise.

• For each i ∈ [n], let wi be assigned the value true if µ[yi] = 1 and false otherwise.

DefineMΨ(Γ ) to be the set of µ ∈M which correspond to satisfying truth assignments

for Ψ(Γ ). Likewise, for any Θ, a clause or conjunction of clauses from Ψ(Γ ), define

MΘ to be the set of µ ∈M which correspond to satisfying truth assignments for Θ.

Now we know that each most parsimonious labeling of B extending ϕ is found

using Fitch’s algorithm and is characterized the binary string it assigns to the root.
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From here, we are interested in the number of SCJ scenarios admitted by each of these

most parsimonious scenarios. Ultimately, we wish to make a distinction between the

binary strings inMΨ(Γ ) and those inM\MΨ(Γ ) by examining the number of SCJ

scenarios admitted by the corresponding most parsimonious labeling.

Let ϕ′ be a most parsimonious labeling for B. The number of scenarios which are

admitted by ϕ′ is precisely

H(ϕ′(ρ)) :=
∏

uv∈E(B)
H(ϕ′(u), ϕ′(v))!.

To calculate this, we partition the edges of B into 4 sets.

First, consider the edges of the comb which connects {Bi}k+4n
i=1 to form B. Part 2

of Fitch’s algorithm will set ϕ′(ρ) = ϕ′(ρi) where ρi is the root of Bi. So the Hamming

distance along each of these edges is 0.

Next we look within each Bi.

Claim 4.18. Set Φ := ∧
Φι. For i ∈ [k+ 4n], let ρi be the root of Bi with children ρi`

and ρir. Set η := ϕ′(ρi). If η ∈M′
Φ, then

H(η, ϕ′(ρi`)) = H(η, ϕ′(ρir)) = n− 3.

Otherwise

(n− 3)!2 ≤ H(η, ϕ′(ρi`))! ·H(η, ϕ′(ρir))! ≤ (2n− 6)!0!.

Proof. Suppose η ∈M′
Φ. Then for each j ∈ [n] considered in Step 2 of Definition 4.11

(there are n− 3 such j) , if η[xj] = 0 then we have the following properties:

• η[yj] = 1 because η corresponds to a satisfying assignment for Φ,

• 0 = η[xj] 6= ϕ′(ρir)[xj] = 1,

• 1 = η[yj] 6= ϕ′(ρi`)[yj] = 0.

On the other hand, if η[xj] = 1 then we have the following properties:
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• η[yj] = 0 because η corresponds to a satisfying assignment for Φ,

• 1 = η[xj] 6= ϕ′(ρi`)[xj] = 0,

• 0 = η[yj] 6= ϕ′(ρir)[yj] = 1.

For each s ∈ [t], η[es] = ϕ′(ρi`)[es] = ϕ′(ρir)[es] = 0. For each j ∈ [n] which was

not considered in Step 2 of Definition 4.11, η[xj] = ϕ′(ρi`)[xj] = ϕ′(ρir)[xj] and

η[yj] = ϕ′(ρi`)[yj] = ϕ′(ρir)[yj] because the B values (from Fitch’s algorithm) for

these coordinates at these vertices will be {0, 1}. Thus

H(η, ϕ′(ρi`)) = H(η, ϕ′(ρir)) = n− 3.

Alternatively, if η 6∈ MΦ, then H(η, ϕ′(ρi`)) +H(η, ϕ′(ρir)) = 2n− 6 because each

xi and each yi will contribute 1 to one of the Hamming distances. Using the convexity

of the factorial, this establishes the last line of the claim. �

Based on the construction of S(a, b, c), the Hamming distance H(ϕ′(u), ϕ′(v)) for

each edge uv in each copy of S(a, b, c) is exactly 1.

The only piece remaining is Ti. We make the following remarks for the clause

ci = v1 ∨ v2 ∨ v3 to make the explanation easier. However, the arguments can be

extended for any clause ci in Ψ(Γ ).

Fact 4.19. If ti is the root of Ti and ri is the root of one of the copies of Ui below Ti,

then running Fitch’s algorithm for each coordinate, we find

• B(ti) = B(ri) = {0, 1} for each xi, i ∈ [3], by Proposition 4.15.

• B(ti) = B(ri) = {0} for each xi, i ≥ 4, by the construction of Bi.

• B(ti) = B(ri) = {0} for each yi, i ∈ [n], by the construction of Bi.

• B(ti) = B(ri) = {0} for each es, s ∈ [t], because there is only one leaf ` ∈ L(B)

with ϕ(`)[es] = 1.
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Therefore, it is easy to see that, along the edges of the comb which connect the

copies of Ui, the Hamming distances will be 0.

Next we turn our attention to a single copy of Ui, say the jth copy.

Fact 4.20. Fix Γ and build binary tree B. Fix a most parsimonious labeling ϕ′

which extends leaf labeling ϕ. For clause ci = v1 ∨ v2 ∨ v3, we have the following

characteristics for each v ∈ Ui,

• for s ≥ 4, ϕ′(v)[xs] = 0,

• for s ∈ [n], ϕ′(v)[ys] = 0,

• for s 6∈ Eij, ϕ′(v)[es] = 0.

Therefore, only the values of ϕ′(v) on the coordinates x1, x2, x3 and es for s ∈ Eij

will affect the Hamming distances along the edges in Ui. These are precisely the

151 coordinates that appeared in the originally labeling ϕ̂ of the leaves of Ui given by

Miklós, Kiss, and Tannier (2014). For each v ∈ V (Ui), define ϕ̂′(v) : V (Ui)→ {0, 1}151

to be the restriction of ϕ′(v) to these 151 coordinates. In particular, ϕ̂′ is a most

parsimonious labeling on Ui which extends leaf labeling ϕ̂.

The following fact is a consequence of Fact 4.20.

Fact 4.21. Let ri be the root of Ui. If ϕ′(ri) = ϕ̂′(ri), then for each uv ∈ E(Ui),

H(ϕ′(u), ϕ′(v)) = H(ϕ̂′(u), ϕ̂′(v)).

As a result ∏
uv∈Ui

H(ϕ′(u), ϕ′(v))! =
∏
uv∈Ui

H(ϕ̂′(u), ϕ̂′(v))!.

This is calculated as follows:

Fact 4.22 (Miklós, Kiss, and Tannier (2014)). Fix i ∈ [k + 4n], the binary tree Ui

with root ri, and leaf-labeling ϕ̂. Then for any most parsimonious labeling ϕ̂′ which

extends ϕ̂:
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1. If ϕ̂′(ri) corresponds to a satisfying truth assignment for ci, then

∏
uv∈Ui

H(ϕ̂′(u), ϕ̂′(v))! = 2156 × 364.

2. If ϕ̂′(ri) corresponds to a truth assignment which does not satisfy ci, then

∏
uv∈Ui

H(ϕ̂′(u), ϕ̂′(v))! = 2136 × 376.

Since ϕ′(ρ) = ϕ′(ri) = ϕ̂′(ri), ϕ′(ρ) corresponds to a satisfying truth assignment

for ci if and only if ϕ̂′(ri) also corresponds to a satisfying truth assignment for ci.

As a result of the above discussion, we have proven the following claim.

Claim 4.23. Fix i ∈ [k + 4n]. If ϕ′(ρ) corresponds to a satisfying truth assignment

for clause ci and
∧
ι∈[n] Φι, then

∏
uv∈E(Bi)

H(ϕ′(u), ϕ′(v))! = (n− 3)!2
(
2156 × 364

)16n2+8kn
.

If ϕ′(ρ) corresponds to a truth assignment which does not satisfy ci, then

(n− 3)!2
(
2136 × 376

)16n2+8kn
≤

∏
uv∈E(Bi)

H(ϕ′(u), ϕ′(v))!

≤ (2n− 6)!
(
2136 × 376

)16n2+8kn
.

If ϕ′(ρ) corresponds to a truth assignment which satisfies ci but does not satisfy∧
i∈[n] Φi, then

(n− 3)!2
(
2156 × 364

)16n2+8kn
<

∏
uv∈E(Bi)

H(ϕ′(u), ϕ′(v))!

≤ (2n− 6)!
(
2156 × 364

)16n2+8kn
.
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Observe,

(2n− 6)! [2136 × 376]16n2+8kn

(n− 3)!2 [2156 × 364]16n2+8kn =
[

312

220

]16n2+8kn (2n− 6
n− 3

)

<

[
312

220

]16n2+8kn

22n

<

[
312

220

]16n2+8kn

22n+k

=
[

312

220−1/(8n)

]16n2+8kn

<

[
312

219.5

]16n2+8kn

< 1.

Consequently,

(2n− 6)!
(
2136 × 376

)16n2+8kn
< (n− 3)!2 (2156 × 364)16n2+8kn

< (2n− 6)! (2156 × 364)16n2+8kn
.

Claim 4.24. If ϕ′(ρ) corresponds to a satisfying truth assignment for Ψ(Γ ), then

H(ϕ′(ρ)) =
[
(n− 3)!2

(
2136 × 376

)16n2+8kn
]k+4n

=: Bgood.

If ϕ′(ρ) corresponds to a truth assignment which does not satisfy Ψ(Γ ), then there

must be a clause ci for some i ∈ [k + 4n] which is not satisfied. Therefore,

H(ϕ′(ρ)) ≤(2n− 6)!
(
2136 × 376

)16n2+8kn

·
[
(2n− 6)!

(
2156 × 364

)16n2+8kn
]k+4n−1

=:Bbad.

Define

Btotal :=
∑
ϕ′
H(ϕ′(ρ))

which is the total number of most parsimonious SCJ scenarios for B which extend

leaf labeling ϕ, as in Definition 1.22.
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Given only Btotal, we would like to determine the number of satisfying truth

assignments, |S|, for Ψ(Γ ).

Btotal =
∑

η∈M′
Ψ(Γ )

H(η) +
∑

η′∈M\M′
Ψ(Γ )

H(η′)

= |S|Bgood +
∑

η′∈M\M′
Ψ(Γ )

H(η′).

As long as ∑η′∈M\M′
Ψ(Γ )
H(η′) < Bgood, we can conclude that the number of satisfying

truth assignments for Ψ(Γ ) (and for Γ ) is precisely⌊
Btotal

Bgood

⌋
.

Observe, for n ≥ 2,

22nBbad

Bgood

= 22n
[

312

220

]16n2+8kn (2n− 6
n− 3

)k+4n

< 22n
[

312

220

]16n2+8kn

22n(k+4n)

< 28n2+2kn+2n
[

312

220

]16n2+8kn

< 28n2+4kn
[

312

220

]16n2+8kn

=
[

312

220−1/2

]16n2+8kn

< 1.

Because there are only 22n truth assignments and 22n most parsimonious labelings,

we obtain our desired result:

∑
η′∈U
H(η′) ≤

∑
η′∈U

Bbad ≤ 22nBbad < Bgood.

Therefore, if we could determine the total number of most parsimonious scenarios

for this binary tree in polynomial time, then we could obtain the total number of

satisfying assignments for Ψ(Γ ) and for Γ in polynomial time. This completes the

proof. �
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Chapter 5

Eccentricity Sums in Trees

The eccentricity of a vertex v in a connected graph G is defined in terms of the

distance function as

eccG(v) := max
u∈V (G)

d(u, v).

The radius of G, rad(G), is the minimum eccentricity while the diameter, diam(G),

is the maximum. The center, C(G), is the collection of vertices whose eccentricity is

exactly rad(G).

We focus our attention on trees, where the center has at most two vertices (Jordan

1869) and the diameter is realized by a leaf. We also explore the total eccentricity of

a tree T , defined as the sum of the vertex eccentricities:

Ecc(T ) :=
∑

z∈V (T )
eccT (z).

For a fixed tree T with v ∈ C(T ) and any z ∈ V (T ),

min
u∈L(T )

Ecc(T )
eccT (u) ≤

Ecc(T )
eccT (z) ≤

Ecc(T )
eccT (v)

where L(T ) denotes the leaf set of T . This motivates the study in Section 2 of

the extremal values and structures for the following ratios where u,w ∈ L(T ) and

v ∈ C(T ),
Ecc(T )
eccT (v) ,

Ecc(T )
eccT (u) ,

eccT (u)
eccT (v) , and eccT (u)

eccT (w) .

The results are analogous to similar studies on distance in (Barefoot, Entringer, and

Székely 1997) and on the number of subtrees in (Székely and Wang 2014; Székely and

90



Wang 2013). As in those papers, the behavior of ratios is more delicate than that of

their numerators or denominators.

For a graph with n vertices, the total eccentricity is n times the average eccen-

tricity. Dankelmann and Mukwembi (2014) gave sharp upper bounds on the average

eccentricity of graphs in terms of independence number, chromatic number, domi-

nation number, as well as connected domination number. For trees with n vertices,

Dankelmann, Goddard, and Swart (2004) showed that the path maximizes Ecc(T ).

In Section 3, we prove that the star minimizes Ecc(T ) among trees with a given

order. Turning our attention to trees with a fixed degree sequence, we prove that

the “greedy” caterpillar maximizes Ecc(T ) while the “greedy” tree minimizes Ecc(T ).

This provides further information about the total eccentricity of “greedy” trees across

degree sequences.

From here forward, we assume that T is a tree with n vertices. Given two vertices

a, b ∈ V (T ), P (a, b) will be the unique path between a and b in T .

5.1 Extremal ratios

In this section, we consistently use the letters u,w to denote leaf vertices while v is

a center vertex. Before delving into ratios, the following observation from Jordan

(1869) is given without proof, and will be used many times. The next observation is

a simple calculation which will be useful in our proofs.

Observation 5.1. The center, C(T ), contains at most 2 vertices. These vertices are

located in the middle of a maximum length path, P . If {v} = C(T ), v divides P into

two paths, each of length rad(T ). If {v, z} = C(T ), the removal of vz ∈ E(T ) will

divide P into two paths, each of length rad(T )− 1.
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Observation 5.2. For any path P with y edges and y + 1 vertices,

Ecc(P ) =
∑

z∈V (P )
eccP (z) =


3
4y

2 + y if y is even

3
4y

2 + y + 1
4 if y is odd.

5.1.1 On the extremal values of Ecc(T )
eccT (v) where v ∈ C(T )

Theorem 5.3. Let T be a tree with n ≥ 2 vertices. For any v ∈ C(T ), we have

Ecc(T )
eccT (v) ≤ 2n− 1.

For n ≥ 3, equality holds if and only if T is a star centered at v.

Proof. Let T be an arbitrary tree with v ∈ C(T ). It is known that for any tree T ,

diam(T ) ≤ 2 rad(T ) and for any vertex z ∈ V (T ), rad(T ) ≤ eccT (z) ≤ diam(T ).

Because eccT (v) = rad(T ), the bound in the theorem is proved as follows:

Ecc(T ) ≤ eccT (v) + (n− 1) diam(T ) ≤ (2n− 1) rad(T ).

Equality holds precisely when T has eccT (z) = 2 eccT (v) for all vertices z 6= v.

Because the eccentricities of adjacent vertices differ by at most 1, eccT (v) = 1 and

eccT (z) = 2 for all z 6= x which is only true for the star. �

Theorem 5.4. Let T be a tree with n ≥ 2 vertices. Let k and i be nonnegative

integers with 0 ≤ i ≤ 2k and n = k2 + i. For any v ∈ C(T ), we have

Ecc(T )
eccT (v) ≥


n− 3 + 2k + i

k
if 0 ≤ i ≤ k

n− 3 + 2k + i+1
k+1 if k + 1 ≤ i ≤ 2k.

For n ≥ 4, equality holds if and only if T is a tree whose longest path has 2x vertices

(x = k in the first case and x = k+1 in the second) and each other vertex is adjacent

to one of the two center vertices of this path. For i = k, the two bounds agree and

both values for x provide an extremal tree.
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Proof. Let T be a tree with n ≥ 3 vertices and let v ∈ C(T ). If T is a star then
Ecc(T )
eccT (v) = 2n− 1 which is strictly greater than the bounds in the theorem.

For the remainder of the proof, we consider the case when T is not a star. By

Observation 5.1, there is a maximum-length path P := P (u,w) with v in the middle

and d(u, v) = eccT (v). We now consider two cases, based upon the size of C(T ).

If C(T ) = {v}, then both P (u, v) and P (v, w) have length eccT (v). Let S be the

non-empty set {w′ ∈ L(T ) : w′ 6= u and d(v, w′) = eccT (v)}. Create a new tree F

from T by detaching each leaf w′ ∈ S and appending each one to v. This tree is

different from T because T was not a star. For any z ∈ V (T ), eccT (z) ≥ eccF (z).

Further, for each w′ ∈ S, eccT (w′) > eccF (w′). As a result, Ecc(T ) > Ecc(F ). As for

v ∈ C(T ), eccF (v) = eccT (v) = dT (u, v) because u 6∈ S. The length of the longest

path in F is one less than the length of the longest path in T which implies v ∈ C(F )

and |C(F )| = 2. Altogether, we see Ecc(T )
eccT (v) >

Ecc(F )
eccF (v) . Hence, to minimize Ecc(T )

eccT (v) , it

suffices to consider those trees with two center vertices.

Suppose |C(T )| = 2 and let x := eccT (v). Here, the path P has length 2x − 1

and the vertices on P realize their eccentricities along this path since it has max-

imum length. Explicitly calculating the eccentricities of the vertices on P , using

Observation 5.2, and lower bounding all other eccentricities by x+ 1, we have

Ecc(T )
eccT (v) ≥

1
x

((
3x2 − x

)
+ (n− 2x)(x+ 1)

)
= x+ (n− 3) + n

x
=: f(x)

Equality holds if and only if each vertex not on P is a neighbor of one of the center

vertices of P , as in Fig. 5.1.

. . . . . .

v uw ︸ ︷︷ ︸
x−1 vertices

︸ ︷︷ ︸
x−1 vertices ︸ ︷︷ ︸

n−2x vertices

Figure 5.1 A tree which minimizes Ecc(T )
eccT (v) .

To determine the value of x which minimizes f(x), we use the first derivative test.
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Because f ′(x) = 1− n
x2 is negative for x <

√
n and positive for x >

√
n, the minimum

of f(x) is obtained when

x ∈ {
⌊√

n
⌋
,
⌈√
n
⌉
} ⊆ {k, k + 1}.

Because f(k+ 1)− f(k) = k−i
k(k+1) , f(k) ≤ f(k+ 1) precisely when i ≥ k with equality

when i = k, as stated in the theorem. �

5.1.2 On the extremal values of Ecc(T )
eccT (u) where u ∈ L(T )

Theorem 5.5. Let T be a tree on n ≥ 8 vertices. Let k and i be integers with

0 ≤ i ≤ 2k and 2n− 1 = k2 + i. For any u ∈ L(T ), we have

Ecc(T )
eccT (u) ≤


2n+ 1− 2k − i

k
if 0 ≤ i ≤ k

2n+ 1− 2k − i+1
k+1 if k + 1 ≤ i ≤ 2k.

Equality holds if and only if T is a tree with longest path P = z1z2 . . . z2x−1 (x = k

in the first case and x = k + 1 in the second), leaf u adjacent to zx, and each other

vertex adjacent to either z2 or z2x−2. For i = k, the two bounds agree and both values

of x will provide an extremal tree.

Proof. Let T be a tree with n ≥ 8 vertices and u ∈ L(T ). If T is a path, then
Ecc(T )
eccT (u) ≤

3
4n+ 1

2 which is strictly smaller than the bounds in the theorem.

For the remainder of the proof, we will suppose T is not a path. Fix P := P (w,w′)

to be a maximum-length path in T . For any leaf u ∈ L(T ) different from w and w′,
Ecc(T )
eccT (w) ≤

Ecc(T )
eccT (u) . Because we are interested in an upper bound, it suffices to consider

leaves u which are not on P .

Let u be a leaf of T which is not on P and let x := eccT (u). There is a unique

path from u to the closest vertex on P , say z. Then d(u,w) = d(u, z) + d(z, w) and

d(u,w′) = d(u, z) +d(z, w′). Since d(u,w) and d(u,w′) are at most x and d(u, z) ≥ 1,

we have d(w,w′) = d(w, z)+d(z, w′) ≤ 2x−2. Because P has maximum length, every
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vertex on P realizes its eccentricity along P . Every vertex not on P has eccentricity

at most 2x− 2. This gives the upper bound

Ecc(T )
eccT (u) ≤

1
x

(
x+

(3
4(2x− 2)2 + (2x− 2)

)
+ (n− 2x)(2x− 2)

)

= −x
2 + (2n+ 1)x− (2n− 1)

x
.

Equality is achieved precisely when T is a tree with longest path P on 2x−1 vertices,

u is adjacent to the middle vertex of P , and all other vertices have eccentricity 2x−2.

Such a tree T is shown in Fig. 5.2.

. . . . . .

u

︸ ︷︷ ︸
2x−3 internal vertices . . .

wu v

{v}=C(T )

︸ ︷︷ ︸
n−x−1 vertices

Figure 5.2 A tree (left) which maximizes Ecc(T )
eccT (u) and a tree (right) which

minimizes Ecc(T )
eccT (u) .

It remains to determine the value of x that will maximize Ecc(T )
eccT (u) for trees with

the structure described above. The first derivative test shows that f(x) is maximized

when

x ∈ {
⌊√

2n− 1
⌋
,
⌈√

2n− 1
⌉
} ⊆ {k, k + 1}.

The larger of f(k) and f(k+ 1) gives the appropriate upper bound in (5.5). In addi-

tion, we must require 2x ≤ n in order to have a realizable tree. One can individually

check that this is the case for n ∈ {8, 9, . . . , 12}. When n ≥ 13, we have k ≥ 5 in

which case 0 ≤ k2 − 4k − 3 which implies 2x ≤ 2(k + 1) ≤ n. �

Theorem 5.6. Let T be a tree of order n ≥ 5. Let k and i be nonnegative integers

with 0 ≤ i ≤ 2k and 4n− 4 = k2 + i. Then for any leaf u,

Ecc(T )
eccT (u) ≥


n−1

2 + k
2 + i

4k if k is even

n−1
2 + k

2 + i+1
4(k+1) if k is odd.

(5.1)

95



Equality holds if and only if T is a tree with longest path P of length 2x (2x = k for

the first case and 2x = k + 1 for the second) with all other vertices adjacent to the

middle vertex of P as shown in Fig. 5.2. When i = k, both bounds in (5.1) give the

same value and both give extremal structures.

Proof. Let T be a tree and u ∈ L(T ). Let x := eccT (u) and choose w ∈ L(T ) so

that d(u,w) = x. Let P := P (u,w). The vertices on P have eccT (u) ≥ eccP (u). The

eccentricity of any vertex not on P is at least 1 + x
2 with equality if x is even and

these vertices are adjacent to the center vertex of P . This gives the following lower

bound:

Ecc(T )
eccT (u) ≥

1
x

((3
4x

2 + x
)

+ (n− x− 1)
(

1 + x

2

))
=: f(x)

where equality holds when P has even length and all vertices not on P are adjacent

to the center vertex of P as in Fig. 5.2. Examination of f ′(x) shows that the ratio is

minimized when

x ∈
{⌊√

4n− 4
⌋
,
⌈√

4n− 4
⌉}
⊆ {k, k + 1} .

We already established that the lower bound is tight for even x. For the universal

lower bound, we let x = k if k is even and k+1 otherwise. Both will yield a realizable

tree because x ≤ n − 1 for n ≥ 5. It is also important to note that if 4n − 4 is a

perfect square, then k = b
√

4n− 4c = d
√

4n− 4e = 2
√
n− 1, an even value. The

lower bounds in (5.1) are exactly f(k) and f(k + 1). For thoroughness, it can be

verified that f(k) ≤ f(k + 2) and f(k + 1) ≤ f(k − 1), for k > 1 to show that our

choice of the even integer nearest
√

4n− 4 was correct for this concave up function.

For thoroughness, it is shown below that f(k) ≤ f(k+2) and f(k+1) ≤ f(k−1),

for k > 1. (One can quickly check that the bound also holds for n = 3 when k = 1.)

Thus our choice of the even integer nearest
√

4n− 4 was correct for this concave up

function.
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f(k + 2)− f(k) = n− 1
k + 2 + 1

2 −
n− 1
k

= 2k(n− 1) + k(k + 2)− 2(k + 2)(n− 1)
2k(k + 2)

= k2 + 2k − (4n− 4)
2k(k + 2)

= k2 + 2k − (k2 + i)
2k(k + 2)

≥ 0.

f(k − 1)− f(k + 1) = −1
2 + n− 1

k − 1 −
n− 1
k + 1

= −(k − 1)(k + 1) + 2(n− 1)(k + 1)− 2(n− 1)(k − 1)
2(k − 1)(k + 1)

= −k2 + 1 + 4(n− 1)
2(k − 1)(k + 1)

= −k2 + 1 + k2 + i

2(k − 1)(k + 1)

= i+ 1
2(k − 1)(k + 1)

> 0.

�

5.1.3 On the extremal values of eccT (u)
eccT (v) where u ∈ L(T ) , v ∈ C(T )

Theorem 5.7. Let T be a tree on n ≥ 3 vertices with u ∈ L(T ) and v ∈ C(T ). Then

eccT (u)
eccT (v) ≤ 2,

where the upper bound is tight for stars, even length paths, and more. If, in addition,

n ≥ 5, then

1 + 1⌊
n−1

2

⌋ ≤ eccT (u)
eccT (v) .
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Equality holds if and only if T is one of the following trees: (1) For any n ≥ 5, T has

a longest path P on n − 1 vertices with a single vertex u adjacent to v ∈ C(P ). (2)

For even n ≥ 5, T has a longest path P on n−2 vertices with u adjacent to v ∈ C(P )

and w adjacent to any internal vertex of P . These structures are drawn in Fig. 5.3.

Proof. The upper bound of 2 follows from the facts that rad(T ) = eccT (v) and

eccT (u) ≤ diam(T ) ≤ 2 rad(T ). This bound is tight for all trees whose maximum-

length path has an odd number of vertices and u a leave of one of these paths.

Turning our attention to the lower bound, let T be a tree with n ≥ 5 vertices. We

first show that it holds for paths. If T is a path, then

eccT (u)
eccT (v) ≥

n− 1
n
2

= 1 + n− 2
n
≥ 1 + 1⌊

n−1
2

⌋ .
For the remainder of the proof, we assume T is not a path. Because n ≥ 5,

eccT (u) ≥ eccT (v) + 1 with equality exactly when uv ∈ E(T ). In addition, because

v ∈ C(T ), Observation 5.1 guarantees a maximum-length path P with v in the

middle. Because T is not a path, P has at most n− 1 vertices and eccT (v) ≤ dn−2
2 e.

These two inequalities result in the desired bound.

eccT (u)
eccT (v) ≥ 1 + 1

eccT (v) ≥ 1 + 1
dn−2

2 e
= 1 + 1

bn−1
2 c

.

Finally, let us analyze the trees T for which equality holds. Because P has at

most n− 1 vertices, we first examine the necessary and sufficient conditions to have

eccT (v) = dn−2
2 e, based on the parity of n. If n is odd, then eccT (v) = n−1

2 if and

only if P has n− 1 vertices. For even n, eccT (v) = n−2
2 if and only if P has n− 1 or

n− 2 vertices.

Therefore, the bound in the theorem is tight exactly when T is one of the following

two trees which are drawn in Fig 5.3: (1) T is a tree with longest path P on n − 1

vertices and leaf u adjacent to v ∈ C(P ). (2) For even n, T is a tree with maximum-

length path P = z1z2 . . . zn−2 with u adjacent to v ∈ C(P ) and w adjacent to zi for

some i ∈ {2, 3, . . . , n− 3}. �
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u

v︸ ︷︷ ︸
bn−2

2 c vertices
︸ ︷︷ ︸
dn−2

2 e vertices

u

v︸ ︷︷ ︸
n−2

2 vertices
︸ ︷︷ ︸
n−4

2 vertices

Figure 5.3 Trees which minimize eccT (u)
eccT (v) , the right one for even n only.

5.1.4 On the extremal values of eccT (u)
eccT (w) where u,w ∈ L(T )

First note that since the maximum and minimum values of eccT (u)
eccT (w) are reciprocals of

each other, we only consider the maximum.

Theorem 5.8. Let T be a tree with n ≥ 4 vertices. For any u,w ∈ L(T ), we have

eccT (u)
eccT (w) ≤ 2− 2

bn2 c
.

For even n, equality holds if and only if T is a tree with longest path P = uz2z3 . . . zn−1

and leaf w adjacent to zn/2. For odd n, equality holds if and only if T is a tree with

longest path P = uz2z3 . . . zn−2, leaf w adjacent to z(n−1)/2 and leaf ω adjacent to zi

for some i ∈ {2, . . . , n− 3}. These constructions are drawn in Fig. 5.4.

Proof. Let T be a tree and let u,w ∈ L(T ). For the upper bound, it is reasonable

to assume eccT (u) ≥ eccT (w). If d(u,w) = eccT (u), then eccT (u)
eccT (w) = 1 which is strictly

smaller than the bound in the theorem.

For the remainder of the proof, we focus on the case where d(u,w) < eccT (u).

Choose y ∈ L(T ) so that eccT (u) = d(u, y) and let P := P (u, y). There is a unique

path from w to the nearest vertex, say z, on P . Thus

eccT (w) ≥ d(w, z) + max{d(z, u), d(z, y)} ≥ 1 +
⌈1

2 eccT (u)
⌉

where equality holds if d(w, z) = 1 and |d(z, u)− d(z, y)| ≤ 1. We now consider two

cases based on the parity of eccT (u).
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First suppose x := eccT (u) is odd. Let S be the collection {y : d(u, y) = x}. Notice

that w is not in S because d(u,w) < x. Now create a new tree F from T by detaching

each y ∈ S and reattaching each as a pendant vertex adjacent to the unique neighbor

of u in T . As a result, eccF (u) = x − 1, an even integer. By the above argument,

eccT (w) ≥ 1 + dx2e = 1 + 1
2(x + 1) while eccF (w) ≥ 1 + d1

2 eccF (u)e = 1 + 1
2(x − 1).

As a result, we obtain tight upper bounds eccT (u)
eccT (w) ≤

x
1
2 (x+3) and eccF (u)

eccF (w) ≤
x−1

1
2 (x+1) . The

second gives the larger upper bound. Since we seek a tight universal upper bound for

the ratio, it suffices to consider only trees with u having even eccentricity.

Assume eccT (u) is even. If n is even, then eccT (u) ≤ n − 2 because w is not on

P . However, we can tighten this to eccT (u) ≤ n − 3 when n is odd because of our

assumption about the parity of eccT (u). In either case, 1 + 1
2 eccT (u) ≤ bn2 c. This

give the desired bound:

eccT (u)
eccT (w) ≤

eccT (u)
1 + 1

2 eccT (u) = 2− 2
1 + 1

2 eccT (u) ≤ 2− 2
bn2 c

.

Finally, we characterize the trees T , based on the parity of n, for which equality

holds. For even n, equality holds if and only if T is a tree with longest path P on

n − 1 vertices with leaf w adjacent to the center of P . For odd n, equality holds if

and only if T is a tree with longest path P on n− 2 vertices with leaf w adjacent to

the center of P and leaf ω adjacent to any internal vertex of P . This is exemplified

by Fig. 5.4, with the additional leaf that occurs only for odd n in gray. �

w

vu y︸ ︷︷ ︸
2bn2 c−3 internal vertices

Figure 5.4 A tree which maximizes eccT (u)
eccT (w) .

Table 5.1 summarizes the results in section 2. Vertex labels appear as in the

theorems. Specifically v is always in C(T ) while each u and w are leaves of T .
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Table 5.1 A summary of results for an arbitrary tree T on
n vertices with v ∈ C(T ) and u,w ∈ L(T ).

Bound Extremal Tree

Ecc(T )
eccT (v) ≤ 2n− 1

Ecc(T )
eccT (v) ≥ n+ 2

√
n− a(n) . . .. . .

v︸ ︷︷ ︸
≈n−2

√
n

Ecc(T )
eccT (u) ≤ 2n− 2

√
2n+ b(n) . . . . . .

u

v︸ ︷︷ ︸
≈2
√

2n−3 internal

Ecc(T )
eccT (u) ≥ 1

2n+
√
n− c(n) . . .

wu v︸ ︷︷ ︸
≈n−2

√
n−1

eccT (u)
eccT (v) ≤ 2

Stars, even length
paths with pendant

edges, etc.

eccT (u)
eccT (v) ≥ 1 + 2

n
+O( 1

n2 )
u
v

eccT (u)
eccT (w) ≤ 2− 4

n
+O( 1

n2 )
w
vu

The quantities a(n), b(n), c(n) are bounded as follows: 1 ≤
a(n) ≤ 5, −1 ≤ b(n) ≤ 5, 0 ≤ c(n) ≤ 3

2 .

5.2 Extremal structures

In this section, we fix a class of trees and find the ones in this class that maximize

Ecc(T ) and the ones that minimize Ecc(T ). First, we consider the trees on n vertices.

Then, we fix a degree sequence and search in the class of trees that realize this degree

sequence.
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5.2.1 General trees

For many indices, such as the sum of distances and the number of subtrees, the star

and the path are extremal. Dankelmann, Goddard, and Swart (2004) showed that

the path maximizes Ecc(T ) among trees with given order. We show that the star

minimizes Ecc(T ) among trees with given order.

Proposition 5.9. For any tree T with n > 2 vertices,

Ecc(T ) ≥ 1 + 2(n− 1) = 2n− 1

with equality if and only if T is a star.

Proof. Any tree with at least three vertices has at most one vertex which is adjacent

to every other vertex (hence with eccentricity 1). Thus we have

Ecc(T ) ≥ 1 + 2(n− 1) = 2n− 1.

Equality holds if and only if the single center vertex has eccentricity 1 and all other

vertices have eccentricity 2. This characterizes the star. �

5.2.2 Trees with given degree sequences

Given a degree sequence, let T be the class of trees that realize this degree sequence.

We determine which trees in T have total eccentricity equal to minT∈T Ecc(T ) or

maxT∈T Ecc(T ). We note that a sequence (d1, d2, . . . , dn) is the degree sequence for

a tree if and only if ∑n
i=1 di = 2(n− 1) and each di is a positive integer.

General Caterpillars

Among all trees with a given degree sequence, the sum of distances is maximized by a

caterpillar (Zhang, Xiang, Xu, and Pan 2008) and the number of subtrees is minimized

by a caterpillar (Sills and Wang 2015; Zhang and Zhang 2015). However, completely
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characterizing the extremal caterpillar turns out to be a very difficult question in both

cases. For the sum of distances, it is a quadratic assignment problem that is NP-

hard in the ordinary sense and solvable in pseudo-polynomial time (Çela, Schmuck,

Wimer, and Woeginger 2011).

Definition 5.10 (Wang (2014)). For n ≥ 3, let d = (d1, d2, . . . , dn) be the non-

decreasing degree sequence of a tree with dk > 1 and dk+1 = 1 for some k ∈ [n − 2].

The greedy caterpillar, T , is constructed as follows:

• Start with a path P = z1z2 . . . zk.

• Let φ : {zi}ki=1 → {di}ki=1 be a one-to-one function such that, for each pair

i, j ∈ [k], if eccP (zi) > eccP (zj) then φ(zi) ≥ φ(zj) .

• For each i ∈ {2, 3, . . . , k − 1}, attach φ(zi) − 2 pendant vertices to zi. For

i ∈ {1, k}, attach φ(zi)− 1 pendant vertices to zi.

Fig. 5.5 gives two examples of greedy caterpillars and highlights the fact that

greedy caterpillars are not unique.

Figure 5.5 Non-isomorphic greedy caterpillars for degree
sequence (7, 6, 5, 4, 4, 1, . . . , 1).

Proposition 5.11. Among trees with a given tree degree sequence, the greedy cater-

pillar has the maximum total eccentricity.

Proof. Fix a degree sequence d = (d1, . . . , dn) which is written in the form described

in Definition 5.10. Let T be the collection of trees with degree sequence d. Let T ∈ T

be a tree such that Ecc(T ) = maxF∈T Ecc(F ). We first show that T is a caterpillar.
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For contradiction, suppose T is not a caterpillar. Let PT (u, v) = uu1u2 . . . ukv be

a longest path in T . Let x ∈ [k] be the least integer such that ux has a non-leaf

neighbor w not on PT (u, v). Because P is a maximum-length path, x 6= 1. Let W be

the component containing w in T − {uxw}.

. . . . . .
u u1 u2 ux ux+1 ux+2 uk−1 uk v

w

W

Figure 5.6 Generating T ′ from T for the proof of
Proposition 5.11.

Create a new tree T ′ from T by replacing each edge of the form zw in W with the

edge zu. (Fig. 5.6). Notice that T and T ′ have the same degree sequence. However,

for any vertex s ∈ (V (T ) \ V (W )) ∪ {w}, eccT ′(s) ≥ eccT (s) because PT (u, v) is a

longest path in T . For any vertex r ∈ V (W )− w, we have

eccT ′(r) = d(r, u) + d(u, v) > d(u, v) ≥ eccT (r).

Thus Ecc(T ′) > Ecc(T ), which contradicts the extremality of T .

Since T is a caterpillar with internal vertices forming path P = u1u2 . . . uk, the

eccentricity of any internal vertex is independent of the interval vertex degree assign-

ments. For any i ∈ [k] and leaf w adjacent to ui,

eccT (w) = max{k − i, i− 1}+ 2.

If φ : {ui}ki=1 → {di}ki=1 is a one-to-one function, then when k is even,

Ecc(T ) =
k∑
i=1

eccT (ui) + (φ(u1) + φ(uk))(k + 1) + (φ(u2) + φ(uk−1))(k)+

. . .+
(
φ
(
uk/2

)
+ φ

(
u(k+2)/2

))
(k/2 + 2) .
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In order to maximize the total eccentricity, for i, j ∈ [k], if j is closer to k/2 than

i, then we should have φ(ui) ≥ φ(uj). It is a greedy caterpillar which achieves this.

The case when k is odd is similar. �

Greedy trees and level-greedy trees

In this subsection, each tree is rooted at a vertex. (While the root has no bearing

on the total eccentricity, we use the added structure to direct our conversation.)

The height of a vertex is the distance to the root and the tree’s height, h(T ), is the

maximum of all vertex heights. We start with some definitions.

Definition 5.12 (Schmuck, Wagner, and Wang (2012)). In a rooted tree, the list of

multisets Li of degrees of vertices at height i, starting with L0 containing the degree

of the root vertex, is called the level-degree sequence of the rooted tree.

Let |Li| be the number of entries in Li. It is easy to see that a list of multisets

is the level degree sequence of a rooted tree if and only if (1) the multiset ⋃i Li is
a tree degree sequence, (2) |L0| = 1, and (3) ∑d∈L0 d = |L1|, and for all i ≥ 1,∑
d∈Li(d− 1) = |Li+1|.

In a rooted tree, the down-degree of the root is equal to its degree. The down

degree of any other vertex is its degree minus one.

Definition 5.13 (Schmuck, Wagner, and Wang (2012)). Given the level-degree se-

quence of a rooted tree, the level-greedy rooted tree for this level-degree sequence is

built as follows: (1) For each i ∈ [n], place |Li| vertices in level i and to each vertex,

from left to right, assign a degree from Li in non-increasing order. (2) For i ∈ [n−1],

from left to right, join the next vertex in Li whose down-degree is d to the first d so

far unconnected vertices on level Li+1. Repeat for i+ 1.

Definition 5.14 (Wang (2008)). Given a tree degree sequence (d1, d2, . . . , dn) in non-

increasing order, the greedy tree for this degree sequence is the level-greedy tree for
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the level-degree sequence that has L0 = {d1}, L1 = {d2, . . . , dd1+1} and for each i > 1,

|Li| =
∑

d∈Li−1

(d− 1)

with every entry in Li at most as large as every entry in Li−1.

Fig. 5.7 shows a greedy tree with degree sequence (4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, . . . , 1).

Figure 5.7 A greedy tree.

By definition, every greedy tree is level-greedy. However, Fig. 5.8 shows a level-

greedy tree that is not greedy. It has level degree sequence:

{{3}, {5, 3, 2}, {3, 3, 3, 2, 2, 1, 1}, {2, 2, 1, 1, 1, 1, 1, 1}, {1, 1}}.

Figure 5.8 A level-greedy
tree.

For a fixed degree sequence, greedy trees minimize the sum of distances (Schmuck,

Wagner, and Wang 2012; Wang 2008; Zhang, Xiang, Xu, and Pan 2008) and maximize

the number of subtrees (Andriantiana, Wagner, and Wang 2013; Zhang, Zhang, Gray,

and Wang 2013). We will show that they also minimize Ecc(T ) among trees with a

given degree sequence.

Here we provide some set-up for the proofs of the next two theorems. See Fig. 5.9

for an illustration. Given a tree T rooted at v, let T1 be the subtree, rooted at child
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v1 of v, containing some leaves of height h := h(T ). Let h′ := h(T − T1). Then for

any vertex u ∈ V (T − T1) and any w ∈ V (T1) with hT (u) = hT (w) = j, then

eccT (u) = j + h, (5.2)

eccT (w) = max{j + h′, eccT1(w)} ≤ j + h (5.3)

where the first is only dependent on the height of T and the second depends only on

h′ and the structure of T1.

v

v1
w (height j) u (height j)

T1

T − T1

(height h)
(height h′)

Figure 5.9 A tree rooted at v with daughter subtree, T1,
containing leaves of height h.

The following lemma implies that the level-greedy tree has the minimum total

eccentricity among all rooted trees with a specified level-degree sequence.

Lemma 5.15. Let ` be a non-negative integer. Among the trees with a given level-

degree sequence, the level-greedy tree maximizes the number of vertices having eccen-

tricity at most `.

Proof. We proceed by induction on the number of vertices. The base case with one

vertex is trivial.

Fix ` > 0. Let T be a rooted tree with the given level-degree sequence and the

maximum number of vertices with eccentricity at most `. (i.e. T is optimal.) For

vertices w ∈ T1 and u ∈ T − T1, both of height j, suppose for contradiction that

deg(u) > deg(w). Create a new tree T ′ by moving deg(u)− deg(w) children of u and
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their descendants to adoptive parent w. This effectively switches the degrees of u and

w while maintaining the level degree sequence.

While eccT ′(u) = eccT (u), notice that h′ did not increase and neither did eccT (w)

for w ∈ V (T1). Since eccT ′(w) ≤ max{j+h′, eccT1(w)} = eccT (w), if strict inequality

holds, then we have contradicted the optimality of T . Otherwise, T ′ and T are both

optimal trees. In this case, we can repeat this shifting of degrees for pairs of vertices

of height 1, followed by pairs of vertices of height 2, and so on until we either meet a

contradiction or construct an optimal tree in which deg(u) ≤ deg(w) for all w ∈ T1

and u ∈ T − T1 of the same height. Assume that our optimal T has this property.

Now we have a partition of the level-degree sequence for T into level-degree se-

quences for T − T1. By the inductive hypothesis, we may assume that both T1 and

T − T1 are level-greedy trees on their level-degree sequences. As a result, T is a

level-greedy tree. �

The next theorem also yields a stronger result than merely minimizing total ec-

centricity among trees with a given degree sequence.

Theorem 5.16. Fix ` ∈ Z≥0. Among the trees with a given degree sequence, the

greedy tree maximizes the number of vertices with eccentricity at most `.

Proof. Let T be a tree with the given degree sequence with the maximum number of

vertices with eccentricity at most `. (i.e. T is optimal.) Many times we will use the

following claim: For two vertices u and v with h(u) < ` ≤ h(v), it is preferable to

assign degrees such that deg(u) ≥ deg(v) in order to maximize the number of vertices

with height at most `.

Find a longest path in T and root T at a center vertex v of that path. In T −{v},

let T1 be the component with the leaf of greatest height. Let v1 be the child of v

in T1. By our choice of the root, if h is the height of T1, then the height of T − T1

has height h′ ∈ {h − 1, h}. Now for any w ∈ V (T1) with hT (w) = j, we have
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eccT1(w) ≤ (j − 1) + (h− 1) ≤ j + h′ − 1. In light of (5.3),

eccT (w) = max{j + h′, eccT1(w)} = j + h′.

For w, x ∈ V (T1), if hT (w) < hT (x) then, by our earlier claim, eccT (w) < eccT (x)

which implies deg(w) ≥ deg(x) in T because T maximizes the number of vertices

with small eccentricities.

Vertices in T − T1 with height j have eccentricity j + h by (5.2). So for u, v in

V (T − T1), when hT (u) < hT (v), we can conclude deg(u) ≥ deg(v) in T .

These observations establish the fact that either the root of T − T1 or the root of

T1 has the largest degree in T .

We now examine two cases based upon the value of h′. When h = h′, we have

eccT (w) = j+h = eccT (u) for any w ∈ V (T1), u ∈ V (T−T1) with hT (w) = hT (u) = j.

Therefore, for x, y ∈ V (T ), if hT (x) < hT (y), then deg(x) ≥ deg(y) in T . As an

immediate consequence, the root of T has the largest degree.

When h′ = h − 1, we may assume that the root of T has the largest degree, for

otherwise, we could reroot T at v1 which would not change the vertex eccentricities

or the difference between h and h′. Continuing in the setting with h′ = h − 1, for

w ∈ V (T1) and u, y ∈ V (T − T1), if hT (w) = hT (u), then eccT (w) = eccT (u)− 1. So

deg(w) ≥ deg(u) in T . However, if hT (w) ≥ hT (y) + 1, then eccT (w) ≥ eccT (y). So

we may assume deg(w) ≤ deg(y) in T .

In both cases, we may assume that vertices of smaller height have larger degrees.

Consequently, this determines the level degree sequence of T . In fact, this is the level

degree sequence for the greedy tree. The previous lemma asserts that we can assume

T is level-greedy. Therefore, T is the greedy tree. �

Remark 5.17. Extremal trees for total eccentricity are not unique. In Theorem 5.16,

we proved that the greedy tree had a stronger property. But in the proof, we can see

that the greedy tree is not even unique in this regard.
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Greedy trees with different degree sequences

As a final remark on greedy trees, given a collection of degree sequences, we order

the corresponding greedy trees by their total eccentricity. The following observations,

similar to previous works on other indices, yields many extremal results as immediate

corollaries. For an example of such applications see Zhang, Zhang, Gray, and Wang

(2013).

Definition 5.18. Given two non-increasing sequences in Rn, π′ = (d′1, · · · , d′n) and

π′′ = (d′′1, · · · , d′′n), π′′ is said to majorize π′, denoted π′ / π′′, if for k ∈ [n− 1]

k∑
i=0

d′i ≤
k∑
i=0

d′′i and
n∑
i=0

d′i =
n∑
i=0

d′′i .

Lemma 5.19 (Wei (1982)). Let π′ = (d′1, · · · d′n) and π′′ = (d′′1, · · · , d′′n) be two

non-increasing tree degree sequences. If π′ / π′′, then there exists a series of (non-

increasing) tree degree sequences π(i) = (d(i)
1 , . . . , d

(i)
n ) for 1 ≤ i ≤ m such that

π′ = π(1) / π(2) / · · · / π(m−1) / π(m) = π′′.

In addition, each π(i) and π(i+1) differ at exactly two entries, say the j and k entries,

j < k where d(i+1)
j = d

(i)
j + 1 and d(i+1)

k = d
(i)
k − 1.

Remark 5.20. Lemma 5.19 is a more refined version of the original statement in

Wei (1982). In this process, each entry stays positive and the degree sequences remain

non-increasing. Thereby, each obtained sequence is a tree degree sequence that is non-

increasing without rearrangement.

Theorem 5.21. Given two tree degree sequences π′ and π′′ such that π′ / π′′,

Ecc(T ∗π′) ≥ Ecc(T ∗π′′)

where T ∗ν is the greedy tree for degree sequence ν.
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Proof. According to Lemma 5.19, it suffices to compare the total eccentricity of two

greedy trees whose degree sequences differ in two entries, each by exactly 1, i.e.,

assume

π′ = (d′1, · · · d′n) / (d′′1, · · · , d′′n) = π′′

with d′′j = d′j + 1, d′′k = d′k − 1 for some j < k and all other entries the same.

Let u and v be the vertices corresponding to d′j and d′k respectively and w be a

child of v in T ∗π′ (Fig. 5.10). Construct Tπ′′ from T ∗π′ by removing the edge vw and

adding edge uw. Note that Tπ′′ has degree sequence π′′ and by Theorem 5.16

Ecc(T ∗π′′) ≤ Ecc(Tπ′′).

v

w

u

w

T ∗π′ Tπ′′

Figure 5.10 Creating Tπ′′ from Tπ′ when
π′ = (4, 4, 3, 3, 3, 3, 2, 2, 1, . . . , 1) and
π′′ = (4, 4, 4, 3, 3, 2, 2, 2, 1, . . . , 1).

The height of any vertex in Tπ′′ is at most that of its counterpart in T ∗π′ . An

argument similar to that used in the proof of Lemma 5.15 shows

Ecc(Tπ′′) ≤ Ecc(T ∗π′). (5.4)

Hence Ecc(T ∗π′′) ≤ Ecc(Tπ′′) ≤ Ecc(T ∗π′). �

Remark 5.22. As in the proof of the extremality of greedy trees, equality holds more

often in (5.4) compared with its analogue for many other graph invariants. This

also serves as some indication that Ecc(T ) is not as strong of a graph invariant as

compared to others in terms of characterizing the structures.
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By comparing greedy trees with different degree sequences, the extremality of

trees with respect to minimizing Ecc(.) under various restrictions easily follows.

Consider, for example, trees with a given number of vertices and exactly ` leaves.

The degree sequence of such a tree has exactly ` of 1’s, where the degree sequence

(`, 2, . . . , 2, 1, . . . , 1) majorizes all other possible degree sequences. The corresponding

greedy tree is a “star-like” tree (a subdivision of star). Similarly, for trees with a given

number of vertices and maximum degree k, the degree sequence (k, k, . . . , k, `, 1, . . . 1)

majorizes all other degree sequences with maximum degree k, where ` is the unique

degree that is possibly between 1 and k. The corresponding greedy tree is called the

“extended good k-ary” tree. See for instance, Bartlett, Krop, Magnant, Mutiso, and

Wang (2014) or Zhang, Zhang, Gray, and Wang (2013) for details.
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Chapter 6

On different “middle parts” of a tree

There are many different vertex attributes that have been placed on trees. We are

interested in the eccentricity, distance, and number of subtrees. Each attribute natu-

rally defines a set as the middle of the tree. For example, the study of the center and

centroid (Definitions 6.1 and 6.2) can be traced back to Jordan (1869). We explore

extremal problems regarding the distance between the vertices in the different middle

parts.

6.1 Definitions and Characterizations

Below we define each attribute. The distance in the tree from u to v, denoted d(u, v),

is the number of edges on the unique connecting path P (u, v).

Definition 6.1. The eccentricity of a vertex v in a tree T is the largest distance that

one can travel in T when starting at v. More specifically,

eccT (v) = max
u∈V (T )

d(v, u).

The center of T , denoted C(T ), is the set of vertices which have the minimum eccen-

tricity among all vertices in the tree.

Definition 6.2. The distance of a vertex v, denoted d(v), is the sum of distances

from v to each other vertex in T ,

d(v) =
∑

u∈V (T )
d(v, u).
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The centroid of T , denoted CT (T ), is the set of vertices which have the minimum

distance among all vertices in the tree.

A subtree of tree T is a connected subgraph which is induced on a set of vertices.

We consider T to be a subtree of itself and a single vertex is also a subtree of T .

Definition 6.3. As the name suggests, the number of subtrees of a vertex v, denoted

FT (v), is the number of subtrees of T which contain v. The subtree core of a tree T ,

denoted by Core(T ), is the set of vertices that maximize the function FT (.) (Székely

and Wang 2005).

If H is a forest and v is a vertex in H, then FH(v) will be defined, as above, to

be the number of subtrees of H which contain vertex v. In particular, all subtrees

which are counted must be subtrees of the component of H which contains vertex v.

Jordan (1869) found that C(T ) consists of either one vertex or two adjacent

vertices (see also Ex. 6.21a in Lovász (2007)). Given the vertices along any path

of a tree, the sequence of FT (.) function values is strictly concave down (Székely

and Wang (2005)), the sequence of d(.) function values are strictly concave up (Ex.

6.22 in Lovász (2007); Entringer, Jackson, and Snyder (1976)), and the sequence of

eccT (.) function values are concave up (Ex. 6.21 in Lovász (2007)). Strict concavity

immediately implies that the sets CT (T ) and Core(T ) either consist of one vertex or

two adjacent vertices.

We are specifically interested in how the middle sets are located, relative to one

another. It is well-known that C(T ) and CT (T ) can be far apart (Ex. 6.22c in Lovász

(2007)), and that Core(T ) can differ from them (Székely and Wang 2005).

There are some natural questions that we will explore. How close to each other

can they be? How far apart can they be spread? Must they lie on a common path?

Can they appear in any ordering?
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It is easy to find trees where C(T ), CT (T ), and Core(T ) coincide, like the star

and paths of even length to name a few. It is more interesting to see how far apart

these middle sets can be in a single tree.

As any two edges always lie on a common path, the vertices from any two of the

sets C(T ), CT (T ), and Core(T ) always lie on a path. However, it is possible that

the vertices from C(T ), CT (T ), and Core(T ) in the same tree T do not all lie on a

common path. Figure 6.1 provides an example of this very situation.

. . .

v u

w

︸ ︷︷ ︸
11 vertices

︸ ︷︷ ︸
14 vertices

︸ ︷︷ ︸
15 vertices

︸ ︷︷ ︸
11 vertices

︸ ︷︷ ︸
11 vertices

Figure 6.1 A tree with v ∈ C(T ), u ∈ CT (T ),
w ∈ Core(T ) which do not lie on a common path.

On the other hand, when the vertices of C(T ), CT (T ), Core(T ) happen to lie on

the same path, they can appear in any order. Figure 6.2 provides some illustrations.

Among the examples with different ordering of middle vertices, it is interesting

to observe that vertices in Core(T ) generally have large degree; vertices in C(T )

generally have small degree; while vertices in CT (T ) behave somewhat between the

previous two.

Here, we formalize some necessary and sufficient conditions for a vertex to be in

a middle part. While not novel, these propositions and their proofs are included for

completeness.

Proposition 6.4. Let T be a tree with at least two vertices. A vertex v is in the center

C(T ) if and only if there are two leaves, u and w, such that P (v, u)∩P (v, w) = {v},

d(v, u) = eccT (v), and d(v, w) ≥ eccT (v)− 1.
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. . .
v uw

. . .
w uv

. . .
w vu

Figure 6.2 An example of trees with vertices
v ∈ C(T ), u ∈ CT (T ), w ∈ Core(T ) on a
common path, but in different orders.

Proof. Fix v ∈ C(T ). We consider two cases based upon the value of eccT (v) =: x.

If x = 1, then T is a star with v in the center. In particular, if there are more than

two vertices, any two leaves will serve the purpose. If T consists of only two vertices,

they will both be leaves which meet the criteria.

Otherwise x ≥ 2. By the definition of eccentricity, there is a leaf u such that

P (v, u) has x edges. Further, for any other leaf w, the length of P (v, w) is at most x.

Let T ′ be the forest obtained from T by deleting the vertices of P (v, u), except v.

Let H be the connected component of T ′ which contains v. Suppose for contradiction

that, for every w ∈ V (H), dH(v, w) ≤ x − 2. Let v′ be the unique neighbor of v on

P (v, u). Observe dT (v′, u) = x−1 and dT (v′, w) ≤ dH(v, w)+1 = dT (v, w)+1 ≤ x−1

for every w ∈ V (H). For any leaf a ∈ L(T \H), dT (v′, a) + 1 = dT (v, a) ≤ x. Thus

eccT (v′) = x − 1. This contradicts the choice of v because eccT (v′) ≤ eccT (v).

Therefore there is at least one w ∈ L(H) has dH(v, w) ∈ {x− 1, x}.

On the other hand, if a vertex v has the property that there are leaves u,w with

disjoint paths P (u, v) and P (v, w) with d(v, u) = eccT (v) and d(v, w) ≥ eccT (v)− 1,

then the eccentricity of the vertices of P (u,w) is at least that of v. All other vertices
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have eccentricity at least one more than eccT (v). Therefore v ∈ C(T ). �

Corollary 6.5. If there are two leaves u,w such that d(v, w) = d(v, u) = eccT (v),

then C(T ) = {v}. If no such w exists, then |C(T )| = 2 where the neighbor of v on

P (u, v) is also in the center.

Next we give a characterization of the vertices in CT (T ).

Proposition 6.6. Let T be a tree with at least two vertices. A vertex u is in the

centroid CT (T ) if and only if for each neighbor v of u, we have

nuv(v) ≤ nuv(u)

where nuv(u) (nuv(v)) denotes the number of vertices in the component containing u

(v) in T − uv which is the result after the deletion of edge uv from T .

Proof. For any two neighboring vertices u and v, it is easy to see

d(u) = d(v) + nuv(v)− nuv(u). (6.1)

Therefore d(u) ≤ d(v) exactly when nuv(u) ≥ nuv(v). Indeed, along any path uvw,

nuv(u) < nvw(v) because when vw is a removed, the component containing v is

a superset of the component containing u when the edge uv was removed. (The

inequality is strict because the first set contains vertex v while the second does not.)

Similarly, nuv(v) > nvw(w). Whenever d(u) ≤ d(v), the inequalities established here

imply

nvw(w)− nvw(v) < nuv(v)− nuv(u) ≤ 0,

from which we can conclude d(v) < d(w). Therefore, whenever u is a vertex such

that d(u) ≤ d(v) for each of its neighbors v, then u is in the centroid. The converse of

this statement holds by the definition of the centroid and making use of equation 6.1

which implies that d(u) ≤ d(v) if and only if nuv(v) ≥ nuv(u). �

Lastly, Proposition 6.7 gives a characterization of Core(T ).
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Proposition 6.7. A vertex u is in Core(T ) if and only if for each neighbor v of u,

we have

FT−uv(u) ≥ FT−uv(v).

Proof. For any two adjacent vertices u and v, let Tuv(u) denote the component of

T − uv which contains u. Each subtree H of T which contains v is characterized by

two subtrees: the intersection of H with Tuv(u) and the intersection of H with Tuv(v).

Note that the intersection with Tuv(u) may be empty. Therefore

FT (v) = FT−uv(v) (FT−uv(u) + 1) = FT−uv(v)FT−uv(u) + FT−uv(v).

Likewise

FT (u) = FT−uv(u)FT−uv(v) + FT−uv(u).

Therefore, FT (u) ≥ FT (v) exactly when FT−uv(u) ≥ FT−uv(v). Now if u ∈ Core(T ),

then FT (u) ≥ FT (v) for all v ∈ V (T ) and consequently FT−uv(u) ≥ FT−uv(v) for each

neighbor v of u. This proves one direction of the proposition.

For any path uvw, notice that each subtree of T − uv which contains u can be

identified with a subtree of T − vw which contains v. Just include the edge uv in the

subtree. Therefore FT−uv(u) < FT−vw(v). (The inequality is strict because {v} is a

tree in the second set which will not be identified with any tree in the first collection.)

A similar argument shows FT−vw(w) < FT−uv(v).

Now assuming FT (u) ≥ FT (v) which holds exactly when FT−uv(u) ≥ FT−uv(v),

we determine

FT−vw(w) < FT−uv(v) ≤ FT−uv(u) < FT−vw(v). (6.2)

This is equivalent to FT (w) < FT (v).

Now if every neighbor v of vertex u has the property FT−uv(u) ≥ FT−uv(v), then

FT (u) ≥ FT (v). We have shown that this extends to the neighbors w of v such that

FT (w) < FT (v) and the argument continues out to every vertex in the graph implying

that u is in Core(T ) since it has the largest number of subtrees of T containing it. �
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6.2 Maximum distances between middle parts in general trees

Fix an arbitrary n ∈ Z+. Among all trees with n vertices, we determine the maximum

distance that can be realized between vertices from different middle parts. We will

see that the maximum distances are achieved by the structure named “comets.”

Definition 6.8 (Barefoot, Entringer, and Székely (1997)). An r-comet of order n is

formed by attaching n− r pendant vertices to one end vertex of a path on r vertices

(Figure 6.3).

︸ ︷︷ ︸
r vertices

Figure 6.3 An r-comet of order n.

For vertex sets S, S ′ in a tree T , the quantity min{d(u, v) : u ∈ S, v ∈ S ′} will be

denoted d(S, S ′).

6.2.1 Between center and centroid

Theorem 6.9. Fix an arbitrary n ∈ Z+. For any tree T with n vertices,

d(C(T ), CT (T )) ≤
⌊
n− 3

4

⌋
. (6.3)

Proof. Fix a tree T on n vertices. Let v ∈ C(T ) and u ∈ CT (T ) such that the graph

distance between u and v is precisely d(C(T ), CT (T )). Therefore, no vertex on the

path P (u, v) other than u and v is in the center or the centroid of T .

Let P (u, v) denote the path connecting u and v and let Tu denote the component

containing u in T − E(P (u, v)). By Proposition 6.6,

|V (Tu)| > n− |V (Tu)|.
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This implies

|V (Tu)| >
n

2 .

Let w be a leaf such that P (v, w) and P (u, v) are disjoint, except for v, and the

length of P (v, w) is maximum. Because v ∈ C(T ) and the neighbor of v on P (u, v)

is not in C(T ), Proposition 6.4 tells

d(v, w) = eccT (v).

Since u is not a leaf, it is easy to see that

d(u, v) ≤ eccT (v)− 1.

wvu

Tu

Figure 6.4 A tree T with u ∈ CT (T ),
v ∈ C(T ), w ∈ L(T ), and all vertices
not in Tu are on the path P (u,w).

Therefore, we have

n

2 > n− |V (Tu)| (6.4)

≥ d(u, v) + d(v, w) (6.5)

≥ 2d(u, v) + 1. (6.6)

This implies

d(u, v) < n− 2
4 .

In particular, if n = 4k + r with r ∈ {0, 1, 2}, then

k − 1
2 ≤

4k + r − 2
4 ≤ k.

Since d(u, v) < n−2
4 , when n ≡ r mod 4 for r ∈ {0, 1, 2}, d(u, v) ≤ k − 1 where

k =
⌊
n
4

⌋
.
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When n = 4k + 3,

d(u, v) < n− 2
4 = 4k + 1

4 = k + 1
4 .

As a result, d(u, v) ≤ k. �

Proposition 6.10. Let k :=
⌊
n
4

⌋
. Equality holds in (6.3) exactly when n, T fall into

one of the following categories:

• n = 4k and T is the 2k-comet.

• n = 4k + 1 or n = 4k + 2 and T is one of the following trees:

– 2k-comet

– 2k-comet on n− 1 vertices together with one vertex pendant to one of the

internal vertices of P (u,w)

– P (u,w) has 2k+1 vertices and Tu is a tree which is rooted at u, has height

at most 2, and has n− 2k − 1 non-root vertices.

• n = 4k + 3 and T is a (2k + 2)-comet.

Proof. If n is even, then n
2 > n − |V (Tu)| is equivalent to n

2 − 1 ≥ n − |V (Tu)|.

Therefore

n

2 − 1 ≥ n− |V (Tu)| ≥ d(u, v) + d(v, w) ≥ 2d(u, v) + 1

d(u, v) ≤ n

4 − 1

When n = 4k, the trees with d(u, v) = k − 1 are precisely those trees in which all

of the inequalities above are equalities. In other words, Tu (which includes vertex u)

has 2k + 1 vertices, all vertices not in Tu lie on the path P (u,w) and all vertices not

on P (u,w) are pendant to u. This characterizes the 2k-comet.

If n = 4k+2, then the above inequalities indicate d(u, v) ≤ k− 1
2 . Because d(u, v)

is an integer, d(u, v) ≤ k − 1. To analyze the extremal structures, first observe that
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n
2 − 1 is even while 2d(u, v) + 1 is odd. Therefore not all inequalities can be tight.

Indeed, exactly one will be strict. If the first inequality is not strict, then we have

a 2k-comet on n vertices. If the second inequality is the one which is not strict, we

have a (2k+1)-comet on n−1 vertices with one vertex pendant to one of the internal

vertices on the path P (u,w). If the last inequality is not strict, we have a tree rooted

at u on 2k + 1 non-root vertices and has height at most 2, together with a disjoint

path P (u,w) with 2k + 1 vertices.

When n is odd, we have

n− 1
2 ≥ n− |V (Tu)| ≥ d(u, v) + d(v, w) ≥ 2d(u, v) + 1

d(u, v) ≤ n− 3
4 .

When n = 4k + 3, then d(u, v) = k will hold precisely when all inequalities are

tight. This happens when T is a (2k + 2)-comet.

When n = 4k + 1, n−1
2 is even while 2d(u, v) + 1 is odd. Therefore exactly one of

the inequalities must not be strict. If the first inequality is not strict, then we have

a (2k + 1)-comet. If the second inequality is not strict, then we have a 2k-comet on

n − 1 vertices with one vertex pendant to one of the internal vertices of P (u,w). If

the last inequality is not strict, then Tu is a tree which is rooted a u, has height at

most, and has 2k non-root vertices will the rest of the tree is just the path P (u,w)

with 2k + 1 vertices. �

6.2.2 Between centroid and subtree core

Next we turn our attention to the centroid and the subtree core.

Theorem 6.11. Let T be a tree with n > 8 vertices. If n ≥ 2dlog2 ne−1 +dlog2 ne, then

d(CT (T ), Core(T )) ≤
⌊
n− 1

2

⌋
− blog2 nc − 1
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with equality for the (n− blog2 nc − 1) - comet. Otherwise

d(CT (T ), Core(T )) ≤
⌊
n− 1

2

⌋
− blog2 nc .

with equality holding for the (n− blog2 nc)-comet.

Proof. Let u ∈ CT (T ) and v ∈ Core(T ) in a tree T with |V (T )| = n and the graph

distance between u and v is precisely d(CT (T ), Core(T )). Let P (u, v) denote the path

connecting u and v and let Tu, Tv denote the components containing u, v respectively

in T −E(P (u, v)). Set x := |V (Tu)| and y := |V (Tv)|. Ultimately, we desire an upper

bound for d(u, v) together with an extremal example. Observe

d(u, v) ≤ n− x− y + 1.

Thus we desire lower bounds for x and y.

Since u ∈ CT (T ) and the neighbor of u on P (u, v) is not in CT (T ), Proposition 6.6

implies

x > n− x

x >
n

2 .

More precisely, x ≥
⌈
n+1

2

⌉
.

Next we bound y. Because v ∈ Core(T ) and the neighbor of v on P (u, v) is not

in Core(T ), Proposition 6.7 gives

FTv(v) > FT−Tv(w)

where w is the unique neighbor of v on P (u, v). See Figure 6.5 for an illustration of

how these pieces interact.

Further note that every subtree in Tv which contains v can be uniquely identified

by the set of its vertices, excluding v. Thus,

FTv(v) ≤ 2y−1.
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vwu

Tu Tv

Figure 6.5 A representation of tree T for the proof of
Theorem 6.11 with path P (u, v), Tu, Tv, and w labeled.

Note that equality holds if and only if every subset of vertices induces a tree which

is the case exactly when Tv is a star centered at v. On the other hand, since T − Tv

is a tree, subtrees can be created from T − Tv by iteratively deleting a leaf, which is

not v, of T − Tv. The result is

FT−Tv(w) ≥ n− y.

Equality holds here if and only if T − Tv is a path with w as an end vertex.

Putting these inequalities together, we see that when v ∈ Core(T ),

2y−1 > n− y.

As a linear and an exponential equation in y, if 2y0−1 = n − y0, then for all y > y0,

2y−1 > n− y. Therefore, we proceed by solving 2y0−1 = n− y0. Note that y0 > 0.

2y0−1 = n− y0

y0 − 1 = log2(n− y0)

y0 = log2(n− y0) + 1

< log2(n) + 1.

Using the equation y0 = log2(n− y0) + 1 and substituting into itself, we find

y0 = log2(n− log2(n− y0)− 1) + 1

≥ log2(n− log2(n)− 1) + 1

> log2(n).
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The last inequality will be proven later for n > 8.

As a result, we have the bounds

log2(n) < y0 < log2(n) + 1.

Further, if y0 < blog2 nc + 1, then 2y − 1 > n − y precisely when y ≥ blog2 nc + 1.

However, if y0 ≥ blog2 nc + 1 then 2y − 1 > n − y precisely when y ≥ blog2 nc + 2.

Note that these are the two condition in the theorem statement.

Now we show log2(n−log2 n−1) > log2 n−1 for n > 8. First observe log2 n <
n
2−1

for n > 8. Therefore

log2 n <
n

2 − 1
n

2 < n− log2 n− 1

log2

(
n

2

)
< log2 (n− log2 n− 1)

log2 n− 1 < log2 (n− log2 n− 1) .

When n > 8, our bounds for integers x and y give

d(u, v) ≤ n− x− y + 1

≤ n−
⌈
n+ 1

2

⌉
− blog2 nc

=
⌊
n− 1

2

⌋
− blog2 nc .

As mentioned earlier, this can be strengthen to d(u, v) ≤
⌊
n−1

2

⌋
− blog2 nc − 1 if

y0 ≥ blog2 nc + 1. However, this will only happen if 2blog2 nc ≤ n − blog2 nc − 1 as

stated in the theorem.

As for extremal trees, equality will hold in the upper bound for d(u, v) if Tu has

exactly
⌈
n+1

2

⌉
vertices and Tv is a star while T − Tv is a path. This describes the

C-comet where C = n − blog2 nc or in the case where n ≥ 2blog2 nc + dlog2 ne + 1,

C = n− blog2 nc − 1. �
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6.2.3 Between subtree core and center

Theorem 6.12. For any tree T on n > 8 vertices, if n ≥ 2dlog2 ne−1 + dlog2 ne then

d(C(T ), Core(T )) ≤
⌊1

2(n− blog2 nc − 2)
⌋

which is tight for the K-comet with K = n− blog2 nc+ 1. Otherwise

d(C(T ), Core(T )) ≤
⌊1

2(n− blog2 nc − 1)
⌋

which is tight for the K-comet with K = n− blog2 nc.

Proof. Let u ∈ Core(T ) and v ∈ C(T ) in a tree T with |V (T )| = n and the graph

distance between u and v is precisely d(C(T ), Core(T )). Use Tu (respectively Tv) to

denote the component containing u (v) in T − E(P (u, v)) and let y = |V (Tu)|.

Because v ∈ C(T ) and the neighbor of v on P (u, v) is not in C(T ), there is a leaf

w in Tv with d(v, w) = eccT (v). As argued in the proof of Theorem 6.9,

d(u, v) ≤ eccT (v)− 1 < d(v, w),

2d(u, v) + 1 ≤ d(u, v) + d(v, w) ≤ n− y.

Note that these inequalities are tight for the (n− y + 1)-comet.

Because u ∈ Core(T ), we can conclude, as in the proof of Theorem 6.11,

2y−1 > n− y.

Consequently,

y ≥ blog2 nc .

Combining inequalities, we obtain the bound in the theorem statement:

d(u, v) ≤
⌊1

2(n− y − 1)
⌋
≤
⌊1

2(n− blog2 nc − 1)
⌋
.

Recall from Theorem 6.11 that if n ≥ 2dlog2 ne−1 + dlog2 ne, then

y ≥ blog2 nc+ 1
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and consequently we obtain the better bound

d(u, v) ≤
⌊1

2(n− y − 1)
⌋
≤
⌊1

2(n− blog2 nc − 2)
⌋
.

�

6.3 Trees with degree restrictions

In this section, we narrow our sights to classes of trees that follow certain degree

restrictions. First we fix a degree sequence and see some results for trees which

realize this degree sequence. Next, we consider only binary trees in which all non-

root vertices have degree 1 or 3 while the root may have degree 2 or 3. Lastly, we fix

integers n, k and consider classes of tree with n vertices and maximum degree k.

For trees with a maximum degree condition, we obtain results about the distance

between their “middle parts.” In order to prove these, we first obtain results about

the maximum or minimum number of root-containing subtrees a tree with a specified

degree sequences can have. Note that among trees with n vertices, it is the path,

rooted at one end, which minimizes the number of root-containing subtrees and the

star, rooted at the center vertex, which maximizes the number of root-containing

subtrees.

6.3.1 Trees with a given degree sequence

In Chapter 5, Definition 5.14, we defined the greedy tree, an extremal structure

explored in many previous studies.

Fix a degree sequence for a tree and distinguish a single value in this sequence

which will be the degree of the root. Similar to the greedy tree, we define the rooted

greedy tree.

Definition 6.13. Let d = (d1, d2, . . . , dn) be a tree degree sequence in non-increasing

order with degree di identified as the root degree. Let (d′1, d′2, . . . , d′n−1) be the degree
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sequence d in non-increasing order with di removed. The rooted greedy tree for this

degree sequence is the level-greedy tree for the level-degree sequence that has L0 = {di},

L1 = {d′1, . . . , d′di} and for each j > 1,

|Lj| =
∑

d∈Lj−1

(d− 1)

with the largest element in Lj less than or equal to the smallest element in Lj−1.

Figure 6.6 shows a rooted greedy tree with root degree 2 and degree sequence

(4, 3, 3, 3, 3, 2, 1, . . . , 1). (6.7)

v

v1 v2

v11 v12 v13 v21 v22

Figure 6.6 A rooted greedy tree with
degree sequence (6.7) and root degree 2.

Among trees with given degree sequence, greedy trees are extremal with respect

to many graph invariants. For example, the following result is for root-containing

subtrees.

Theorem 6.14 (Andriantiana, Wagner, and Wang (2013)). Fix a degree sequence d

and a positive integer k. Among rooted trees with degree sequence d, the number of

subtrees which contain the root and have exactly k vertices is maximized by the greedy

tree. Consequently the greedy tree maximizes the total number of root-containing

subtrees.

Fix a degree sequence, distinguish one value in the sequence as the root degree,

and fix a positive integer k′. Among rooted trees with this degree sequence and the
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specified root degree, the number of subtrees containing the root and having k′ vertices

is maximized by the rooted greedy tree. Consequently, the rooted greedy tree maximizes

the total number of root-containing subtrees.

6.3.2 Binary trees

The study of binary trees is well motivated from its applications in phylogeny. Székely

and Wang (2005) studied the number of subtrees of a binary tree. They found that

the extremal structures are good trees, rgood trees, and caterpillars. In our terms, a

good binary tree is a greedy tree with root degree 3 and degree sequence

{3, . . . , 3, 1, . . . , 1}

and an rgood binary tree is a rooted greedy tree with root degree 2 and degree

sequence

{3, . . . , 3, 2, 1, . . . , 1}.

A binary caterpillar consists of a path P with pendant vertices that make the degree

of each internal vertex 3.

Their results for the number of subtrees are as follows:

Theorem 6.15 (Székely and Wang (2007)). Among all binary trees with n leaves,

where every non-leaf vertex has degree 3, the good binary tree minimizes the number

of subtrees.

Theorem 6.16 (Székely and Wang (2005)). Among binary trees with n leaves, the

binary caterpillar on n leaves minimizes the number of subtrees.

As an immediate consequence of Theorem 6.14, we obtain the following results

for root-containing subtrees.

Corollary 6.17. Among all binary trees, the good binary tree has the maximum

number of root-containing subtrees.
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Corollary 6.18. Fix n ∈ Z≥0. Among all rooted binary trees with n vertices, the

rgood binary tree is the unique tree which maximizes the number of root-containing

subtrees.

For binary trees, we can examine the distance between vertices of different middle

parts in much the same way that we did in Section 6.2. While the exact calculations

are quite messy, we conjecture the following result.

Conjecture 6.19. Among binary trees of order n, the tree T , formed from identifying

the root of an rgood binary tree with a vertex of maximum eccentricity in a binary

caterpillar (Figure 6.7), maximizes the distance between

1. the closest pair u ∈ CT (T ) and v ∈ C(T ),

2. the closest pair u ∈ Core(T ) and v ∈ CT (T ),

3. the closest pair u ∈ Core(T ) and v ∈ C(T ).

vu

Tu

Figure 6.7 An extremal binary tree which is conjectured
to maximize the distances d(CT (T ), C(T )),
d(Core(T ), CT (T )), and d(Core(T ), C(T )) for u and v as
in Conjecture 6.19. The tree Tu is an rgood binary tree.

6.3.3 Trees with bounded maximum degree

In this section, we turn our focus to trees on n vertices, all of which have degree at

most k.

We previously defined good binary trees and rgood binary trees. In general, for

each positive integer k, a good tree is a greedy tree with degree sequence

(k, k, . . . , k, 1, 1, . . . 1)
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while the rgood trees are rooted greedy trees with root degree k − 1 and degree

sequence

(k, k, . . . , k, k − 1, 1, 1, . . . 1).

For any fixed k, these trees only exist for certain values of n. Therefore, we extend

their definitions as follows so that we can create similar trees for any n > k.

For positive integers n, k (n > k), a tree with order n and maximum degree k is

called an extended good tree if it is a greedy tree with degree sequence

(k, k, . . . , k, s, 1, . . . , 1)

for some 1 ≤ s < k (Figure 6.8). Notice that the degree sequence is determined by n

and k. The value s is the remainder when we divide n − 1 by k. If n − 1 = qk + s

then there will be q vertices of degree k, one of degree s, and the rest will be leaves.

Figure 6.8 An extended good tree with 33 vertices and
maximum degree 4.

Similarly, for positive integers n, k, the extended rgood tree with order n and

maximum degree k, is a rooted greedy tree with root degree k−1 and degree sequence

(k, k, . . . , k, k − 1, s, 1, . . . , 1)

for some 1 ≤ s < k (Figure 6.9). The value of s will be the remainder when dividing

n by k.

Among all rooted trees with n vertices, maximum degree k, and root degree

ρ ≤ k − 1, we seek the one with the maximum number of root-containing subtrees.

We call such a tree optimal.
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Figure 6.9 An extended rgood tree with 29 vertices and
maximum degree 4.

Theorem 6.20. Among all rooted trees with n vertices, maximum degree k, and root

degree ρ ≤ k − 1, the extended rgood tree maximizes the number of root-containing

subtrees.

To provide a proof for this theorem, we first establish two lemmas.

Lemma 6.21. An optimal tree with n ≥ k must have root degree k − 1.

Proof. For contradiction, suppose T is an optimal tree with root r having degree

ρ ≤ k − 2. Since n ≥ k, there exists a child u of r that is not a leaf. Let v be a child

of u and Tv be the subtree induced by v and its descendants.

Define T ′ := T −{uv}+{rv}. Every root-containing subtree in T can be uniquely

identified by its list of vertices. It is easy to see that each list forms a root-containing

subtree in T ′. However, T ′ also has root-containing subtrees which contain v and not

u. These do not appear in T . Therefore T ′ has more root-containing subtrees than

T . This contradicts our choice of T . �

Definition 6.22. For degree sequences π = (d0, · · · , dn−1) and π′ = (d′0, · · · , d′n−1),

π′ majorizes π, denoted π / π′, if for each k ∈ {0, · · · , n− 2},

k∑
i=0

di ≤
k∑
i=0

d′i and
n−1∑
i=0

di =
n−1∑
i=0

d′i.

The following is a simpler analogue of Theorem 11 of Andriantiana, Wagner, and

Wang (2013). We skip the routine argument.
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Lemma 6.23. Let T and T ′ be rooted greedy trees on n vertices with root degree k−1.

If T has degree sequence π and T ′ has degree sequence π′ where π / π′, then T ′ has

more root-containing subtrees than T .

In the search for an optimal tree, Lemma 6.21 implies that it is sufficient to restrict

our attention to trees with root degree k− 1. Because we are considering only degree

sequences on n vertices with maximum degree k, it is easy to see that the degree

sequence of the extended rgood tree majorizes all other such degree sequences. Thus,

Lemma 6.23 then implies that the extended rgood tree for order n and maximum

degree k as stated in Theorem 6.20.

Remark 6.24. Note that, among all rooted trees of given order, root degree at most

k − 1, and maximum degree k:

• the extended rgood tree minimizes the height;

• the path (rooted at one end) minimizes the number of root-containing subtrees

and maximizes the height.

6.3.4 In trees with a given maximum degree k

Fix n, k ∈ Z>0. Similar to the binary tree case, we restrict our attention to classes

of trees which have order n and maximum degree k. Then we look for trees in this

class which maximize the distance between different “middle parts.” Our findings are

detailed in this section.

Theorem 6.25. For fixed n, k ∈ Z>0, any tree T with order n and maximum degree

k has

d(CT (T ), C(T )) ≤
n−

⌈
n+1

2

⌉
− hu

2

where

hu =


ln
(
dn+1

2 e(k − 2) + 1
)

ln(k − 1)

− 1.
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This inequality is tight for the tree formed from an extended rgood tree and a path by

identifying the root of the extended rgood tree with one end of a path.

Proof. Select u ∈ CT (T ) and v ∈ C(T ) such that d(u, v) = d(CT (T ), C(T )). Let Tu

and Tv name the components containing u and v respectively in T − E(P (u, v)).

Counting the vertices in T , we obtain the inequality

d(u, v) ≤ n− |V (Tu)| − |V (Tv)|+ 1. (6.8)

Because u ∈ CT (T ), Proposition 6.6 implies the following for the vertex in the

centroid which is closer to the center vertices:

|V (Tu)| > n− |V (Tu)|,

|V (Tu)| ≥
⌈
n+ 1

2

⌉
.

Set hu and hv equal to the heights of Tu and Tv respectively. Because v ∈ C(T ),

Proposition 6.4 implies the following:

d(u, v) + hu ≤ hv,

d(u, v) ≤ hv − hu ≤ |V (Tv)| − 1− hu. (6.9)

The upper bound for d(u, v) is tight when hv = |V (Tv)| − 1, which happens exactly

when Tv is a path, and hu is minimum.

By Remark 6.24, the minimum hu is achieved when Tu is the extended rgood

tree. Since |V (Tu)| ≥
⌈
n+1

2

⌉
and the maximum degree is k, we can determine the

height of an extended rgood tree with these conditions. The extended rgood tree

with maximum degree h and height h has at most ∑h
i=0(k− 1)i vertices. For Tu with

n vertices, the height h will be the smallest value which satisfies

|V (Tu)| ≤
h∑
i=0

(k − 1)i

= 1− (k − 1)h+1

1− (k − 1)

= (k − 1)h+1 − 1
k − 2 .
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Next we solve for h.

|V (Tu)|(k − 2) ≤ (k − 1)h+1 − 1

|V (Tu)|(k − 2) + 1 ≤ (k − 1)h+1

ln (|V (Tu)|(k − 2) + 1) ≤ (h+ 1) ln(k − 1)
ln (|V (Tu)|(k − 2) + 1)

ln(k − 1) − 1 ≤ h.

Since h is the smallest value that satisfies the above inequality and |V (Tu)| =
⌈
n+1

2

⌉
,

we can conclude

h =


ln
(
dn+1

2 e(k − 2) + 1
)

ln(k − 1)

− 1.

Without knowing |V (Tv)| exactly, we can add (6.8) and (6.9) and solve for d(u, v)

to obtain the desired upper bound for d(u, v):

2d(u, v) ≤ n− |V (Tu)| − hu

d(u, v) ≤ 1
2 (n− |V (Tu)| − hu)

≤ 1
2

(
n−

⌈
n+ 1

2

⌉
− hu

)
≤
⌊1

2

(
n−

⌈
n+ 1

2

⌉
− h

)⌋
.

�

Theorem 6.26. For fixed n, k ∈ Z>0, any tree T with order n and maximum degree

k has

d(Core(T ), CT (T )) ≤ n− n′ −
⌈
n+ 1

2

⌉
+ 1

where n′ is the minimum order of an extended rgood tree Tu with maximum degree k

such that FTu(u) ≥ n − |V (Tu)|. This inequality is tight for the tree formed from an

extended rgood tree and a path by identifying the root of the extended rgood tree with

one end of a path.
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Proof. Let u ∈ Core(T ) and v ∈ CT (T ) such that d(u, v) = d(Core(T ), CT (T )). De-

fine Tu and Tv to be the components of T−E(P (u, v)) containing u and v respectively.

Let hu and hv be the heights of Tu and Tv respectively.

By Proposition 6.6, v ∈ CT (T ) and its neighbor on P (u, v) is not in the centroid

precisely when

|V (Tv)| ≥ n− |V (Tv)|+ 1,

|V (Tv)| ≥
⌈
n+ 1

2

⌉
.

By Proposition 6.7, u ∈ Core(T ) and its neighbor w on P (u, v) is not in the

subtree core precisely when

FTu(u) ≥ 1 + FT−Tu(w) ≥ d(u, v) + FTv(v) ≥ d(u, v) + |V (Tv)|,

d(u, v) ≤ FTu(u)− FTv(v) ≤ FTu(u)− |V (Tv)|. (6.10)

The last inequality is tight if Tv is a path.

Counting the vertices in T , we see

n ≥ d(u, v) + |V (Tu)|+ |V (Tv)| − 1,

d(u, v) ≤ n− |V (Tu)| − |V (Tv)|+ 1 ≤ n−
⌈
n+ 1

2

⌉
− n′ + 1.

where n′ is the minimum number of vertices in a tree Tu with maximum degree k

such that FTu(u) ≥ d(u, v) + |V (Tv)| = n − |V (Tu)| as in (6.10). Note that FTu(u)

is maximized by the extended rgood tree, giving the extremal tree in the theorem

statement. �

Theorem 6.27. For fixed n, k ∈ Z>0, any tree T with order n and maximum degree

k has

d(Core(T ), C(T )) ≤ n− n′ −
⌊1

2(n− n′ + h′)
⌋

where h′ =
⌈

ln(n′(k−2)+1)
ln(k−1)

⌉
−1 and n′ is the minimum number of vertices in the extended

rgood tree Tu with maximum degree k such that FTu(u) ≥ n−|V (Tu)|. This inequality
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is tight for the tree formed from an extended rgood tree and a path by identifying the

root of the extended rgood tree with one end of a path.

Proof. Let u ∈ Core(T ) and v ∈ C(T ) such that d(u, v) = d(Core(T ), C(T )). Define

Tu and Tv to be the components of T − E(P (u, v)) containing u and v respectively.

Let hu and hv be the heights of Tu and Tv respectively.

Because u ∈ Core(T ) and its neighbor on P (u, v) is not in the subtree core, as in

(6.10), Proposition 6.7 gives

d(u, v) ≤ FTu(u)− |V (Tv)| (6.11)

which is tight when Tv is a path.

Because v ∈ C(T ) and its neighbor on P (u, v) is not in the center, as in the proof

of Theorem 6.25, Proposition 6.4 gives

d(u, v) ≤ hv − hu ≤ |V (Tv)| − hu − 1.

As in (6.9), this is also tight when Tv is a path.

Adding these two inequalities together we obtain the following bound.

d(u, v) ≤ 1
2 (FTu(u)− hu − 1) .

The upper bound is maximum when FTu(u) large and hu is small which is optimized

when Tu is the extended rgood tree.

If n′ is the number of vertices in Tu, then because v ∈ C(T ) and Tv is a path, then

eccT (v) is at least half of the diameter of T which translates to

|V (Tv)| ≥
1
2(n− n′ + hu).

Any tree on n′ vertices with maximum degree at most k will have height at least

the height of the corresponding extended rgood tree. As determined in the proof of

Theorem 6.25,

hu ≥
⌈

ln (n′(k − 2) + 1)
ln(k − 1)

⌉
− 1 := h′.
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In conclusion,

d(u, v) ≤ n− |V (Tu)| − |V (Tv)| ≤ n− n′ −
⌊1

2(n− n′ + h′)
⌋
.

Further, this upper bound is maximized when n′ is minimized. However, n′ must still

satisfying the condition FTu(u) ≥ d(u, v) + |V (Tv)| = n− |V (Tu)| from (6.11). �

6.4 Different “middle parts” in trees with a given diameter D

In this section, for fixed n,D ∈ Z>0, consider classes of trees with n vertices and di-

ameter at most D. The next two propositions follow from exactly the same arguments

as those of Section 6.2, we skip the proofs.

Proposition 6.28. For fixed D and large n, every tree T of order n and diameter at

most D satisfies

d(C(T ), CT (T )) ≤
⌊
D − 2

2

⌋
,

which is achieved by a D-comet.

Proposition 6.29. For fixed D and large n, every tree T of order n and diameter at

most D satisfies

d(C(T ), Core(T )) ≤
⌊
D − 2

2

⌋
,

which is achieved by a D-comet.

The argument for d(CT (T ), Core(T )) is more complex. Fix D and n. Among all

trees with diameter at most D and order n, fix a tree T which realizes the maximum

value for d(CT (T ), Core(T )).

Select vertices u ∈ Core(T ) and v ∈ CT (T ) such that the graph distance between

u and v is precisely d(CT (T ), Core(T )). In T−E(P (u, v)), let Tu name the component

containing u while Tv is the component containing v. Consider u to be the root of Tu

and v to be the root of Tv.
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Let w be the neighbor of u on P (u, v). Because u ∈ Core(T ), Proposition 6.7

implies

FTu(u) < FT−Tu(w).

Because v ∈ CT (T ) and its neighbor on P (u, v) is not in CT (T ), Proposition 6.6

implies

|V (Tv)| > n− |V (Tv)|.

Suppose Tu is not a star. Create a new tree T ′ from T by replacing Tu with a star

T ′u which is rooted at u and has the same order as Tu. Using the convention that T ′u

and T ′v are the components containing u and v respectively in T ′ − E(P (u, v)), we

see that T ′v is the same tree as Tv. First observe that

FT ′u(u) ≥ FTu(u) > FT−Tu(w) = FT ′−T ′u(w)

which implies w 6∈ Core(T ′) by Proposition 6.7. Further,

|V (T ′v)| = |V (Tv)| > n− |V (Tv)| = n− |V (T ′v)|

which implies the neighbor of v on P (u, v) is not in the centroid of T ′ by Proposi-

tion 6.6. Therefore

d(Core(T ′), CT (T ′)) ≥ dT ′(u, v) = dT (u, v) = d(Core(T ), CT (T )).

By the choice of T , d(Core(T ′), CT (T ′)) = d(Core(T ), CT (T )). So T ′ is a tree with

diameter at most D and order n which maximizes d(Core(T ), CT (T )).

Now consider the structure of T ′v in T ′. Say T ′v has x vertices and height h.

Suppose T ′v does not minimize the number of subtrees containing v for its height and

order. Let T ′′v be a tree rooted at v with height at most h and order x which minimizes

FT ′′v (v). Define T ′′ to be the tree created from T ′ by replacing T ′v with T ′′v . Observe

that

FT ′′u (u) = FT ′u(u) > FT ′−T ′u(w) > FT ′′−T ′′u (w)
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which implies w 6∈ Core(T ′′) by Proposition 6.7. Further, for T ′′v being the component

of T ′′ − E(P (u, v)) which contains v,

|V (T ′′v )| = |V (T ′v)| > n− |V (T ′v)| = n− |V (T ′′v )|.

This implies, by Proposition 6.6, that the neighbor of v on P (u, v) in T ′′ is not in

CT (T ′′) and

d(Core(T ′′), CT (T ′′)) ≥ dT ′′(u, v) = dT (u, v) = d(Core(T ), CT (T )).

However, T was chosen as a tree which maximizes the distance between the sub-

tree core and the centroid. Therefore d(Core(T ′′), CT (T ′′)) = d(Core(T ), CT (T )).

Therefore, T ′′ is also a tree with diameter at most D and order n that maximizes the

distance between the subtree core and the centroid.

Remark 6.30. Fix n,D ∈ Z>0. Among all trees with diameter at most D and

order n, there is a tree T , with Tu a star rooted at u and Tv a tree which mini-

mizes the number of subtrees containing v for its height and order, which maximizes

d(Core(T ), CT (T )). This structure T is drawn in Figure 6.4.

In Section 6.5, we take a closer look at the structure of Tv, a tree which minimizes

the number of subtrees containing v for its height and order. While we determine

many necessary properties of Tv, characterizing the exact structure is still an open

problem.

vwu

Tv

Figure 6.10 The structure of a tree T with diameter D
and order n which maximize d(Core(T ), CT (T )). Here,
u ∈ Core(T ), v ∈ CT (T ), and Tv minimizes the number of
subtrees containing v for its order and height.
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6.5 Rooted trees of given order and height

For any n, h ∈ Z>0, this section is devoted to characterizing the rooted trees with n

vertices and height at most h which have the minimum number of root-containing

subtrees. We call these trees optimal.

To standardize some notation, we restrict our attention to trees T which are

rooted at root ρ, have order n and height h unless mentioned otherwise. Note that

h(T ) = eccT (r). The degree of a vertex v will be denoted deg(v). It is necessary to

have h+ 1 ≤ n to guarantee that the tree will be realizable.

For any v ∈ V (T ), let T (v) denote the subtree induced by v and all of its de-

scendants. We will view T (v) as a tree rooted at v. For each neighbor vi of ρ, set

Ti := T (vi). Here we present several observations regarding the characteristics of an

optimal tree.

Lemma 6.31. In any optimal tree T , for any v ∈ V (T ), T (v) minimizes the number

of root-containing subtrees among all rooted trees of the same order and height at

most h− hT (v).

Proof. Let T be an optimal tree. Suppose, for contradiction, that there is a vertex

v for which T (v) does not satisfy the lemma. In other words, there is a tree T ′(v),

which is rooted at v, has the same order as T (v), and has

h(T ′(v)) ≤ h− hT (v) and FT ′(v)(v) < FT (v)(v).

Let T ′ be the tree obtained from T by replacing T (v) with T ′(v). Then T and T ′ have

the same number of subtrees containing ρ but not v. Define T ∗ := T − (T (v)− {v})

and let ρ and v. Because T and T ′ only differ in the descendants of v, we have

FT (ρ)− FT ′(ρ) = FT (v)(v)FT ∗(ρ, v)− FT ′(v)(v)FT ∗(ρ, v) > 0,

a contradiction to the optimality of T . �
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Lemma 6.32. The height of any leaf in an optimal tree is h.

Proof. If n = h+ 1, it is straightforward to see that the path rooted at one end is the

optimal tree. In the case when n > h+ 1, some vertex must have at least 2 children.

Suppose, for contradiction, that there is a leaf v ∈ V (T ) whose height is less than h.

Let x be the closest ancestor (possibly the root) of v that has at least two children.

Let y be a child of x that is not on P (x, v) and z be the child of x on P (x, v).

Tx Tx
..
.

x

y

z

v

T (x)

..
.

x

y z

v

T ′(x)

Figure 6.11 Trees T (x) and T ′(x) from Lemma 6.32

Let Tx be the component containing x in T − xy − xz and consider the tree

T ′(x) := T (x)− xz + yz

depicted in Figure 6.11. Note that T ′(x) has the same order as T (x) and has height

no more than h− hT (x) because the height of v in T is less than h.

Counting the number of subtrees containing x in each tree, we obtain the following

equalities:

FT (x)(x) = FTx(x)(1 + dT (x)(x, v))(1 + FT (y)(y)),

FT ′(x)(x) = FTx(x)
[
1 + (1 + dT (x)(x, v))FT (y)(y)

]
.

Together, these imply

FT (x)(x)− FT ′(x)(x) = dT (x)(x, v)FTx(x) > 0.

Since T was optimal, this contradicts Lemma 6.31. �
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Lemma 6.33. Every optimal tree has one of the following two properties:

• All non-root vertices have degree at most 3.

• All non-root vertices of height less than h − 1 have degree at most 3. For any

vertex v of height h− 1, deg(v) ≤ 4. Further, if deg(v) = 4, then the parent of

v must have degree 2 or be the root.

Proof. As before, this proof proceeds by contradiction. Let x be a non-root vertex in

an optimal tree T with degree at least 4. Say y, z, and w are three children of x and

let u be the parent of x. Denote by Tu and Tx the components containing u and x

respectively in T − ux− xy − xz − xw. Without loss of generality, assume

FT (w)(w) = max{FT (y)(y), FT (z)(z), FT (w)(w)}.

u

Tu x

Tx
y z w

T (u)
u

Tu x

Tx y/z w

T ′(u)

Figure 6.12 Trees T (u) and T ′(u) in the proof of Lemma 6.33.

Now consider the tree T ′(u) obtained from T (u) by removing the edges xz and

xw, inserting a path of length 2 between u and w, while identifying the vertices y and

z (Figure 6.12). Note that T ′(u) has the same height and order as T (u). Counting

the number of subtrees containing u in each, we find

FT (u)(u) = FTu(u)
[
1 + FTx(x)

(
1 + FT (y)(y)

) (
1 + FT (z)(z)

) (
1 + FT (w)(w)

)]
,

FT ′(u)(u) = FTu(u)
(
2 + FT (w)(w)

) [
1 + FTx(x)

(
1 + FT (y)(y)FT (z)(z)

)]
.
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Together, these imply the following

FT (u)(u)− FT ′(u)(u) = FTu(u)
[
FTx(x)FT (y)(y)

(
FT (w)(w)− FT (z)(z)

)
+ FTx(x)

(
FT (y)(y)− 1

)
+
(
FT (w)(w) + 1

) (
FTx(x)FT (z)(z)− 1

)]
≥ 0. (6.12)

Because T is an optimal tree, T (u) is an optimal tree by Lemma 6.31. Therefore

(6.12) must be equality. Note that for any tree H and vertex a ∈ V (H), FH(v) ≥ 1

because the subtree containing only the vertex v will be counted. Therefore, equality

holds in (6.12) exactly when FTx(x) = FT (y)(y) = FT (z)(z) = FT (w)(w) = 1, or

equivalently, deg(x) = 4 and y, z, w are all leaves so x has height h−1 in T . Create T ′

from T by replacing T (u) with T ′(u). Because (6.12) is equality, FT (u)(u) = FT ′(u)(u).

Therefore T ′ is also an optimal tree.

In T ′, degT ′(x) = 3 but degT ′(u) = degT (u) + 1. Observe u has height h − 2 in

T ′. If u is not the root of T ′ and degT ′(u) ≥ 4, then we can repeat the argument for

optimal tree T ′ and vertex u having degree at least 4. Because the height of u is h−2,

we will find a contradiction in the step which parallels (6.12). Therefore degT ′(u) ≤ 3

which implies degT (u) ≤ 2. Since u is not the root of T , we can conclude degT (u) = 2

as stated in the theorem. �

In the proof of Lemma 6.33, in the case where degT (x) = 4, we created another

optimal tree T ′ where degT ′(x) = 3 and no other degree 4 vertices where created.

Hence, if an optimal tree has multiple degree 4 vertices of height h−1, we can repeat

this procedure to obtain an optimal T ′ with all vertices of degree at most 3. This

proves the following observation.

Observation 6.34. There is an optimal tree in which all non-root vertices have

degree at most 3.
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We now shift our attention to the structures of Ti for 1 ≤ i ≤ k.

Lemma 6.35. In an optimal tree T , each subtree Ti ∪ {ρ} falls into one of the

following three categories:

• There is at most one non-root vertex with degree 3.

• All non-root vertices of height at most h− 3 have degree 2, the vertex of height

h− 2 has degree 3, and exactly one of its children has degree 3.

• All non-root vertices of height at most h − 2 have degree 2 and the vertex of

height h− 1 has degree 4.

Proof. We prove this in two pieces, considering the alternatives from Lemma 6.33

separately. We start with the optimal trees in which all vertices have degree at most

3.

For contradiction, suppose there exists a Ti ∪ {ρ} with at least two non-root

vertices of degree 3. Let v be a degree 3 vertex of greatest height in Ti and let u,w

be the two children of v. Let z be the closest ancestor of v such that degTi(z) = 3, z

has parent x, and z has child y /∈ V (P (z, v)). Let `1 denote the distance from v to a

leaf in Ti and `2 the length of P (v, z). Let Tx denote the component containing x in

T (x)− xz (Figure 6.13).

Create a new tree T ′(x) from T (x) by removing the edges vw and zy, inserting

a length 2 path between x and y, and identifying u and w (Figure 6.13). Note that

T ′(x) has the same height and order as T (x). The number of subtrees containing x

in each is

FT (x)(x) = FTx(x)
[
1 + (1 + FT (y)(y))[`2 + (`1 + 1)2]

]
,

FT ′(x)(x) = FTx(x)(2 + FT (y)(y))
(
`2 + 2 + `2

1

)
.

145



Tx Tx

. . . . .
.

. . .

u

︸
︷︷

︸`1
w

v

z

︸ ︷︷ ︸`2

x

y

T (x)

. . . . .
.

. . .

u/w

v

z

x

y

T ′(x)

Figure 6.13 Transforming T (x) into T ′(x) when degT (v) = 3 in
the proof of Lemma 6.35.

By Lemma 6.32, the height of each leaf in T is h, hence V (T (y)) ≥ `1 + `2. Now we

have

FT (x)(x)− FT ′(x)(x) = FTx(x)
[
(1 + FT (y)(y))(2`1 − 1)− (`2

1 + `2 + 1)]
]

≥ FTx(x)
[
(1 + `1 + `2)(2`1 − 1)− (`2

1 + `2 + 1)]
]

(6.13)

= FTx(x)(`2
1 + 2`1`2 + `1 − 2`2 − 2)

≥ 0. (6.14)

When either (6.13) or (6.14) is strict inequality, we have a contradiction to the op-

timality of T . Equality holds exactly when `1 = `2 = 1 and |V (T (y))| = `1 + `2. In

other words, T (y) is a single path on two vertices with y having height h− 1. Since

T ′ (constructed from T by replacing T (x) with T ′(x)) is an optimal tree, if x is not

the root, degT ′(x) ≤ 3 since x has height h− 3. Therefore degT (x) ≤ 2 as described

in the second property of the lemma.

If T falls into the second category listed in Lemma 6.33, then consider a subtree

Ti with a vertex v of degree 4 at height h− 1. We will show that all other non-root

vertices in Ti∪{ρ}must have degree 2. Suppose to the contrary that v has an ancestor

z of degree 3. (In this way, we are able to simultaneously handle the case when there

are two vertices of degree 4 in Ti ∪ {ρ} because they would have to share a common
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ancestor of degree 3.) Label the vertices as before with s being the third child of v

(Figure 6.14).

Create T ′(x) by altering T (x) in a manner similar to that described above. Define

T ′(x) = T (x)− wv − yz + xw + wy

as shown in Figure 6.14.

Tx Tx

. . .

u w s

v

z

︸ ︷︷ ︸`2

x

y

T (x)

. . .

u s

v

z
w

x

y

T ′(x)

Figure 6.14 Transforming T (x) into T ′(x) when v has degree 4 in
the proof of Lemma 6.35.

Let `2 be the distance from z to v in T (x). Because all leaves have height h,

FT (y)(y) ≥ `2 + 1 which is tight when T (y) is a path. Now if we calculate FT (x)(x)

and FT ′(x)(x) exactly and take their difference, we find

FT (x)(x) = FTx(x)
(
1 + (1 + FT (y)(y))(`2 + 8)

)
FT ′(x)(x) = FTx(x)(2 + FT (y)(y))(`2 + 5)

FT (x)(x)− FT ′(x)(x) = FTx(x)
(
3FT (y)(y)− `2 − 1

)
≥ FTx(x) (3(`2 + 1)− `2 − 1)

= FTx(x) (2`2 + 2)

> 0.

This contradicts our choice of T . Thus Ti∪{ρ} can have at most one vertex of degree

4 and all other non-root vertices must have degree 2 as described in the third property

of the lemma. �
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Once again, it is useful to note that the optimal trees described in the second

two properties of Lemma 6.35, the proof described T ′ analogues which have the same

number of root-containing subtrees and yet fall under the first property description

in Lemma 6.35. This gives the following observation.

Observation 6.36. There is an optimal tree with each Ti ∪ {ρ} having at most one

non-root vertex of degree 3.

Define the f -split to be the tree rooted at v1 with h+f vertices, constructed from

paths P1 = (v1, v2, . . . , vh), and P2 = (u1, u2, . . . , uf ) by adding the edge u1vh−f . We

also define the 0-split to be merely a path on h vertices which is rooted at one end. By

Observation 6.36, there is an optimal tree so that for each Ti there is 0 ≤ ki ≤ h− 1

such that Ti is a ki-split. First let us state a structural observation that will minimize

some notation.

Observation 6.37. In an optimal tree T , the number of root-containing subtrees in

a ki-split together with root ρ is

sh(ki) := h+ k2
i + ki + 1.

This definition also makes sense for the 0-split, which has h root-containing subtrees,

and the h-split, with h2 subtrees that contain the root.

Lemma 6.38. Among the Ti subtrees in an optimal tree, at most two of them can be

0-splits.

Proof. Suppose, for contradiction, that Ti, Tj and Tk are each 0-splits in an optimal

tree. Consider S := Ti ∪ Tj ∪ Tk ∪ {ρ}. Create S ′ from S by replacing Ti with a

1-split, Tj with an (h− 1)-split and deleting Tk (Figure 6.15).

148



u u

v v

r r

. . .
... . .

. . . . . .
.

.
.
.

S S ′

Figure 6.15 Trees S and S ′ from the proof of Lemma 6.38

The difference in the number of subtrees is

FS(ρ)− FS′(ρ) = (sh(0))3 − sh(1)sh(h− 1)

= (h+ 1)3 − (h+ 3)(2h+ (h− 1)2)

= 2(h− 1)

> 0.

This contradicts the optimality of T because the tree obtained from T by replacing

S with S ′ has fewer root-containing subtrees than T . �

Lemma 6.39. If some Ti is a 0-split, then for each j 6= i, Tj is either a 0-split or a

1-split.

Proof. Suppose instead that Ti is a 0-split and Tj is a kj-split where 1 < kj ≤ h− 1.

Let S be the tree induced by Ti, Tj and r. Construct S ′ from S by replacing Ti with

a 1-split and replacing Tj with a (kj − 1)-split (Figure 6.16).
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Figure 6.16 Trees S and S ′ from the proof of Lemma 6.39.

Note that S ′ has the same height and order as S, and

FS(ρ)− FS′(ρ) = sh(0)sh(kj)− sh(1)sh(kj − 1)

= (h+ 1)
[
h+ k2

j + kj + 1
]
− (h+ 3)

[
h+ (kj − 1)2 + kj

]
= (h+ 1)

[
h+ k2

j + kj + 1
]
− (h+ 3)

[
h+ k2

j − kj + 1
]

= 2kj(h+ 1)− 2
[
h+ k2

j − kj + 1
]

= 2
[
kjh− k2

j + kj − h+ kj − 1
]

= 2 [(kj − 1)(h− kj) + (kj − 1)]

> 0. (for kj > 1)

This contradicts the optimality of T because the tree obtaining from T by replacing

S with S ′ has fewer root-containing subtrees than T . �

Lemma 6.40. A rooted tree T is not optimal if for any Ti (ki-split) and Tj (kj-split),

we have ki(1 + kj) > h+ 1 for 1 ≤ ki ≤ kj ≤ h− 1.

Proof. Define T2 be the subtree of T which consists of the root ρ together with Ti

and Tj.

Construct T ′2 from T2 by replacing Ti with a (ki − 1)-split and replacing Tj with

a (kj + 1)-split. This construction is well-defined because 1 ≤ ki and kj ≤ h− 1.

It is easy to see that T ′2 has the same height and order as T2. We have

FT2(ρ) = sh(ki)sh(kj) and FT ′2(ρ) = sh(ki − 1)sh(kj + 1).
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Since ki ≤ kj and ki(1 + kj) > h+ 1, we have

FT2(ρ)− FT ′2(ρ) = −2(ki − kj − 1)(ki + kikj − h− 1) > 0,

which contradicts the optimality of T . �

By reversing the roles of ki and kj in the previous lemma, we obtain the following

corollary.

Corollary 6.41. A rooted tree T is not optimal if for any Ti, which is a ki-split, and

Tj, which is a kj-split, we have kj(1 + ki) < h+ 1 and ki < kj − 1.

Corollary 6.42. Fix an optimal tree T in which each Ti is a ki-split with ki ≥ ki+1.

If k1 >
√
h+ 5

4 −
1
2 , then ki <

√
h+ 5

4 −
1
2 for each i ≥ 2.

Proof. Let T be an optimal tree, as described in the corollary, with k1 >
√
h+ 5

4 −
1
2 .

For contradiction, suppose k2 ≥
√
h+ 5

4 −
1
2 . Observe

k2(k1 + 1) >
√h+ 5

4 −
1
2

√h+ 5
4 + 1

2


= h+ 5

4 −
1
4

= h+ 1.

However, this contradicts the statement of Lemma 6.40. Therefore the corollary

holds. �

Corollary 6.43. Fix an optimal tree T in which each Ti is a ki-split. For any pair

{ki, kj} with ki, kj ≤
√
h+ 5

4 −
1
2 , we can conclude |ki − kj| ≤ 1.
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Proof. Suppose ki, kj ≤
√
h+ 5

4 −
1
2 with kj ≥ ki + 2. Observe

kj(1 + ki) ≤ kj(kj − 1)

≤

√h+ 5
4 −

1
2

√h+ 5
4 −

3
2


= h+ 5

4 − 2
√
h+ 5

4 + 3
4

= h+ 2− 2
√
h+ 5

4

< h+ 1.

This contradicts Corollary 6.41, finishing the proof. �

Question 6.44. Let root ρ have deg(ρ) = r and let Ti be a ki-split where 0 ≤ ki < h

for each i ∈ [r]. If T is an optimal tree, then


∑r
i=1 ki + hr + 1 = n,

ki + kj ≤ h, for 1 ≤ i, j ≤ r and i 6= j.

Our goal is to minimize the expression

k∏
i=1

(h+ k2
i + ki + 1),

obtained from the number of root-containing subtrees of an optimal tree illustrated in

Figure 6.17.

While we do not yet have a complete characterization of optimal trees, we have

many necessary properties.

Lemma 6.45. Suppose k1 ≥ k2 ≥ . . . ≥ kk. If k1 >
⌈√
h+ 5

4 −
1
2

⌉
, then for each

i > 1,
h+ 1
k1
− 1 ≤ ki ≤

h+ 1
k1 + 1 . (6.15)

In particular, k2 = k3 = . . . = kk =
⌊
h+1
k1+1

⌋
provided

⌊
h+1
k1+1

⌋
≥ h+1

k1
− 1.
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ρ

︸ ︷︷ ︸
kr vertices

︸ ︷︷ ︸
k2 vertices

︸ ︷︷ ︸
k1 vertices

· · · · · · · · ·

Figure 6.17 The structure of a tree T with height
h and order n which minimizes the number of
root-containing subtrees.

Proof. Since k1 >
√
h+ 5

4 −
1
2 , Corollary 6.42 implies k2 <

√
h+ 5

4 −
1
2 . Since T is

optimal, Lemma 6.40 yields ki(1 + k1) ≤ k2(1 + k1) ≤ h+ 1. Thus

ki ≤
h+ 1
k1 + 1 .

Because k1 >
⌈√
h+ 5

4 −
1
2

⌉
, then necessarily k2 < k1 − 1. Corollary 6.41 gives

the following:

k1(1 + ki) ≥ k1(1 + kk) ≥ h+ 1.

This is equivalent to

ki ≥
h+ 1
k1
− 1.

�

Remark 6.46. Let T be an optimal tree with n vertices and height h such that each

Ti is a ki-split with k1 ≥ k2 ≥ . . . ≥ kr which falls into one of the following three

categories:

1. (Paths) kr = 0, kr−1 ∈ {0, 1}, kr−2 = . . . = k1 = 1.

2. (One large) k1 >
⌈√

h+ 5
4 −

1
2

⌉
and ki =

⌊
h+1
k1+1

⌋
for each i ∈ {2, . . . , r} provided⌊

h+1
k1+1

⌋
≥ h+1

k1
− 1.
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3. (Even distribution) k1 ≤
⌈√
h+ 5

4 −
1
2

⌉
and for all i, j ∈ [r], |ki − kj| ≤ 1.

Provided that the ki-values in an optimal tree follow an even distribution, we are

interested in determining the optimal value for deg(ρ) = r.

Lemma 6.47. For fixed h, n ∈ Z, let T be an optimal tree with n vertices, height

h, and where each Ti is a ki-split. Fix t ∈ R, t ≥ 2 which satisfies the inequality

h1/(t+1) > ln(6h). For x ∈
[
h1/(t+1), h1/t

]
with n ≥ (h+ x)(h+ x− 1) + 1, then

|{i : ki = x}| < h+ x− 1.

Proof. Let T be a tree with root degree r and each Ti is a ki-split. Suppose for

contradiction that k1 = k2 = . . . = kh+x−1 = x (where the ki values are not necessarily

in non-increasing order).

Let H be the subtree induced by T1, . . . , Th+x−1 and the root ρ. Here, each Ti is

an x-split. Thus the number of root-containing subtrees in H is

FH(ρ) = (h+ x2 + x+ 1)h+x−1.

Let T ′i be an (x − 1)-split. Define a new tree T ′ by replacing Ti with T ′i for each

i ∈ [h + x − 1] and increasing the degree of the root by one so that the new branch

T ′0 is also an (x − 1)-split. Let H ′ be the subtree induced by T ′0, T ′1, . . . , T ′h+x−1 and

the root of T ′. The number of root-containing subtrees in H ′ is

FH′(ρ) = (h+ x2 − x+ 1)h+x.

In order to compare the number of root-containing subtrees of T and T ′, it suffices

to compare the number of root-containing subtrees of H and H ′.
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In order to compare these, consider the ratio:

FT (ρ)
FT ′(ρ)

= FH(ρ)
FH′(ρ)

=(h+ x2 + x+ 1)h+x−1

(h+ x2 − x+ 1)h+x

= 1
h+ x2 − x+ 1

(
1 + 2x

h+ x2 − x+ 1

)h+x

≥ 1
h+ h2/t + h1/t + 1

(
1 + 2h1/(t+1)

h+ h2/t − h1/(t+1) + 1

)h+h1/(t+1)

since x ∈ [h1/(t+1), h1/t]

= 1
h+ h2/t + h1/t + 1

(
1 + 2

ht/(t+1) + h(t+2)/(t2+t) − 1 + h−1/(t+1)

)h+h1/(t+1)

≥ 1
3h

(
1 + 2

ht/(t+1) + h(t+2)/(t2+t)

)h
for t ≥ 2

≥ 1
3h

(
1 + 2

ht/(t+1) + ht/(t+1)

)ht/(t+1)h1/(t+1)

= 1
3h

(
1 + 1

ht/(t+1)

)ht/(t+1)h1/(t+1)

≥ 1
3h ·

1
2e

h1/(t+1)

>1. since h1/(t+1) > ln(6h)

As a result, T is not an optimal tree because T ′ also has n vertices and height h

but has fewer subtrees which contain its root. �

We obtain the following corollary:

Corollary 6.48. Fix h ≥ 550 and n ∈ Z with n ≥ 6h2. Let T be an optimal tree

with subtrees Ti which are ki-splits. For any x ∈
(
ln(6h),

√
h
]
, then

|{i : ki = x}| < h+ x− 1.

Proof. Fix n, h with n ≥ 6h2. Since h ≥ 550, ln(6h) < h1/3. Suppose a tree T has

root degree r. Let x ∈
(
ln(6h),

√
h
]
. If ln(6h) < x ≤ h1/3, there is t ∈ R such that
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x = h1/(t+1) (t = lnh
lnx − 1) and t ≥ 2. If h1/3 < x ≤ h1/2 , let t = 2 in which case

h1/(t+1) = h1/3 > ln(6h) for h ≥ 550. �

In the statement of Corollary 6.48, we require n ≥ 6h2. First this ensures that T

can possibly have (h + x − 1) subtrees which are x-splits for x ≤
√
h. On the other

hand, Corollary 6.43 says |ki − kj| ≤ 1. If n ≥ 6h2, then we guarantee that T will

have at least h+ x− 1 subtrees Ti, each of which is an x-split, even when x =
√
h.

Remark 6.49. Therefore if n ≥ 6h2 with h ≥ 550, then each ki ≤ ln(6h) + 1. Even

in the “one large” case, the value of k1 must be large enough so that ki =
⌊
h+1
k1+1

⌋
≤

ln(6h) + 1.

While we do not yet have a complete characterization of the optimal trees, we

have established many of their structural properties to guide our continued study on

this topic.
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Chapter 7

Some Remarks on Baranyai’s Theorem

About 40 years ago, Baranyai (1973) found a proof using network flows for a long-

standing open problem about set partitions: if k|n, then all
(
n
k

)
k-element subsets

can be partitioned into
(
n−1
k−1

)
families, such that each family is a partition of the n-

element underlying set. The proof uses a polynomial time algorithm to develop such

a partition. However, the algorithm sheds little light on the construction. Before

Baranyai’s proof, the existence for k = 2 was well-known and easily constructible as

seen in Fig. 7.7 taken from Lint and Wilson (1996). Peltesohn (1936) proved the

existence for k = 3 by combinatorial arguments. For k = 3 an algebraic construction

also exists due to Beth (1974). While no explicit construction has been found for

larger sets, such a construction may prove enlightening about finite sets as Baranyai’s

theorem is a strong result. For example, it implies the Erdős-Ko-Rado theorem in

one line for k|n.

Erdős and Székely (1989) was the first to establish a bijection between set par-

titions and rooted leaf-labelled trees. It is our hope that working with trees instead

of partitions will provide the insight needed to develop a more general construction

of Baranyai partitions. We use here another bijection found by Stanley (1999) Ex.

5.43 to provide an alternative construction for the k = 2 case of Baranyai’s Theorem.

Eventually one could describe our constructions without trees, but we think that

trees give a strong motivation for them. We also prove that our construction differs

from the standard construction shown on Fig. 7.7.
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7.1 Baranyai’s Theorem

In order to state Baranyai’s Theorem, we first need the following definitions.

Definition 7.1. Given the set [n] := {1, 2, . . . , n}, and k ∈ [n]

1.
(

[n]
k

)
is the collection of subsets of [n] having size k.

2. S ⊂
(

[n]
k

)
is a k-partition of [n] provided the elements of S form a partition of

[n].

Theorem 7.2 (Baranyai, 1975). If k divides n, then there is a partition of
(

[n]
k

)
into r = k

n

(
n
k

)
rows, each of which is a k-partitions. We call this an (n, k)-Baranyai

partition.

Baranyai proved the existence of these (n, k)-Baranyai partitions for integers k

and n with k|n. We now turn our attention to the case when k = 2 and work toward

a constructive proof.

7.2 Bijection with binary trees

Definition 7.3. A binary rooted tree is a vertex rooted tree where each vertex has

0 or 2 children, including the root. One that is labeled bears distinct labels for the

leaves. If it is unordered, there is no ordering given to the two children of a single

vertex.

Let Bn be the collection of labeled, unordered, binary rooted trees with n non-

root vertices. Each will have `n leaves and `n − 2 non-root, non-leaf vertices. Thus

n = `n + (`n − 2). The leaves will have label set {1, . . . , `n}.

Stanley defines a bijection between Bn and the 2-partitions of [n]. The bijection

is defined as follows: Start with T ∈ Bn. Extend the labeling to all of the non-root

vertices by iterations of the following procedure.
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Algorithm 7.4. Among the vertices which are unlabeled, non-root vertices with chil-

dren which are both labeled, chose the one whose child has the least label of those

considered. If labels 1, . . . , s have already been used, apply the label s + 1 to the

selected vertex.

This will result in a labeling of the whole tree with labels 1, 2, . . . , n as exemplified

in Fig. 7.1. Since we have a binary tree, we can create a 2-partition of [n] by pairing

the labels of vertices which have the same parent. Because the tree is unordered, the

2-partition will be unique.

Likewise, each 2-partition can be described by a unique tree in Bn. Induce an

ordering on the pairs based on the maximum element in each. Start with a root

vertex and two leaves. These leaves will obtain the labels from the first (largest) pair,

i.e. the one containing n. Below the leaf with label n− i, hang two new leaves with

labels from the i + 2 pair in the ordering, starting with i = 0. Ignoring the non-leaf

labels in the final product, we have a tree in Bn. Mutatis mutandis, the bijection

extends for non-binary trees.

�

�

31

5

�

42

8

6

31

5

7

42

Figure 7.1 A leaf-labeled binary tree which corresponds
to partition 13|24|56|78.

7.3 Tree construction

For even n, the goal is to describe a collection of 2
n

(
n
2

)
= n − 1 binary trees which

correspond to an (n, 2)-Baranyai partition. The construction is inductive on n. As a
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21

Figure 7.2 The single
binary tree for the
(2, 2)-Baranyai partition.

base case, when n = 2 there is only one binary tree (in Fig. 7.2) with leaves labeled

{1, 2} corresponding to the unique (2, 2)-Baranyai partition.

Assume for all even m < n there is a collection of m − 1 trees from Bm which

corresponds to an (m, 2)-Baranyai partition by the bijection described above. Recall

that each tree in the collection will have m non-root vertices and `m leaves labeled

1, . . . , `m. Extending the labeling, the interior vertices take labels `m + 1, . . . ,m. For

ease of notation, let Tm name this collection of m− 1 fully label trees.

In the inductive step, we create Tn, a collection of n − 1 trees from Bn whose

corresponding partitions create an (n, 2)−Baranyai partition. The construction is

broken into two cases

(Case 1) n ≡ 0 mod 4

(Case 2) n ≡ 2 mod 4

Case 1: n ≡ 0 mod 4 (i.e. n = 2j where j is even)

We require n− 1 binary trees with `n = j + 1 leaves and j − 1 non-root internal

vertices. The method to extend labelings guarantees that each tree will correspond

to a 2-partition of [n]. Because n is finite, it suffices to check that every element of(
[n]
2

)
appears in some partition. The result will be an (n, 2)−Baranyai partition.

The collection Tn will be the union of two sets. The first collection, T 1
n , will consist

of j − 1 trees which account for all the 2-subsets of [n] in which both elements come

from {1, . . . , j} or both elements come from {j + 1, . . . , n}. The second collection

T 2
n , of j trees will exhibit all the 2-subsets with one element from {1, . . . , j} and the
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other from {j + 1, . . . , n}. Thus T 1
n ∪ T 2

n will be the desired collection of n− 1 trees

in which all 2-subsets of [n] appear in exactly one tree.

Creating T 1
n : Start with Tj, the collection of j−1 trees from the induction hypothesis.

The non-root vertex set takes labels 1, . . . , j while the leaves are labeled 1, . . . , `j.

Increase each of the labels by j. The vertex labels are now j+ 1, . . . , n and the leaves

are labeled j + 1, . . . , j + `j. Hang cherries (pairs of leaves) from the existing leaves

with labels {j+2, . . . , j+`j}. This creates 2(`j−1) = j new leaves which need labels.

Let T ′j name this collection of partially labeled binary trees. Fig. 7.3 demonstrates

the process on a tree from T4.

4

21

3 8

65

7 8

65

7

Figure 7.3 The left tree is from T4. Adding 4 to each of
the labels yields the middle tree. Finally we hang cherries
from 3 of the leaves to obtain the right-most tree in T ′4 .

Each T ′ ∈ T ′j was constructed from a tree T ∈ Tj. For the 2-partition that

corresponds to T , induce a well-ordering on the pairs according to their least element.

The pair containing 1 will be the first (least) pair. We then use these pairs to label

the unlabeled leaves of T ′. Specifically, the ith pair will label the children of the

vertex labeled j + i + 1. Labeling in this order respects the algorithm for extending

labelings.

By construction, this collection of j − 1 trees accounts for all of the
(
j
2

)
2-subsets

of {1, . . . , j} and all of the
(
j
2

)
2-subsets from {j + 1, . . . , n} with j

2 of each type in

each tree.
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Creating T 2
n : We utilize j caterpillar binary trees (as seen in Fig. 7.4) to account for

the pairs in which one element is from {1, . . . , j} and the other is from {j+1, . . . , n}.

On every tree, apply label j+1 to one of the leaves farthest from the root. Necessarily,

the internal vertices are labeled j + 2, . . . , n increasing toward the root.

For the complete bipartite graph with vertex classes {1, . . . , j} and {j+1, . . . , n},

we can partition the edges into j perfect matchings since the graph is regular. Using

one matching for each caterpillar tree, label the vertices so that pairs of vertices

with the same parent are exactly the pairs in the matching. This completes the

construction of T 2
n .

8

7

6

5

8

7

6

53

2

4

1

Figure 7.4 The left tree is the general
caterpillar tree. The right tree corresponds to
the matching 35|26|47|18.

Between T 1
n and T 2

n , we have constructed a total of j − 1 + j = n− 1 trees with

each pair from
(

[n]
2

)
appearing in exactly one tree. This completes our construction

of Tn when n ≡ 0 mod 4.

Case 2: n ≡ 2 mod 4 (i.e. n = 2j where j > 1 is odd)

We need n − 1 trees from Bn, each with `n = j + 1 leaves and j − 1 non-leaf,

non-root vertices. As in Case 1, this is done in two steps. First, we create T 1
n

with j − 2 trees to account for all pairs from {j + 2, . . . , n} and all but j + 1 pairs

from {1, . . . , j + 1}. The missing j + 1 pairs make two 2-partitions Pa and Pb of
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{1, . . . , j + 1}. Second, we create T 2
n to account for the pairs from Pa and Pb in

addition to the (j + 1)(j − 1) pairs in which one element is from {1, . . . , j + 1} and

the other element is from {j + 2, . . . , n}.

Creating T 1
n : Because j−1 is even, the induction hypothesis gives the collection Tj−1

of j − 2 trees, each with `j−1 leaves. We now modify these trees to create trees with

n non-root vertices.

On each tree of Tj−1, increase all of the labels by j + 1 so that the new labels

are j + 2, . . . , n. At the end of each leaf, hang a pair of leaves. This yields exactly

2`j−1 = 2( j−1
2 + 1) = j + 1 new leaves for a total of n non-root vertices. Call this

collection of j − 2 trees T ′j−1. Figure 7.5 represents the procedure for n = 10.

4

21

3 10

87

9 10

87

9

Figure 7.5 The left tree is from T4. The middle tree
results from increasing the label values by 6. The right tree
is the outcome in T ′6 after hanging 3 pairs of new leaves.

It remains to label the j + 1 new leaves. Because j + 1 is even, the induction

hypothesis supplies Tj+1 corresponding to an (n, 2)−Baranyai partition. Let Ta and

Tb be two arbitrarily chosen trees in Tj+1 with corresponding partitions Pa and Pb.

Fix any bijection from T ′j−1 to Tj+1 \ {Ta, Tb}. Consider an arbitrary pair (T ′, T ) in

the bijection, T ′ ∈ T ′j−1 and T ∈ Tj+1. Induce a well-order on the pairs associated

with T according to the least element in each pair. Now in T ′, label the children of

the vertex labeled j + 1 + i with the values in the ith pair where the pair containing

1 is the first pair. This algorithm results in a labeling of all the leaves of T ′ that

respects the method for extending labelings.
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The construction of T 1
n is complete with j − 2 trees containing

(
j−1

2

)
pairs from

{j + 2, . . . , n} and (j − 2) j+1
2 pairs from {1, . . . , j + 1}. The remaining j + 1 pairs

from {1, . . . , j + 1} are those in Pa and Pb. They will be accounted for in T 2
n .

Creating T 2
n : The remaining pairs will be realized in j + 1 caterpillar binary trees.

The internal vertices will necessarily be labeled j + 2, . . . , n, increasing as we move

closer to the root as in Fig. 7.6.

We can use matching theory to label the leaves of the caterpillar trees. First,

create a complete bipartite graph with vertices {1, . . . , j + 1} on the left and vertices

{j + 2, . . . , n, x, y} on the right.

7

8

9

10

1

2

3

4

5

6

7

8

9

10

x

y 7

8

9

106

2

5

4

3 1

Figure 7.6 The left caterpillar is the general layout for n = 10
with leaf labels needed. The middle bipartite graph shows a
perfect matching which extends the matching {3, x}, {1, y} for
{1, 3} in P . The right tree is the caterpillar corresponding to
the matching.

For P = Pa ∪ Pb, start with a single pair {k, `} ∈ P . Match k with x and ` with

y. The remaining graph is regular bipartite, so we can extend our matching to a

perfect matching M which will determine the leaf labels of a single caterpillar. For

all i ∈ {j + 2, . . . , n}, the vertex matched with i will have the same parent as i in

the caterpillar. The vertices matched with x and y will label the two leaves farthest

from the root.
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Removing the edges of M from the bipartite graph, regularity is maintained. So

we repeat the procedure to obtain the next caterpillar tree. You may notice that each

value of {1, . . . , j + 1} appears in exactly two pairs of P . So for {`,m} ∈ P , ` will be

paired with x since it was previously paired with y. Thus there will be no problem

with representing all pairs of P . Once the bipartite graph has been decomposed into

j + 1 matchings, we will have our j + 1 caterpillar trees, completing our construction

of T 2
n .

With T 1
n and T 2

n , we have constructed (j − 2) + (j + 1) = 2j − 1 = n− 1 trees for

the (n, 2)-Baranyai partition.

7.4 New (n, 2)−Baranyai partitions

The easy known algorithm to create (n, 2)-Baranyai partitions is as follows:

Algorithm 7.5. Choose one element of {1, 2, . . . , n} to be the center. Display the

remaining n − 1 values equidistant in any order on a circle around the center. The

procurement of the partitions is best described first with an example.

In Fig. 7.7, we have 8 in the center with {1, 2, . . . , 7} in increasing order around

the circle. Connecting 8 with 1, the remaining integers are paired as in the left

diagram to create 2-partition {{1, 8}, {2, 7}, {3, 6}, {4, 5}}. By connecting 8 with

2 and matching the remaining integers in a similar way, we obtain the 2-partition

{{2, 8}, {1, 3}, {4, 7}, {5, 6}}. Continue to rotate the pairing configuration around

the circle to obtain 7 different 2-partitions which contain each element of
(

[8]
2

)
exactly

once. This is an (8, 2)−Baranyai partition.

Algorithm 7.6. In general, to obtain a partition into 2-sets, match the center with

an arbitrary entry on the circle, and after that match those pairs whose connecting

line is perpendicular to the radius connecting the center to the selected entry.
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8

1
2

3

45

6

7

8

1
2

3

45

6

7

Figure 7.7 A circular representation to find
an (8, 2)-Baranyai partitions (Lint and Wilson
1996).

Claim 7.7. The construction developed in this paper does not arise from the circular

construction described here for any 4 ≤ n 6= 10, for any relabeling the elements on

Fig. 7.7.

Proof. We will break this proof into two cases according to the two cases for the tree

construction.

Case 1: When n ≡ 0 mod 4, n = 2j, represent the elements from {1, . . . , j} with

color blue, b, and the elements from {j + 1, . . . , n} with color red, r. Note that blue

and red occur the same number of times. Recall each 2-partition in Tn from the tree

construction is one of the following types:

Type I : All pairs have one element from the set {1, . . . , j} and one element from

{j + 1, . . . , n}, i.e. all pairs are of the form rb.

Type II : Half of the pairs have both elements from {1, . . . , j} and the other half of

the pairs have both elements from {j + 1, . . . , n}, i.e. half of the pairs are bb

and the other half are rr.

For contradiction, assume there is a circular representation of {1, . . . , n} whose

corresponding 2-partitions exactly match those of Tn.

At this point, we assume the integer in the center is red. (Identical arguments

work if the integer in the center is blue.) It is also safe to assume that there are two
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consecutive positions on the circle, one red and the other blue (here we use n > 2).

The following deductions can be seen Fig. 7.8.

r

br c1c2
c3
c4

r

br c1 = bc2
c3
c4

r

br bc2 = r
c3
c4

r

br b r
c3 = b
c4 = b

Figure 7.8 For Case 1, this shows the steps to determine the colors
on circle.

The 2-partition that arises when the center r is paired with the b must be of Type

I. In this same partition, r will be paired with c1, forcing it to be blue because this

is Type I.

Now let’s consider the next 2-partition obtained by pairing the middle r with blue

c1. This again puts us into Type I. Based on the circular arrangement, c2 will be

paired with b and thus must be red.

Looking at one more 2-partition, where the middle r is paired with red c2, we

find ourselves in Type II. Because blue c1 will be paired with c3, it must be blue.

Similarly, c4 is blue.

The pattern rbbrbbr . . . repeats around the circle. However, half of the elements

should be red, posing a contradiction.

Case 2: When n ≡ 2 mod 4, n = 2j, color the elements of {1, . . . , j + 1} blue, b,

and the elements of {j + 2, . . . , n} red, r. This time, there are two more blue than

red. Each 2-partition of [n] in the tree construction is one of the following types:

Type I : There is one pair with both elements in {1, . . . , j + 1} and the rest have one

element from {1, . . . , j + 1} and one element from {j + 2, . . . , n}, i.e. one is bb

and all others are rb.

Type II : All pairs have either have both elements from {1, . . . , j+1} or both elements

from {j + 2, . . . , n}, i.e. all pairs are rr or bb.
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Because there are 2 more blue integers than red, we must find the sequence rbb

somewhere on the circle. This time we split the problem into two cases based on the

color of the middle integer.

Case 2/Red: Suppose the middle integer is red. When the middle r is paired with

the r on the circle, as in Fig. 7.9, we have a Type II partition. Thus d1 and d2 are

blue. Now c1 could be red or blue. So we consider the two possibilities separately.

r

bbr

c2
c3
c4

c1 = r or bb = d1
b = d2

Figure 7.9 In Case 2/Red, we start
with a red middle. By pairing r with
r, we obtain more color information.

If c1 is blue, then pairing the middle r with the b as in Fig. 7.10, we find ourselves

in Type I. There is already a bb pair, so c2 is blue and c3, c4 are red. However, when

we pair the middle r with the next b we find an rr in the same 2-partition which is

not possible in either Type I or Type II. Thus we have a contradiction.

r

bbr

c2 = b
c3 = r
c4 = r

bb
b r

bbr

b
r
r

bb
b

Figure 7.10 When c1 is blue, we obtain a
contradiction.

If c1 is red, then pairing the middle r with c1 puts us in Type II. Thus c2 and

c3 are blue while c4 is red as in Fig. 7.11. Next, pairing the middle r with c4 puts

us in Type II again and continues the rbbrbb pattern around the circle. Repeating

this procedure, we see that there are twice as many blues as reds on the circle which

contradicts the size of the red and blue sets for n 6= 10.
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r

bbr

c2 = b
c3 = b
c4 = r

rb
b r

bbr

b
b

bb
r

r

rb
b

Figure 7.11 When c1 is red, these are the
deductions made.

Case 2/Blue: When the middle integer is blue, the color of c1 is not yet determined.

So we consider each color possibility separately.

b

bbr

c2
c3
c4

c1 = r or bd1
d2
d3
d4

Figure 7.12 The set-up
for Case 2/Blue.

If c1 is red, pair the center b with the two blues on the circle, one at a time as in

Fig. 7.13. Both are Type I with the pair containing the center as the exceptional bb

pair in each. All other pairs in these will be rb. The first forces d1 to be blue while

the second makes c2 blue. Using this new information, return to the first pairing to

see d2 is red and the second pairing to see c3 is red. In this way, we find that the

colors alternate around the rest of the circle.

b

bbr

c2
c3
c4

r
d2
d3
d4

b = d1

b

bbr

c3
c4

c2 = b
rd1

d2
d3
d4

b

bbr
r
b

b

rb b

r
r

Figure 7.13 When c1 is red, the first two pairings work
alternately to obtain the configuration on the right.

Connecting the center b to the red on the opposite side of the circle, as in Fig.

7.13, we find a single partition with both rb and rr which poses a contradiction.
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If, on the other hand, c1 is blue. Pairing the center b with the middle blue on

the circle (left picture of Fig. 7.14) puts us in Type II because there will be two bb

pairs. Therefore c2 is red. Next, pairing the center b with the rightmost blue puts

us in Type I because there is an rb pair. Since there is already a bb pair, all the rest

must be rb. Therefore c3 will be red and c4 will be blue.

Back to the first pairing, we can conclude d1 is red. And the second pairing gives

c5 is blue. However, as in the last picture of Fig. 7.14, there is now a pairing with an

rb and two bbs which is neither Type I nor Type II posing another contradiction.

b

bbr

c3
c4

c5

c2 = r
bd1

b

bbr

r
c3 = r
c4 = b

c5

bd1

b

bbr

r
b

b

r
br

Figure 7.14 When c1 is blue, these conclusions can be made.

This completes the proof that the 2-partitions constructed using the tree algorithm

are distinct from those obtained by the circular arrangement algorithm. �

7.5 Conclusion

There are many different bijections between trees and partitions. As we continue

on this project of constructing Baranyai partitions, we explore other bijections in a

search for constructions which could be extended for larger values of k.
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Appendix A

Method for Selecting the Binary Strings in Ci

For a D3CNF Γ , Subsection 2.1.1 defines a set Ci of 50 binary strings that had number

of useful properties needed to encode clauses of Γ . In this section, we explain the

method by which we selected these 50 strings.

Fix Γ with k clauses and n literals. Fix a clause ci = vα ∨ vβ ∨ vγ in Γ with

α 6= β 6= γ 6= α. The goal is to define a multiset of binary strings Ci = {νij}mj=1 taken

from the set

S = {0, 1}2n+t

with coordinates

(x1, y1, x2, y2, . . . , xn, yn, e1, e2, . . . , et)

so that the multiset has the following properties:

1. M(νi1, , . . . , νim) = {0, 1}2n × {0}t

2. For any µ, µ′ ∈M′
ci
and η, η′ ∈M′ \M′

ci
, then

{H(µ, νij) : j ∈ [m]} = {H(µ′, νij) : j ∈ [m]},

{H(η, νij) : j ∈ [m]} = {H(η′, νij) : j ∈ [m]},

{H(µ, νij) : j ∈ [m]} 6= {H(η, νij) : j ∈ [m]}.

If we can find the appropriate strings for a clause with 3 positive literals, then we can

adapt these to make strings for clauses with negative literals as explained in the last

few paragraphs of Section 2.1.1. For the remainder of this appendix, we restrict our

attention to a clause ci with three positive literals.
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For νij ∈ Ci, define

νij[Si] := (νij[xα], νij[yα], νij[xβ], νij[yβ], νij[xγ], νij[yγ]).

For a median µ ∈M′(νi1, . . . , νim), define µ[Si] similarly.

We say that two strings η and η are complementary on the first 2n coordinates if

η[xi] = 1−η[xi] and η[yi] = 1−η[yi] for each i ∈ [n]. To achieve our first goal, strings

will be added to Ci in pairs which are complementary on the first 2n coordinates.

Thus xj and yj will be ambiguous coordinates for all j ∈ [n]. The ej coordinates

will be for additional ones, so µ[ej] = 0 for all µ ∈ M and all j ∈ [t]. Therefore

M = {0, 1}2n × {0}t.

For any µ ∈ M′, µ[xj] 6= µ[yj] for each j ∈ [n], so µ[Si] ∈ {01, 10}3. The eight

possible 6-bit strings can be visualized on the 3-dimensional cube. Label the vertices

with these strings so that the Hamming distance between two strings is precisely twice

the graph distance between the vertices they label. This is represented in Figure A.1.

We often use the representation on the right in Figure A.1.

In Definition 2.1, we defined a bijection betweenM′ and truth assignments. The

clause ci is not satisfied if all of its variables are false. Since ci has 3 positive literals,

this truth assignment corresponds to µ ∈M′ with µ[Si] = 010101. But if µ[Si] is any

of the other 7 tuples then the corresponding truth assignment satisfies ci. Let uf be

the vertex labeled 010101.

Using uf as a reference point, we say that the height of a vertex is its graph

distance from uf . In particular, the vertices labeled 100101, 011001, or 010110 have

height 1. We will also refer to the medians µ ∈ M′ with µ[Si] equal to one of these

as having height 1. The vertices labeled 101001, 100110, 011010 have height 2 and

the medians µ ∈ M′ with µ[Si] equal to one of these three 6-bit strings have height

2 . Medians µ ∈ M′ with µ[Si] = 101010 have height 3 while medians µ ∈ M′ with

µ[Si] = 010101 have height 0.
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101010

011010100110101001

010110011001100101

010101
uf

βα γ

uf

βα γ

Figure A.1 A labeling of the 3-dimensional cube
with the possible values of µ[Si]. The vertex uf will
correspond to the medians µ with µ[Si] = 010101.
We use the figure on the right to represent the cube.

Next we work toward the second goal of distinguishing the multiset of Hamming

distances for medians inM′
ci
from the multiset for medians inM′ \M′

ci
. To simplify,

we make the restriction that each νij ∈ Ci will be taken from the collection S ′ ] S ′

where

S ′ = {η ∈ S : η[x`] = η[y`] = 0 ∀` ∈ [n] \ {α, β, γ}},

S ′ = {η ∈ S : η[x`] = η[y`] = 1 ∀` ∈ [n] \ {α, β, γ}}.

For µ ∈M′ and νij ∈ S ′ ] S ′, for each ` ∈ [n] \ {α, β, γ},

H((νij[x`], νij[y`]), (µ[x`], µ[y`])) = 1.

This is because νij[x`] 6= νij[y`]) while µ[x`] = µ[y`]. Consequently, if νij has e(νij)

additional ones, then

H(νij, µ) = (n− 3) +H(νij[Si], µ[Si]) + e(νij).

Each η ∈ S has a string η′ ∈ S ′ which is complementary to it on the first 2n

coordinates. (The choice of η′ is not unique.) Following the decision that the strings

in Ci will be in pairs which are complementary on the first 2n coordinates, we will

select our strings from S ′ for Ci and then include a corresponding string from S ′.

Now we analyze the strings from S ′ to inform our decision on which ones to include

in Ci. In order to characterize a string νij ∈ S ′, we only need to specify νij[Si] and the
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Table A.1 Hamming distances when
η ∈ N1 with η[xα] = 0 and η[yα] = 1.

µ[Si] H(η[Si], µ[Si])
010101 2
100101 4
011001 2
010110 2
101001 4
100110 4
011010 2
101010 4

number of additional ones it will have (see Definition 2.4). Aside from the number of

additional ones in each string, there are only 26 possible choices for νij[Si].

Partition S ′ into sets N0, N1, N2, N3 defined here. For each i ∈ {0, 1, 2, 3} and

η ∈ S ′, η ∈ Ni precisely when

|{j : j ∈ {α, β, γ} and η[xj] 6= η[yj]}| = i.

We will consider the sets N0, N1, N2, N3 individually.

Set N0: For ξ ∈ N0 and µ ∈ M′, H(ξ[Si], µ[Si]) = 3. This is because µ[xj] 6= µ[yj]

while ξ[xj] = ξ[yj] for each j ∈ {α, β, γ}. Because no distinction is made between the

median inM′, the strings in N0 will not be useful in accomplishing our second goal.

Set N1: For η ∈ N1 and µ ∈M′, H(η[Si], µ[Si]) ∈ {2, 4}. In particular, if η[xα] does

not equal η[yα], then H((µ[xj], µ[yj]), (η[xj], η[yj])) = 1 for j ∈ {β, γ} and either

• µ[xα] = η[xα] and µ[yα] = η[yα] in which case H(η[Si], µ[Si]) = 2, or

• µ[xα] 6= η[xα] and µ[yα] 6= η[yα] in which case H(η[Si], µ[Si]) = 4.

The values are detailed in Table A.1.

We can display these Hamming distances on the cube representation of medians

so that the vertex representing µ[Si] is labeled H(µ[Si], η[Si]). For each j ∈ {α, β, γ},
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4

244

224

2
uf

H(ηα[Si], µ[Si])

βα γ

4

424

242

2
uf

H(ηβ[Si], µ[Si])

βα γ

4

442

422

2
uf

H(ηγ[Si], µ[Si])

βα γ

Figure A.2 For j ∈ {α, β, γ}, the values of H(ηj[Si], µ[Si])
are displayed on the cube representation of medians from
Figure A.1 .

let ηj ∈ N1 be the strings with ηj[xj] = 0 and ηj[yj] = 1 and no additional ones. Set

N1 := {ηα, ηβ, ηγ}.

There are three cubes drawn in Figure A.2, one for each of the strings in N1 with

vertices labeled by the value of H(µ[Si], η[Si]) for η ∈ N1. The left-most cube corre-

sponds directly to Table A.1, the value of H(µ[Si], ηα[Si]) labeling the vertices.

Consider the multiset

H1(µ) := {H(µ[Si], ηα[Si]), H(µ[Si], ηβ[Si]), H(µ[Si], ηγ[Si])}.

Notice that all medians with height one have H1(µ) = {2, 2, 4} and all height two

medians have H1(µ) = {2, 4, 4}. We can display these values on the median cube.

Since vertices of the same height have the same value for H1, we write each multiset

only once. The cube is drawn in Figure A.3.

For each η ∈ N1, define η to be the binary string which is complementary to η on

the first 2n coordinates and has no additional ones. Set

N1 := {ηα, ηβ, ηγ}.

For H1(µ) = {H(µ[Si], ηα[Si]), H(µ[Si], ηβ[Si]), H(µ[Si], ηγ[Si])}, we label the cube on

the right in Figure A.3.

Notice, however, for all µ ∈M′,

H1 ]H1 = {H(µ[Si], η[Si]) : η ∈ N1 ∪N1} = {2, 2, 2, 4, 4, 4}.
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{4, 4, 4}

{2, 4, 4}

{2, 2, 4}

{2, 2, 2}
uf

{H(η[Si], µ[Si]) : η ∈ N1}

βα γ
{4, 4, 4}

{2, 4, 4}

{2, 2, 4}

{2, 2, 2}

uf

{H(η[Si], µ[Si]) : η ∈ N1}

βα γ

Figure A.3 The left cube displays the values of H1(µ)
and the right cube displays the values of H1(µ).

βα γ

uf

{7, 7, 7}

{5, 7, 7}

{5, 5, 7}

{5, 5, 5}

{H(η[Si], µ[Si]) :
η ∈ N (+3)

1 }

⊎

{4, 4, 4}

{2, 4, 4}

{2, 2, 4}

{2, 2, 2}

{H(η[Si], µ[Si]) :
η ∈ N1}

=

{4, 4, 4, 5, 5, 5}

{2, 4, 4, 5, 5, 7}

{2, 2, 4, 5, 7, 7}

{2, 2, 2, 7, 7, 7}

Figure A.4 The values
{
H(η[Si], µ[Si]) : η ∈ N (+3)

1

}
]H1(µ)

displayed on the median cube.

So N1 ∪N1 acts like an identity.

Now if we give some additional ones to each of ηα, ηβ, ηγ, then we increase the Ham-

ming distances by that amount and obtain a more useful collection. For example, if we

add 3 additional ones to each string inN1 to make the setN (+3)
1 = {η(+3)

α , η
(+3)
β , η(+3)

γ }.

Recall that for any µ ∈ M′ and η ∈ S ′, with e being the number of additional

ones in ν,

H(µ, ν) = H(µ[Si], ν[Si]) + e(ν) + (n− 3).

Therefore H(η+3
α [Si], µ[Si]) = H(ηα[Si], µ[Si]) + 3. The values of the multiset

{
H(η[Si], µ[Si]) : η ∈ N (+3)

1

}
]
{
H(η[Si], µ[Si]) : η ∈ N1

}

are displayed in Figure A.4.

Set N2: Now we turn our attention to the set N2. For ζ ∈ N2 and µ ∈ M′,
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5

335

133

1

H(µ[Si], ζα,β[Si])

βα γ

{5, 5, 5}

{3, 3, 5}

{1, 3, 3}

{1, 1, 1}
uf

{H(µ[Si], ζ[Si]) : ζ ∈ N2}

βα γ
{5, 5, 5}

{3, 3, 5}

{1, 3, 3}

{1, 1, 1}

uf

{H(µ[Si], ζ[Si]) : ζ ∈ N2}

βα γ

Figure A.5 The left cube displays the Hamming distances H(µ[Si], ζα,β[Si]).
The middle gives H2(µ) and the right cube displays H2(µ).

H(ζ[Si], µ[Si]) ∈ {1, 3, 5}. For example, if ζ is a string in N2 with ζ[xα] 6= ζ[yα] and

ζ[xβ] 6= ζ[yβ], then the following hold:

• If µ[xα] = ζ[xα] and µ[xβ] = ζ[xβ], then H(ζ[Si], µ[Si]) = 1.

• If µ[xα] = ζ[xα] and µ[xβ] 6= ζ[xβ], then H(ζ[Si], µ[Si]) = 3.

• If µ[xα] 6= ζ[xα] and µ[xβ] = ζ[xβ], then H(ζ[Si], µ[Si]) = 3.

• If µ[xα] 6= ζ[xα] and µ[xβ] 6= ζ[xβ], then H(ζ[Si], µ[Si]) = 5.

For each pair {j, `} ⊂ {α, β, γ}, j 6= `, let ζj,` be a string in N2 which satisfies

ζj,`[xj] = 0 = 1− ζj,`[yj] and ζj,`[x`] = 0 = 1− ζj,`[y`] and no additional ones. Let

N2 = {ζα,β, ζα,γ, ζβ,γ}.

The Hamming distances of medians with these three strings are displayed on the

three cubes in Figure A.5.

Define the multiset H2(µ) = {H(ζ[Si], µ[Si]) : ζ ∈ N2}. The medians at height 1

on the cube all have H2(µ) = {1, 3, 3} and the medians at height 2 on the cube all

have H2(µ) = {3, 3, 5}. This is displayed on the middle cube in Figure A.5. For each

{j, `} ⊂ {α, β, γ}, define ηj,` to be the binary string which is complementary to µ on

the first 2n coordinates and has no additional ones. The right cube of Figure A.5

displays the Hamming distances between µ[Si] and the strings in

N2 =
{
ζα,β, ζα,γ, ζβ,γ

}
.
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Table A.2 The 8 different sets of 3 strings in N2 and their Hamming distances
with medians inM′.

µ[Si] \uf 101010 101001 100110 011010 100101 011001 010110 010101
101010 {1, 1, 1} {1, 3, 3} {1, 3, 3} {1, 3, 3} {3, 3, 5} {3, 3, 5} {3, 3, 5} {5, 5, 5}
101001 {1, 3, 3} {1, 1, 1} {3, 3, 5} {3, 3, 5} {1, 3, 3} {1, 3, 3} {5, 5, 5} {3, 3, 5}
100110 {1, 3, 3} {3, 3, 5} {1, 1, 1} {1, 3, 3} {1, 3, 3} {5, 5, 5} {1, 3, 3} {3, 3, 5}
011010 {1, 3, 3} {3, 3, 5} {3, 3, 5} {1, 1, 1} {5, 5, 5} {1, 3, 3} {1, 3, 3} {3, 3, 5}
100101 {3, 3, 5} {1, 3, 3} {1, 3, 3} {5, 5, 5} {1, 1, 1} {3, 3, 5} {3, 3, 5} {1, 3, 3}
011001 {3, 3, 5} {1, 3, 3} {5, 5, 5} {1, 3, 3} {3, 3, 5} {1, 1, 1} {3, 3, 5} {1, 3, 3}
010110 {3, 3, 5} {5, 5, 5} {1, 3, 3} {3, 3, 5} {3, 3, 5} {3, 3, 5} {1, 1, 1} {1, 3, 3}
010101 {5, 5, 5} {3, 3, 5} {3, 3, 5} {3, 3, 5} {1, 3, 3} {1, 3, 3} {1, 3, 3} {1, 1, 1}

The left-most column lists the 8 possible strings µ[Si] for µ ∈M′. In the column
headers, the 6-bit string is the vertex which acts like uf in the corresponding
rotation of the middle cube in Figure A.5. The entry in row j, column `, is the
multiset of Hamming distances between µ[Si] and each of the three strings in
N2 corresponding to the cube rotation. For example, the column with heading
101010 corresponds to the right cube in Figure A.5.

This time, H1(µ)]H1(µ) does not result in the same value for all µ ∈M′ so we do

not have an identity. Instead, we require 8 different rotations of the middle cube in

Figure A.5 to make an identity. The right-most cube is one rotation with the 101010

vertex acting like uf . Figure A.2 lists the 8 rotations. Each column corresponds to a

rotation with the column heading telling the label of the vertex from Figure A.1 which

acts like uf . There is a row for each µ[Si], µ ∈M′. The entries in the table indicate

the multiset of Hamming distances with µ[Si] in the corresponding cube rotation.

For example, the column with heading 101010 corresponds to the right-most cube

in Figure A.5. The column with heading 010101 corresponds to the middle cube in

Figure A.5. If we use all 24 strings (3 strings from each of the 8 rotations), the union

of the Hamming distance multisets in a single row of Figure A.2 is {16, 312, 56} for

any row. This multiset I2 of 24 strings is an identity since it does not distinguish

medians inM′.

Set N3: Let τ be a binary string in N3. Then for any µ ∈M′, the Hamming distance

H(µ[Si], τ [Si]) will be in {0, 2, 4, 6}. This comes from the fact thatH(µ[Si], τ [Si]) = 2`

whenever |{j ∈ {α, β, γ} : µ[xj] 6= τ [xj]}| = `.
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{6}
{4}
{2}
{0}

uf

βα γ

H(µ[Sc], τ [Si])

{6}
{4}
{2}
{0}

uf

βα γ

H(µ[Sc], τ [Si])

Figure A.6 The Hamming distances between
a median on the cube and string τ with
N(τ) = 3

Let τ be a string in N3 with τ [xα] = τ [xβ] = τ [xγ] = 0 and no additional ones.

All medians of height 1 have H(µ[Si], τ [Si]) = 2 and all medians of height 2 have

H(µ[Si], τ [Si]) = 4. This is displayed in Figure A.6. Let

N3 = {τ} N3 = {τ}.

Once again, we will need all 8 rotations of this cube to make an identity. This

identity will consist of exactly 8 strings.

We have now defined 6 sets of strings, N1,N2,N3 and their complements. For

each j ∈ [3] and µ ∈M′, define

Hj(µ) := {H(µ[Si], ν[Si]) + e(ν) : ν ∈ Nj}.

We have already seen that for any µ, µ′ ∈ M′, both of height 1, Hj(µ) = Hj(µ′).

Also, for any µ, µ′ ∈M′, both of height 2, Hj(µ) = Hj(µ′).

For j ∈ [3] and non-negative integer e, let N (+e)
j be the set of strings in Nj with

e additional ones added to each string. The set Nj
(+e) is defined similarly.

The goal is to find a multiset C ′i of N1,N2,N3 and their complements, possibly

with additional ones added to each, such that

• there is a one-to-one correspondence between the sets of the form N (+e)
j and

the sets of the form Nj
(+e′), and
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• there is a method to take unions and set subtractions of the multisets
{
H(µ[Si], ν[Si]) : ν ∈ N (+e)

j

}
]
{
H(µ[Si], ν[Si]) : ν ∈ Nj(+e′)

}
for each N (+e)

j ∈ C ′i so that for any medians µ, µ′ ∈ M′ of height 1,2, or 3 on

the median cube and µ0 ∈M′ with µ0[Si] = 010101, then

∗ Hj(µ) = Hj(µ′) and

∗ Hj(µ) 6= Hj(µ0).

One possible multiset is C ′i =
{
N (+3)

1 , N1
(+0)

, N (+2)
2 , N2

(+1)
, N (+1)

3 , N3
(+2)

}
with(

N (+3)
1 ∪N1

(+0)
)
\
(
N (+2)

2 ]N2
(+1)

)
]
(
N (+1)

3 ]N3
(+2)

)
.

The resulting Hamming distances are displayed in Figure A.7.

(

{7, 7, 7}
{5, 7, 7}
{5, 5, 7}
{5, 5, 5}

uf

H
(+3)
1

⊎

]

{2, 2, 2}
{2, 2, 4}
{2, 4, 4}
{4, 4, 4}

H1
(+0)

\

)
\
(

{7, 7, 7}
{5, 5, 7}
{3, 5, 5}
{3, 3, 3}

H
(+2)
2

\

]

{2, 2, 2}
{2, 4, 4}
{4, 4, 6}
{6, 6, 6}

H2
(+1)

⊎

)
]
(

{7}
{5}
{3}
{1}

H
(+1)
3

⊎

]

{2}
{4}
{6}
{8}

H3
(+2)

=

)

{2, 7}
{2, 7}
{2, 7}
6= {2, 7}

Figure A.7 A selection which distinguishes the Hamming distances at uf from
the rest.

Ultimately, we need a union of strings that will accomplish the same final goal,

without the use of set subtractions. However, we can easily modify the collection in

Figure A.7 to remove the set subtraction by essentially adding the identities I(+2)
2

and I2
(+1). The first one contains N (+2)

2 as a subset, so I(+2)
2 \ N (+2)

2 is a collection

of 21 strings. Likewise, I2
(+1) contains N2

(+1).

Let

Ci =
(
N (+3)

1 ]N1
(+0)

)⊎(
N (+1)

3 ]N3
(+2)

)
⊎((

I(+2)
2 \ N (+2)

2

)
]
(
I2

(+1) \ N2
(+1)

))
.
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This is a collection of 50 strings such that for any µ ∈ M′, µ of height at least one

in the median cube,

{H(µ[Si], ν[Si]) + e(ν) : ν ∈ Ci} = {36, 512, 76} ∪ {26, 412, 66} ∪ {2, 7}

= {27, 36, 412, 512, 66, 77}.

On the other hand, if µ ∈M′ has µ[Si] = 010101, then

{H(µ[Si], ν[Si]) + e(ν) : ν ∈ Ci} = {36, 512, 76} ∪ {26, 412, 66} ] {1, 43, 53, 8} \ {33, 63}

= {1, 26, 33, 415, 515, 63, 76, 8}.

By adding n − 3 to each of these values, we obtain the Hamming distances H(µ, ν)

which are listed in Table 2.1.

Table 3.1 details a different set of 26 strings strings for clause ci in exactly the

same way as they are explained for Table 2.1. The conclusions are also the same.
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