
An-Najah National University 

Faculty of Graduate Studies 

 

 

 
 

 

Finite Difference and Finite Element 

Methods for Solving Elliptic Partial 

Differential Equations 

 

 

 

By 

Malik Fehmi Ahmed Abu Al-Rob 

 

 

Supervisor 

Prof. Naji Qatanani  

 

 

 

This Thesis is Submitted in Partial Fulfillment of the Requirements for 

the Degree of Master of Applied Mathematics, Faculty of Graduate 

Studies, An-Najah National University, Nablus, Palestine. 

2016 





III 

 بسم الله الزحمه الزحيم

" والله بما تعملون خبيز" يزفع الله الذيه اوتوا العلم منكم درجات   

 صدق الله العظيم

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 

Dedication 

I dedicate my work to all my family members, to my 

parents, my sister, my brothers who encourage me to 

learn, grow and develop and who have been a source of 

encouragement and inspiration to me. 

I also dedicate this dissertation to my homeland Palestine. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 

Acknowledgement 

In the beginning, I am grateful to the God to complete this 

thesis. I wish to express my sincere thanks to Prof. Naji 

Qatanani for providing me with all the necessary facilities 

for the research and I am extremely thankful and indebted 

to him for sharing expertise, and sincere and valuable 

guidance and encouragement extended to me. 

My thanks also to my internal examiner Dr. Anwar Saleh 

and my external examiner Dr. Saed Mallak from Palestine 

Technical University – Kadoorie for their positive 

comments. 

I am extremely thankful to Mr. Hayel Hussein from the 

Arab American University who directly help me to 

complete this thesis. 

I take this opportunity to express gratitude to all my 

family members for their help and support. I also thank 

my parents for the unceasing encouragement, support and 

attention. 

My sense of gratitude to everyone, who directly or 

indirectly, have lent their hand in this venture. 

 

 

 

 





VII 

Contents 
 

Dedication ................................................................................................... IV 

Acknowledgement ........................................................................................ V 

Declaration .................................................................................................. VI 

Contents ..................................................................................................... VII 

Abstract ....................................................................................................... IX 

Introduction ................................................................................................... 1 

Chapter One ................................................................................................... 5 

Finite Difference and Finite Element Methodsfor Solving Elliptic Partial 

Differential Equations ................................................................................. 5 

1.1 Discretization of Elliptic PDE by Finite Difference Method ........... 6 

1.2 The Principle of Finite Difference Method: ..................................... 7 

1.3 Strategy of Discretization ................................................................. 8 

1.4 Elliptic PDE subject to Boundary Conditions: .............................. 13 

1.4.1 Laplace equation with Dirichlet Boundary Conditions: .............. 13 

1.4.2 Poisson Equation with Dirichlet Boundary Conditions: ............. 18 

1.4.3 Laplace Equation with Neumann Boundary Conditions: ............ 18 

1.4.4 Poisson equation with Neumann Boundary Conditions: ............. 20 

1.5 Finite Element Method: .................................................................. 21 

1.6 The Principle of Finite Element Method: ...................................... 21 

1.6.1 Finite Element Method for Dirichlet boundary value problems: 22 

1.6.2 Finite Element Method with Neumann Boundary condition: ..... 29 

Chapter Two ................................................................................................ 33 

Iterative Methods for Solving Linear systems ......................................... 33 

2.1 Jacobi Method ................................................................................. 34 

2.2 Gauss-Seidel Method ...................................................................... 37 

2.3 Successive over Relaxation Method (SOR Method) ...................... 40 

2.4 Conjugate Gradient Method............................................................ 42 

2.5 Convergence of Iterative Methods .................................................. 45 



VIII 

Chapter Three .............................................................................................. 52 

Numerical Results ..................................................................................... 52 

Example 3.1 .......................................................................................... 52 

Example 3.2 .......................................................................................... 64 

Example 3.3 .......................................................................................... 71 

Example 3.4 .......................................................................................... 84 

Example 3.5 .......................................................................................... 86 

1.3 Comparison between results for finite difference method and finite 

element method: .................................................................................... 89 

3.2 Conclusions ..................................................................................... 90 

References ................................................................................................... 91 

Appendix A ................................................................................................. 94 

Appendix B ................................................................................................. 96 

Appendix C ................................................................................................. 98 

Appendix D ............................................................................................... 101 

Appendix E ................................................................................................ 104 

Appendix F ................................................................................................ 106 

Appendix G ............................................................................................... 108 

Appendix H ............................................................................................... 112 

  ب ......................................................................................................... الولخص

 

 

 

 

 

 

 

 



IX 

Finite Difference and Finite Element Methods for Solving Elliptic 

Partial Differential Equations 

By 

Malik Fehmi Ahmed Abu Al-Rob 

Supervisor 

Prof. Dr. Naji Qatanani  

 

Abstract 

Elliptic partial differential equations appear frequently in various fields of 

science and engineering. These involve equilibrium problems and steady 

state phenomena. The most common examples of such equations are the 

Poisson's and Laplace equations. These equations are classified as second 

order linear partial differential equations.  

Most of these physical problems are very hard to solve analytically, 

instead, they can be solved numerically using computational methods. 

In this thesis, boundary value problems involving Poisson's and Laplace 

equations with different types of boundary conditions will be solved 

numerically using the finite difference method (FDM) and the finite 

element method (FEM). 

The discretizing procedure transforms the boundary value problem into a 

linear system of n algebraic equations. Some iterative techniques, namely: 

the Jacobi, the Gauss-Seidel, Successive over Relaxation (SOR), and the 

Conjugate Gradient method will be used to solve such linear system. 

Numerical results show that the finite difference method is more efficient 

than the finite element method for regular domains, whereas the finite 

element method is more accurate for complex and irregular domains. 

Moreover, we observe that the SOR iterative technique gives the most 

efficient results among the other iterative schemes. 
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Introduction 

Many physical phenomena and engineering problems involving 

temperature, electrical potential, astronomy and membrane displacement 

can be described by elliptic partial differential equations. 

The boundary value problems modeling these physical phenomena are too 

hard to be solved analytically. Alternatively, we can use some   

computational methods to solve such problems.  

The use of Finite Difference Method (FDM) depends upon Taylor 

expansion to approximate the solution of partial differential equation (PDE) 

that uses a regular shape of network of lines to construct the discretization 

of the PDE. This is a potential bottleneck of the method when handling 

complex geometries in multiple dimensions. This issue motivated the use 

of an integral form of the PDEs and subsequently the development of the 

Finite Element Method (FEM) [22]. 

On the other hand, the FEM is the most general method for the numerical 

solution of the three types of partial differential equations, namely: elliptic, 

parabolic, and hyperbolic equations. 

This method was introduced by engineers in the late 50’s and early 60’s for 

the numerical solution of partial differential equations in structural 

engineering (elasticity equations, plate equations, and so on) [9]. 

At that point of time, this method was thought of as a generalization of 

earlier methods in structural engineering for beams, frames, and plates 

where the structure was subdivided into small parts, so called finite 

elements.  

When the mathematical study of the finite element method started in the 

mid 60's, it soon became clear that the method is a general technique for the 
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numerical solution of partial differential equations with roots in the 

variational methods in mathematics introduced in the beginning of the 

century. 

The FEM dates back to 1909 when Ritz developed an effective method for 

the approximate solution of problems in the mechanics of deformable 

solids. It includes an approximation of energy functional by the known 

functions with unknown coefficients. Minimization of functional in relation 

to each unknown leads to a system of equations from which the unknown 

coefficients may be determined. One of the main restrictions in the Ritz 

method is that functions used should satisfy the boundary conditions of the 

problem [7]. 

In 1943 Courant considerably increased possibilities of the Ritz method by 

introducing special linear functions defined over triangular regions and 

applied the method for the solution of torsion problems. As unknowns, the 

values of functions in the node points of triangular regions were chosen. 

Thus, the main restriction of the Ritz functions – a satisfaction to the 

boundary conditions was eliminated [7]. The Ritz method together with the 

Courant modification is similar with FEM proposed independently by 

Clough many years later introducing for the first time in 1960 the term 

“finite element” in the paper “The finite element method in plane stress 

analysis” [7]. The main reason of wide spreading of FEM in 1960 is the 

possibility to use computers for the big volume of computations required 

by FEM. However, Courant did not have such possibility in 1943 [7]. 

An important contribution was brought into FEM development by the 

papers of Argyris, Turner, Martin, Hrennikov and many others [23]. The 

first book on FEM was published in 1967 by Zienkiewicz and Cheung and 
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called “The finite element method in structural and continuum 

mechanics”[23]. This book presents the broad interpretation of the method 

and its applicability to any general field problems. Although the method 

has been extensively used previously in the field of structural mechanics, it 

has been successfully applied now for the solution of several other types of 

engineering problems like heat conduction, fluid dynamics, electric and 

magnetic fields, and others [23]. 

On the other hand, the finite difference method was invented by a Chinese 

scientist named Feng Kang in the late 1950’s. He proposed the finite 

difference method as a systematic numerical method for solving partial 

differential equations that are applied to the computations of dam 

constructions. It is speculated that the same method was also independently 

invented in the west, named in the west the FEM. It is now considered that 

the invention of the finite difference method is a milestone of 

computational mathematics. 

Error bounds for difference approximations of elliptic problems were first 

derived by Gerschgorin (1930) whose work was based on a discrete 

analogue of the maximum principle for Laplace’s equation. This approach 

was actively pursued through the 1960s by Collatz, Motzkin, Wasow, 

Bramble, and Hubbard, and various approximations of elliptic equations 

and associated boundary conditions were analyzed [19]. 

For time-dependent problems, considerable progress in finite difference 

methods was made during the period of, and immediately following, the 

second world war, when large-scale practical applications became possible 

with the aid of computers [19]. A major role was played by the work of von 

Neumann, partly reported in O’Brien, Hyman and Kaplan (1951). For 
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parabolic equations a highlight of the early theory was the important paper 

by John (1952) [19]. For mixed initial–boundary value problems the use of 

implicit methods was also established in this period by, e.g., Crank and 

Nicolson (1947). The finite difference theory for general initial value 

problems and parabolic problems then had an intense period of 

development during the 1950s and 1960s, when the concept of stability was 

explored in the Lax equivalence theorem and the Kreiss matrix lemmas, 

with further major contributions given by Douglas, Lees, Samarskii, 

Widlund and others [19]. For hyperbolic equations, and particularly for 

nonlinear conservation laws, the finite difference method has continued to 

play a dominating role up until the present time, starting with work by 

Friedrichs, Lax, Wendroff, and others. 

Some standard references on finite difference methods are the textbooks of 

Collatz, Forsythe and Wasow and Richtmyer and Morton [19]. 

This thesis is organized as follows: 

Chapter one introduces both the finite difference method and the finite 

element method used to solve elliptic partial differential equations. The 

discretization procedure for partial differential equations and boundary 

conditions are represented explicitly. In chapter two, some iterative 

techniques namely, the Jacobi, the Guass-Seidel, Successive over 

Relaxation (SOR), and the Conjugate Gradient method are presented 

together with their convergence properties. Chapter three contains some 

numerical examples and concluding results. 
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Chapter One 

Finite Difference and Finite Element Methodsfor Solving 

Elliptic Partial Differential Equations 

Physical and engineering problems such as equilibrium problems and 

steady state phenomena (independent of time) can be described as elliptic 

partial differential equations (elliptic PDEs). These equations express the 

behavior of such problems. Second order linear partial differential 

equations are mainly considered as 

 
   

   
  +   

   

    
  +    

   

   
  +  

  

  
  +  

  

  
  +   u = G(x,y) 

or simply                                               

                                                   (1.1) 

where  ,  ,  , D, E, F, and the free term G are the coefficients of Eq. (1.1) 

which can be constants or functions of two independent variables x and y 

and u is the unknown function of two independent variables x and y. 

Eq. (1.1) is classified into three types depending on the discriminant  

(        ) as follows:
 

1. Hyperbolic if the discriminant is positive (          > 0). 

2. Parabolic if the discriminant is zero (            ). 

3. Elliptic if the discriminant is negative (            ). 

We will deal with elliptic PDEs (or in general, with steady state problems) 

with respect to two types of boundary conditions. These conditions are: 
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1. Dirichlet Boundary Condition: 

The condition where the value of the unknown function is prescribed 

on the boundary of the domain. 

2. Neumann Boundary Condition: 

The condition where the value of the normal derivative 
  

  
 is given 

on the boundary of the domain. 

In this thesis, we use Finite Difference and Finite Element methods for 

solving elliptic partial differential equations in two dimensions such as 

Laplace equation and Poisson equation. 

When these techniques are used for solving elliptic PDEs, a system of 

linear equations will be generated and should be solved using several 

iterative schemes such as Jacobi, Guass-Seidel, Successive over Relaxation 

(SOR), and Conjugate Gradient methods. 

1.1  Discretization of Elliptic PDE by Finite Difference Method 

The Finite Difference Method (FDM) is a well-known method that is used 

to approximate the solution of partial differential equations. It was already 

known by L. Euler (1707-1783) in one dimension of space and was 

probably extended to dimension two by C. Runge (1856-1927). This 

method is effective when the domain of the problem has boundaries with 

regular shapes. In this thesis, we will deal with the finite difference method 

with rectangular domain of regular boundaries shapes. 
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1.2  The Principle of Finite Difference Method: 

The idea of FDM is to replace the partial derivatives of dependent variable 

(unknown function) with partial differential equation using finite difference 

approximations with      errors. This procedure converts the region 

(where the independent variables in PDE are defined on) to a mesh grid of 

points where the dependent variables are approximated. The replacement of 

partial derivatives with difference approximation formulas depends on 

Taylor's Theorem. So, Taylor's Theorem is introduced. 

Taylor's Theorem 1.2.1 

Let u(x) has n    continuous derivatives over the interval (a,b). Then, for 

a<  ,  +h< b, we can write the value of u(x) and its derivatives nearby 

the point   +h as follows:  

 (  + h) =  (  ) +  
      

  
 +           

  
 +            

  
 

+ … +              

      
 +              (1.2) 

where 

1.   (  ) is the first derivative of   with respect to x at the point   . 

2.     (  ) is the n-1
th
 derivative of   with respect to x at the point   . 

3.       [pronounced as order h to the n] is an unknown error term that 

satisfies the property: for f(h) =       

   
   

    

  
     

for any nonzero constant c. 
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When we eliminate the error term,      , from the right-hand side of Eq. 

(1.2), we get an approximation to  (  +h). 

 

1.3  Strategy of Discretization 

Using finite difference method to discretize elliptic PDE with its boundary 

conditions, we can consider the following Poisson equation: 

 ²u(x,y)  
   

   
 (x,y) + 

   

   
 (x,y) = G(x,y) 

or we can simply write this equation in another form as: 

    +    = G(x,y), for (x,y)   R                              (1.3) 

The rectangular domain R = {(x,y) | a < x < b, c < y < d} and  

u(x,y) = g(x,y) for any (x,y)   S, where: 

S denotes the boundary of a region R, G(x,y) is a continuous function on R 

and g(x,y) is continuous on S. The continuity of both G and g guarantees a 

unique solution of Eq. (1.3).  

Now, we will use the finite difference algorithm for solving elliptic PDE, 

like Eq. (1.3). 

The Finite Difference Algorithm 

Step 1: Choose positive integers n and m. 

Step 2: Define    
    

 
 and   

    

 
 . 
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This step partitions the interval [a,b] into n equal parts of width h and 

partitions the interval [c,d] into m equal parts of width k as step 3 

illustrates. 

Step 3: Define 

   = a + ih,     i = 0,1,2,….., n 

   = c + jk,     j = 0,1,2,….., m 

Step 2 and step 3 are illustrated in figure 1.1. 

Figure 1.1 

It is clear from figure 1.1 that we have horizontal and vertical lines inside 

the rectangle R. These lines are called "grid lines" and their intersections 

are called "mesh points" of the grid. For each mesh point inside the grid, 

(     ), i = 1, 2, …, n-1 and j = 1, 2,…, m-1[2],[21]. We use Taylor series in 

the variable x about    to generate the central-difference formula: 

   (     ) = 
                                   

     
  

  
 
   

             (1.4) 
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where               . 

Also, we use Taylor series in the variable y about    to generate the central-

difference formula: 

   (     ) = 
                                   

     
  

  
 
   

   (     )   (1.5) 

where                [15].  

By inserting Eq. (1.4) and Eq. (1.5) into Eq. (1.3), we get: 

                                   

    
  

  
 
   

          +                (1.6) 

                                   

     
  

  
 
   

   (     ) = G(       

for each i = 1, 2, 3, … , n-1 and j = 1, 2, 3, … , m-1. 

The boundary conditions are: 

1. u(     ) = g(     ),       j = 0,1,2,…,m. 

2. u(     ) = g(     ),       j = 0,1,2,…,m.                                      (1.7) 

3. u(     ) = g(     ),      i = 1,2,…,n-1. 

4. u(     ) = g(     ),     i = 1,2,…,n-1. 

Now, by rearranging Eq. (1.6), we get: 

             

  
 + 

            

  
 + 

                       

  
 +  

                       

  
 

= 
  

  
 
   

   
        +  

  

  
 
   

   (     ) + G(       

or it can simply be written as 

2*
  

  
 

 

  
+u(     ) + 

                       

  
 +  
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= 
  

  
 
   

   
        +  

  

  
 
   

   (     ) + G(       

Multiplying both sides by   h², we get: 

2[(
 

 
)
 
  ]u(     ) – [ (       )   (       ) ]  (

 

 
)
 
            

            

=       
  

  
 
   

   
        +  

  

  
 
   

   (     )   h² G(     ) 

In difference-equation form, this results in the central–difference method 

with local truncation error O(h² + k²). 

Simplifying the last equation and letting      approximate u(     ), we get: 

2[(
 

 
)
 
  ]     – [              ]  (

 

 
)
 
                

= - h² G(          (1.8) 

for each i = 1, 2, …, n-1 and j = 1, 2, …, m-1. 

with boundary conditions: 

                                         

                                          

                                         

                                      }
 
 

 
 

                                      (1.9) 

where      approximates u(      . 

For more details, see references [2], [3] and [8]. 

Eq. (1.8) involves approximations to the unknown function u(x,y) at the 

points 
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       ,          ,          ,          , and           

These points form a star–shape region in the grid (as figure 1.2 shows) 

which shows that any equation involves approximations about (     )  

Figure 1.2 

When we use formula (1.8) with boundary conditions (1.9), then at all 

points (     ) that are adjacent to a boundary mesh point, we have an 

            by             linear system with the 

unknowns being the approximations      to  (     ) at the interior meth 

points. 

The generated linear system should be solved by Jacobi, Guass-Seidel, 

Successive over Relaxation (SOR), or Conjugate Gradient methods. This 

system (that involves the unknowns) produces satisfactory results if a 

relabeling of the interior mesh points is introduced. A favorable labeling of 

these points is [3] , [8] and [20]: 

    (     )              
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1.4  Elliptic PDE subject to Boundary Conditions: 

Solution of Laplace equation and Poisson equation on the boundary of a 

domain R needs certain conditions where the unknown function (dependent 

variable) must satisfy these conditions on the boundary S. We will deal 

with Laplace equation and Poisson equation with respect to two types of 

boundary conditions. These are Dirichlet and Neumann boundary 

conditions. 

1.4.1 Laplace equation with Dirichlet Boundary Conditions: 

When the function is defined on any part of a domain  , then we call this 

part Dirichlet boundary   , i.e. the unknown function   is prescribed on the 

boundary, that is,                           where the function   is a 

known function. 

   : u = g
   

    
   

       

 

To derive the formula of finite difference approximation with Dirichlet 

boundary condition for Laplace equation 

   

   
 

   

   
                                             (1.10) 

We consider three points i+1, i, and i-1 which are located on X-axis with 

equal distance h between them (as figure 1.3 shows). 
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X-axis 
i+1 i-1 

h h

Figure 1.3 

Let the value of the function u(x,y) at the points (i-1,j), (i,j), and (i+1,j) be 

       ,     ,and        , respectively. 

Now, use Taylor series to express        and        in the form of Taylor 

expansions about the point i as follows: 

       =     + 
 

  
 
  

  
   + 

  

  
.
   

   
   + 

  

  
.
   

   
   + 

  

  
.
   

   
   +               (1.11) 

       =      - 
 

  
 
  

  
   + 

  

  
.
   

   
   - 

  

  
.
   

   
  +

  

  
.
   

   
   +                   (1.12) 

By adding Eq. (1.11) and Eq. (1.12), we get: 

       +        = 2     +     

   
  + 

  

  
.
   

   
   +       

By rearranging the above equation, we get: 

   

   
   = 

                      

   
+                          (1.13) 

Eq.(1.13) is a finite difference approximation formula with error term 

      of second order for 
   

   
  . 

Now, subtracting Eq. (1.12) from Eq. (1.11), we get: 

       -        = 
  

  
   + 

  

 
.
   

   
   +       

By rearranging the above equation, we get: 

  

  
   = 

                

  
+                                (1.14) 
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Eq.(1.14) is a finite difference approximation formula with error term 

      of second order for 
  

  
  . 

Similarly, consider three points j+1, j, and j-1 which are located on the Y-

axis with equal distance h between them (as figure 1.4 shows). 

Figure 1.4 

Let the value of the function u(x,y) at the points (i,j+1), (i, j), and (i, j-1) be 

      ,    , and       , respectively. Using Taylor series to express        

and        in the form of Taylor expansions at the point j, the finite 

difference approximation formulas with error term       of second order 

for  
   

   
   and 

  

  
   are, respectively: 

   

   
   = 

                      

   
+                                   (1.15) 

and 

  

  
   = 

                

  
+                                         (1.16) 

Now, by combining figure 1.3 and figure 1.4 together, we get the star–

shape (or 5-points stencil) region about the point (i,j) as shown in figure 

1.5 [4]. 

 

h 

h 

j 

j+1 

j-1 
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(i+1,j

Figure 1.5 

Inserting Eq. (1.13) and Eq. (1.15) into Eq. (1.10) yields: 

( 
   

   
 

   

   
        = 

                      

   
 + 

                      

   
 = 0 

By rearranging the above equation, we get [12]: 

(              )                            = 0 

So, 

      = 
 

 
 [                              ]                             (1.17) 

In general, if u satisfies Laplace equation, then u, at any point in the 

domain R, is the average of the values of u at the four surrounding points 

in the 5-point stencil as shown in figure 1.2, page 12.  

Now, suppose we have Dirichlet boundary conditions defined on the 

rectangular domain such that 1  i  m and 1     n as shown in figure 

1.6 [4]. 

(i,j+1) 

(i,j-1) 

(i,j)

) 
(i-1,j) 



37 

        Figure 1.6 

Let u(x,y) = g(x,y) be given on all boundaries of the domain, that is u = g is 

defined on the left, top, right, and bottom boundary walls so that the 

boundary grid points (blue points) and the corner grid points (green points) 

are known [3]. 

In other words, the values of the points (     )              

                     under the function g are known. For the corner 

grid points, we use the following equations: 

                            u(1,1) = 
 

 
 [u(2,1) + u(1,2)]       

u(m,1) = 
 

 
 [u(m-1,1) + u(m,2)]                                  (1.18) 

                            u(1,n) = 
 

 
 [u(1,n-1) + u(2,n)] 

                            u(m,n) = 
 

 
 [u(m,n-1) + u(m-1,n)] 

[4] and [17]. 
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1.4.2 Poisson Equation with Dirichlet Boundary Conditions: 

To derive the formula of finite difference approximation with Dirichlet 

boundary condition for Poisson equation: 

   

   
 

   

   
                                      (1.19) 

Following similar approach for Laplace equation with some amendments in 

Eq. (1.17), that is [12]: 

      = 
 

 
 [                                ] - 

  

 
     (1.20) 

1.4.3 Laplace Equation with Neumann Boundary Conditions: 

When the normal derivative of the unknown function u is prescribed on the 

boundary of a domain R, then we call this part Neumann boundary   , i.e. 

the value of the normal derivative 
  

  
  g(x,y) is given on the boundary of 

the domain, where g(x,y) is a given function. 

   

    
   

       n

  :
  

  
 g(x,y) 

To derive the formula of finite difference approximation with Neumann 

boundary condition for Laplace equation 

   

   
 

   

   
     

Consider that we have a rectangle domain as shown in figure 1.7. 

Suppose that Dirichlet condition is specified on top, right, and bottom walls 

and Neumann condition is defined on the remaining wall which is the left 

wall as follows: 
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i i=1 

  

  
 

  

  
   – g(y)                                (1.21) 

Now, we want to approximate Eq. (1.21) using the second order 

approximation using Eq. (1.14). This procedure puts the grid points (1,j) 

outside the domain towards the left that is located on imaginary boundary 

(red line) that their fake coordinates will be (0,j) [4] , [8].  

                                             Top boundary 

Figure 1.7 

 

So, Eq. (1.21) is approximated using Eq. (1.14) at the line i = 1  

  

  
      = 

                

  
 = 

              

  
=  g(1,j) 

Thus, 

    u(0,j) = u(2,j) + 2h g(1,j)                               (1.22) 

Now, we write Eq. (1.17) at the point (1,j) as 

      = 
 

 
 [                                ] 

u(1,j) = 
 

 
 [                            ] 

= 
 

 
 [                                  

 

 

 

 

 

Left 

boundary 

i=2 

(2,j) 
j 

j-1 

j+1 

i=m 

j=n 
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By substituting Eq. (1.22) in the previous formula, we get: 

u(1,j) = 
 

 
 [                                            

u(1,j) = 
 

 
 [                                                 (1.23) 

For any two positive integers m and n, we use Eq. (1.23) for 2   j   n -1, 

where g(1, j) is a specified function. As Dirichlet condition is specified on 

north, east, and south walls, the values 

{u(i,n), 2  i  m-1}, {u(m,j), 2  j   n-1}, and {u(i,1), 2  i  m-1} are 

known. 

To find the values of corner grid points, we use Eq. (1.18). 

1.4.4 Poisson equation with Neumann Boundary Conditions: 

Consider the Poisson equation: 

   

   
 

   

   
          

with Neumann boundary condition: 

  

  
 

  

  
   g(y) 

defined on the rectangular domain. 

Similar to Laplace equation, the difference approximation formula of 

Neumann condition at the fake (ghost) grid point (0,j) is Eq. (1.22), that is: 

u(0,j) = u(2,j) + 2h g(1,j) 

Now, using Eq. (1.20) to find the value of the point (1,j), we get: 
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      = 
 

 
 [                            ] – 

  

 
                        (1.25) 

By substitute Eq. (1.22) into Eq. (1.25) with u(0,j) =      , we get: 

      = 
 

 
 [                                            ] – 

  

 
     

So 

      = 
 

 
 [                                    ] – 

  

 
     

     = 
 

 
 [                                 ] – 

  

 
                           (1.26) 

If i ≠ 1, we use Eq. (1.20). 

Using the same method, we can deal with other boundary points except the 

corner points. For corner points, we use Eq. (1.18) to find their values. 

[4] and [8]. 

1.5  Finite Element Method: 

The Finite Element Method (FEM) is the most known numerical method 

used for approximating the solution of partial differential equations on 

domains with irregular shapes. 

1.6 The Principle of Finite Element Method: 

The idea of the FEM is to partition the region (domain) to finite number of 

elements (parts) of regular shapes that are either triangles or rectangles (as 

figure 1.8 shows). These elements describe the behavior of the domain. A 

node is a vertex where two or more elements are intersected (Red points as 

in figure 1.8). The FEM can be applied on many scientific and engineering 
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problems such as fluid flow, heat transfer, electromagnetic fields, 

aerospace, civil engineering, and so on. 

           nodes 

Two dimensional irregular region divided 

into triangular elements 

Figure 1.8 

1.6.1 Finite Element Method for Dirichlet boundary value problems: 

This section discusses the finite element method that is used to solve two 

dimensional elliptic partial differential equations with Dirichlet boundary 

conditions in a rectangular domain and focuses on finite element solution 

using spreadsheets with triangular grid. 

Now, we want to approximate the solution of Laplace equation 

   +    = 0 

defined on a rectangular domain with Dirichlet boundary conditions 

defined on the top, left, right and bottom boundaries (edges) as shown in 

figure 1.9. 
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Divide the interval       into m equal subinterval on bottom 

boundary. Also, divide the interval       into n equal subinterval on 

left boundary. The interior nodes (points) are unknown whereas the 

boundary nodes are.   

For example, divide the region into 40 equal triangular elements. 

 

 

In this discretization, there are 30 global nodes. The blue nodes are known 

since they are located on the boundaries that the function u is defined on 

them but the green nodes (interior nodes) are not.  

In this case,   = 5 portions (from node 1 to node 2, from node 2 to node 3, 

from node 3 to node 4, from node 4 to node 5, and from node 5 to node 6). 

The length of each subinterval is equal to 
 

 
 = 

 

 
 .  

1 2 3 5 4 6 

12 11 10 8 9 7 

13 14 15 17 16 18 

24 23 22 20 21 19 

25 26 27 29 28 30 

Top 

u = g1 

Left 

u =  g2 

Right 

u = g3 

u = g4 

Bottom 

Figure 1.9 
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(
𝑎

 
×2,

𝑏

 
×2) 

 

(
𝑎

 
× 4,

𝑏

 
×3) 

 

n = 4 (from node 1 to node 12, from node 12 to node 13, from node 13 to 

node 24, and from node 24 to node 25). The length of each subinterval is 

equal to 
 

 
 = 

 

 
 .   

                               Y 

Left Boundary 

X 

Bottom Boundary 

Figure 1.10 

Now, we can easily find the coordinates for each node as shown in figure 

1.10 as follows [11]:  

Node 1: (0,0) 

Node 15: ( 
 

 
 × 2 , 

 

 
 × 2 ) 

Node 20: ( 
 

 
 × 4 , 

 

 
 × 3) 

Node 30: (a,b) 

In the same manner for the remaining nodes. 

1 2 3 5 4 6 

12 

13 

24 

25 

𝑎

 
 × 3 

𝑎

 
 × 2 

𝑎

 
 × 1 

𝑎

 
 × 4 

𝑎

 
 × 5 = a   

𝑏

 
 × 3 

𝑏

 
 × 2 

𝑏

 
 × 1 

𝑏

 
 × 4 =  b 

  

15 

20 

30 
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Local node 

number 1 

Local node 

number 3 

Local node 

number 2 

Now, for each element (triangle) e, we determine the local node numbers 1, 

2, and 3 that must be assigned so that global nodes associated with an 

element are traversed in a counterclockwise sense.  

For element 1: 

At node 1: the local node number is 1, so (x1,y1) = (0,0) 

At node 2: the local node number is 2, so (x2,y2) = ( 
 

 
 , 0) 

At node 12: the local node number is 3, so (x3,y3) = ( 0 , 
 

 
 ) 

These are shown in figure 1.11. 

 

 

 

Figure 1.11 

Similarly, we determine the local node numbers 1, 2 and 3 for each element 

e in the same way as in element 1. 

The following must be computed for each element e: 

P1 = y2 – y3                        = x3 – x2 

P2 = y3 – y1                        = x1 – x3 

P3 = y1 – y2                        = x2 – x1 

Eleme

nt 1 

1 2 

12 
(x3,y3) 

(x1,y1) (x2,y2) 

numbers are

determined on nodes start 

from node1,then node 2 and 

finally with node 12 

(in acounterclockwise).    
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For element 1: 

(x1,y1) = ( 0 , 0 ) , (x2,y2) = ( 
 

 
 , 0 ) , (x3,y3) = ( 0 , 

 

 
) 

P1 = y2 – y3 = 0 – 
 

 
 = – 

 

 
 

   = x3 – x2 = 0 – 
 

 
 = – 

 

 
 

The same thing for other elements. 

Now, for each element e, we want to find the 3 × 3 element coefficient 

matrix for which the entries are given by the equation [10]:  

   
   

  
 

  
[         ]                                        (1.27) 

where:                    

  = 
 

 
            

When we find the element coefficient matrices, then the global coefficient 

matrix C is assembled from the element coefficient matrices. If the number 

of nodes is N, then the global coefficient matrix C will be an N × N matrix 

(in our case, N = 30). 

We can compute the entries of main diagonal as follows: 

    : is the entry that is located on row 1 and column 1 in the global 

coefficient matrix C which corresponds to node 1that belongs to element 1 

only. Node 1 is assigned local node number 1 in element 1 as shown in the 

following figure. 
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Local node  

number 1 

Node 2 has Local node number 2 in element 1 and 

Local node number 1 in elements2 and 3. 

Figure 1.12 

     =    
   

, where    
   

 is the entry that is located on row 1 and column 1 in 

the element coefficient matrix for element 1. 

    : is the entry that is located on row 2 and column 2 in the global 

coefficient matrix C which corresponds to node 2that belongs to elements 

1, 2, and 3. Node 2 is assigned local node number 2 in element 1 and local 

node number 1 in elements 2 and 3 as shown in the following figure. 

     =    
   

    
   

    
   

, where    
   

 is the entry that is located on row 2 

and column 2 in the element coefficient matrix for element 1 and    
   

 

   
   

are the entries that are located on row 1 and column 1 in the element 

coefficient matrix for element 2 and element 3, respectively. 

Using the same method, we can find the remaining diagonal entries    , for 

i =1,…,N. For other entries in the global coefficient matrix C, we do that 

using a different method. 

1 2 3 

12 11 

Elemen

t 1 

Elemen

t 2 

Elemen

t 3 

Eleme

nt 1 
1 
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For more details, see reference [11]. 

Take, for example, the entry       in the global coefficient matrix C. It 

corresponds to node 2 and node 11. So, the link between node 2 and node 

11 is called global link which corresponds to local link 1−2 of element 2 

and local link 1−3 of element 3 as shown in figure 1.12. Hence, 

      =    
   

    
   

. 

The other off-diagonal entries are treated similarly. 

Now, defining vector    to be a vector of unknowns (interior nodes, green 

nodes) and vector    to be a vector of prescribed boundary values. In other 

words,   is a vector of the value of nodes that are located on the 

boundaries (blue nodes) as shown in figure 1.9. 

Define matrix     to be a matrix of unknown nodes obtained from the 

global coefficient matrix C and matrix     to be a matrix of unknown 

nodes and prescribed boundary values that is also obtained from the global 

coefficient matrix C.  

In our case,     is a 12 × 12 matrix since we have 12 interior nodes (green 

nodes) and     is a 12 × 18 matrix since we have 12 interior nodes (green 

nodes) and 18 boundary nodes (blue nodes) as shown in figure 1.9. 

The vector    of unknown nodes can be computed by using: 

   =       
                                            (1.28) 
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The vector    contains the approximations to the unknown nodes (interior 

nodes) [11]. 

1.6.2 Finite Element Method with Neumann Boundary condition: 

We consider a stationary problem in two dimensions: 

− ∆ u =  f  in Ω,                                             (1.29) 

                                              u = 0 on Γ, 

Where Ω is a bounded domain in the plane with boundary Γ, f is a given 

real-valued piecewise continuous bounded function in Ω. 

Define the following subspace of a Sobolev space: 

C = {α(x,y)| α is a continuous function on Ω, αx and αy are piecewise 

continuous and bounded on Ω, and α = 0 on Γ}. 

Now, let B = (     ) be a vector-valued function. By applying Green’s 

theorem and the divergence theorem, we get: 

∫     
 

     ∫    
 

                                  (1.30) 

Where: 

 n = <n1,n2>  is the outward unit normal to Γ. 

    is the dot product between B and n. 

    is the divergence operator of B. 

Take α, β   C with B defined as: 
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   = ( 
  

  
  , 0) and   = (0 ,

  

  
 )                             (1.31)  

Inserting Eq. (1.31) into Eq. (1.30), respectively, then we get: 

∫
  

  
   

 

     ∫
   

   
 

 

     ∫
  

  

  

  
 

                              (1.32) 

and 

∫
  

  
    

 

    ∫
   

   
 

      ∫
  

  

  

  
 

                     (1.33) 

Combining Eq. (1.32) and Eq. (1.33), we obtain [23]: 

∫
  

  
   

 

     ∫
  

  
    

 

    ∫
   

   
 

 

     ∫
   

   

 

     

 ∫
  

  

  

  
 

        ∫
  

  

  

  
 

                                              (1.34) 

∫  
  

  
  

 

 
  

  
          ∫  

   

     
   

      
 

    ∫  
  

  

  

  
 

 
  

  

  

  
                                      

In virtue of  
  

  
   

  

  
   = 

  

  
 , 

   

   
  

   

   
 = ∆    

and  
  

  

  

  
 

  

  

  

  
 =   .   

 Eq. (1.34) becomes: 

 

∫
  

  
 

       ∫      
 

    ∫      
 

                       (1.35)            

Rearranging Eq. (1.35) yields: 

∫      
 

    ∫
  

  
 

        ∫      
 

                  (1.36) 

Define a bilinear form on C×C as follows: 
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 (u ,  ) = ∫       
 

   

and  

(f ,  ) = ∫     
 

   

Also, we define the functional F:C → IR by 

F( ) = 
 

 
 (u ,  )   (f ,  ) 

Now, multiply both sides of Eq. (1.29) by   and then integrating over Ω: 

 ∫     
 

      ∫     
 

                      (1.37) 

Note that if we substitute the right hand side of Eq. (1.37) into Eq. (1.36) 

with   = 0 on the boundary  , then we get: 

∫     
 

      0  ∫      
 

   

Eq. (1.37) becomes [23]: 

∫     
 

   ∫    
 

   

Now, suppose the domain Ω is divided into finite number of elements 

(triangles)                 such that: 

 
 

 =∪   

 
 
    

where  
 

 is the domain and its boundary, i.e.  
 

 = Ω ∪  . The same 

definition for the triangular elements    . 

Let Th be a partition of  Ω. Take any triangle T   Th where: 

diam( ) = the longest edge of  
–

 and h =    
    

        . 
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Now, we can define the finite element space as follows: 

Ch = {  (x,y)|   is a continuous function on Ω and it is linear on each 

triangle T   , and   = 0 on Γ}. 

Each triangle                has three vertices denoted by v1, v2, v3. We 

define the basis function    as follows: 

       {
         
         

 

             and j = 1,2,3. 

Let v be a set of vertices where   (v)   0 and let m be the number of 

interior vertices in   , any function   Ch has a unique representation 

written as: 

          
      

       

      ,        v   Ω 

Where     =  (  ). 

A linear system is appeared in the matrix form written as: 

Au = f 

where: 

A= (aij),  aij =  (   ,  ) 

u = (uj),    (unknowns) 

f = (fj), fj = (f ,   ) 

                

 [6],[13] and [18]. 
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Chapter Two 

Iterative Methods for Solving Linear systems 

In chapter 1, linear systems were generated using the finite difference 

method and the finite element method to describe the partial differential 

equations that should be solved by iterative techniques. In this chapter, we 

will solve such linear systems by iterative methods and discuss the 

convergence for each of them and make a comparison between these 

iterative methods to conclude the best. 

 For solving an     linear system  

      

We start with an initial approximation      to the solution x and then 

generate a sequence          
   that converges to x. 

Most iterative techniques involve a process of converting the system  

      into an equivalent system: 

            

where : 

1. T is an     iteration matrix. 

2. C is a column vector of dimension n. 

After selecting an initial approximation     , we generate a sequence of 

vectors          
  defined as: 
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The iterative methods are: 

1. Jacobi Method. 

2. Gauss-Seidel Method. 

3. Successive over Relaxation (SOR) Method. 

4. Conjugate Gradient Method. 

2.1 Jacobi Method 

The Jacobi method is the simplest iterative method for solving a (square) 

linear system      . 

The General Formula of Jacobi Method 

To derive a general formulation of this method, consider the n×n (square) 

linear system: 

                                      

                                      

 
 

                                      }
 
 

 
 

                         (2.1)  

where : 

  = 

[
 
 
 
 
           

           

     
     

           ]
 
 
 
 

  , x = 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

  , and   = 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

 

We can simply write this system in matrix form as: 
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[
 
 
 
 
           

           

     
     

           ]
 
 
 
 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

 = 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

 

Now, we start by converting (2.1) into the form [3]: 

x = T x + C 

that is: 

  
   

  
   

   
  

     
  

   

   
  

     
     

   

   
  

     
  

  

   
          

  
   

  
   

   
  

     
 

   

   
  

     
     

   

   
  

     
  

  

   
          

  

  
   

  
   

   
  

     
 

   

   
  

     
     

     

   
    

     
  

  

   
          

By writing this system in matrix form, we get: 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

 = 

[
 
 
 
 
 
   

   

   
 

   

   
  

   

   

 
   

   
  

   

   
  

   

   

     
     

 
   

   
 

   

   
 

     

   
  ]

 
 
 
 
 
 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

 +  

[
 
 
 
 
 
 

  

   

  

   

 
 

  

   ]
 
 
 
 
 
 

 

So, 

x = T x + C 

Given initial approximation     , we generate the sequence of vectors 

         
  by computing: 
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In general, the Jacobi iterative method is given by the sequence: 

  
   

 
 

   
[∑       

     
   

 

   
]                                (2.2) 

     [3] and [16]. 

We can derive formula (2.2) by splitting matrix   into its diagonal and off-

diagonal parts. 

Let   be the diagonal matrix where entries are those of matrix  , let     be 

the strictly lower triangular part of matrix   and let     be the strictly 

upper triangular part of matrix  . With this notation matrix   is split into: 

A = D – L – U 

[
 
 
 
 
           

           

     
     

           ]
 
 
 
 

= [

      
      
    
      

]   

[

    
       

    
          

]   [

          

       

    
    

] 

Then, 

       

By substituting  A = D – L – U, we get: 

(D – L – U)x = b 
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The above equation can be written as: 

                   

If      exists, then: 

                          

This result is the matrix form of the Jacobi scheme: 

                                  

Using               and          , we obtain the Jacobi technique 

of the form: 

          
                       

So, 

  
   

 
 

   
 ∑       

     
   

 

   
                             . 

Conclusion: to find      approximation we must know        

approximation for any k              . Continuing this procedure, we 

obtain a sequence of approximations [3] and [15].  

 

2.2 Gauss-Seidel Method 

This iterative method is used for solving a (square) linear system      . 

The General Formula of Gauss-Seidel Method  

Consider the n×n (square) linear system: 
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                                            }
 
 

 
 

 

Where:  

  = 

[
 
 
 
 
           

           

     
     

           ]
 
 
 
 

  , x = 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

  , and   = 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

 

We can simply write this system in matrix form as: 

[
 
 
 
 
           

           

     
     

           ]
 
 
 
 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

 = 

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

 

  
   

  
   

   
  

     
  

   

   
  

     
     

   

   
  

     
  

  

   
          

  
   

  
   

   
  

   
 

   

   
  

     
     

   

   
  

     
  

  

   
          

  

  
   

  
   

   
  

   
 

   

   
  

   
     

     

   
    

   
  

  

   
          

Given initial approximation     , we generate the sequence of vectors 

         
  by computing: 

                                

In general, the Gauss-Seidel iterative method is given by the sequence : 
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[ ∑      

   
   

   
 ∑      

     
 

     
   ]  ,          (2.3) 

             . 

We can derive formula (2.3) by splitting matrix A into its diagonal and off-

diagonal parts [3]. 

Let   be the diagonal matrix where entries are those of matrix  , let –    be 

the strictly lower triangular part of matrix  , and let –  be the strictly 

upper triangular part of matrix  . With this notation matrix   is split into: 

      –    –    

Then, 

       

By substituting       –    –   , we get: 

             

The above equation can be written as: 

   –               

If         exists, then: 

x =          x +           

This result is the matrix form of the Gauss-Seidel iterative method:  

                         +           
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Using               and C =          , we obtain the Gauss-

Seidel iterative method of the form: 

                                 

see references [3],[5] and [16]. 

2.3 Successive over Relaxation Method (SOR Method) 

The main constraint to using this method is that the coefficient matrix   of 

the linear system       must be symmetric and positive definite. For any 

positive real number called the relaxation parameter (factor)         , 

when 0 <   < 1, the method is called Successive under Relaxation and can 

be used to achieve convergence for systems that are not convergent by the 

Gauss-Seidel method. However, if 1 <    < 2, then the method is called 

Successive over Relaxation method and can be used to accelerate 

convergence of linear systems that are already convergent by the Gauss-

Seidel method. If   = 1, then we get Gauss-Seidel method [10]. 

The General Formula of SOR Method  

The derivation of the general formula of SOR method depends on Gauss-

Seidel formula. Consider Gauss-Seidel formula that is (2.3): 

  
   

 
 

   
[ ∑      

   
   

   
 ∑      

     
 

     
   ]  ,      

Defining the difference: 

  i    
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This can be written as: 

  
   

    
     

   i  

Now, multiplying the relaxation parameter   by     in the last expression, 

we get: 

  
   

   
     

    i 

   
     

     
   

   
     

  

         
     

    
   

 

Substituting the Gauss-Seidel formula (2.3) into the last expression, we get: 

  
   

          
     

  
 

   
[ ∑      

   
   

   
 ∑      

     
 

     
   ](2.4) 

                           . 

Formula (2.4) is called the SOR iterative method [3]. 

We can write Eq. (2.4) in matrix form as follows: 

Since      , then we can multiply Eq. (2.4) by     to get: 

     
   

             
     

  

[
 
 
 
 

 ∑     
   

   

   

 ∑      
     

 

     

   

]
 
 
 
 

 

Simplifying the last equation, we get 

     
   

           
     

  ∑     
   

   

   

  ∑      
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By rearranging the above equation, we get 

     
   

  ∑     
   

   

   

           
     

  ∑      
     

 

     

    

So, 

            (         )          

Now, if          exists, then we have: 

              (         )                   

Then, we get the matrix form of SOR method as: 

                 ,  

Where: 

            (         )       and                

 [3] and [16]. 

2.4 Conjugate Gradient Method 

The conjugate gradient method is a numerical iterative method used to 

approximate the exact solution of particular linear system       where 

the coefficient matrix   must be symmetric and positive definite. 

General Formulas Needed to Compute Conjugate Gradient Method 

Algorithm 

Suppose we want to solve the following     linear system: 
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Where   is symmetric and positive definite matrix, x and b are column 

vectors (    matrices).   

The solution of       uniquely minimizes the following quadratic form: 

     
 

 
         

Suppose that   is a basis of     where: 

  {                                                        

      } is a set of n mutually conjugate (orthogonal) directions [14] . 

We will write the conjugate gradient iterative method algorithm as follows: 

Step 1:  

Start with initial guess    that may be considered 0 if otherwise is given. 

Step 2:  

Calculate the residual vector    as follows: 

         

Step 3:  

Let the initial direction vector        , that is, the negative of thegradient 

ofthe quadratic function: 

     
 

 
         

at       . 
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Note that     will change in each iteration. 

Step 4: 

Compute the scalars   's using the formula: 

   
  

    

  
       

                        

Step 5: 

Compute the first iteration    using the formula: 

               

Step 6:  

Compute the residual vectors   's using the formula: 

                   ,                       

Step 7: 

Compute the scalars   's using the formula: 

   
    

      

  
     

                           

Step 8: 

Compute the direction vectors   's using the formula: 

                   ,                       

Step 9: 
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Compute the iterations    using the formula [14],[16] and [20] : 

                                        

2.5 Convergence of Iterative Methods 

In this section, the general goal is to study the convergence for each 

previous iterative methods and then make a comparison between them. 

After that, we will conclude the fastest method. In any computational 

problem, we get high accuracy if the error becomes very small. In our 

iterative methods problem, the actual error e is the difference between the 

exact solution x and the approximate solution     . But we cannot compute 

its value since we do not know the exact solution. Instead of that, we will 

deal with the estimate error which is equal the difference between the 

approximate solution     and the next approximate solution       . 

Therefore, we can compute more iterations with less errors and hence we 

get high level of accuracy. 

Suppose x is the exact solution of the following linear system: 

                                                           (2.5)  

This can be written in equivalent form as: 

           ,                                                 (2.6) 

where: 

1. T is an     matrix. 

2. C is a column vector. 
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The idea of the iterative methods is to generate a sequence of vectors 

         
  that converges to the exact solution x of the linear system (2.5). 

(Note that each vector in the sequence is an approximation to the exact 

solution). To begin the study of convergence, we depend on some 

definitions and theorems. 

Definition2.5.1 [16]  

Suppose                          . A matrix norm, ||.||, is a real-

valued function defined on  . This function satisfies the following 

properties for any        and    : 

1. || ||   0, 

2. || || = 0 if and only if   is the zeromatrix 0, 

3. ||    || = | | || ||, 

4. ||     ||   || || + || ||, 

5. ||   ||   || |||| ||. 

Definition 2.5.2 [3] 

The spectral radius of any     (square) matrix   is: 

            
     

 

where   ’s are the eigenvalues of a matrix  . 

(Note:    may be real or complex eigenvalue, then      is the absolute value 

or the magnitude of the eigenvalue.) 
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Definition 2.5.3 [5] 

For any     matrix  : 

1.           
     

∑ |   |
 

   
          "called the    norm" 

2.        √                           "called the    norm" 

where    is the transpose of the matrix  . 

3.           
     

∑ |   |
 

   
          "called the    norm" 

Definition 2.5.4 [16] 

We call the     (square) matrix   strictly diagonally dominant if: 

      ∑|   |

 

   
   

 

holds             . 

Definition 2.5.5 [3] 

We call the     (square) matrix   positive definite if   is a symmetric 

matrix and        for any nonzero n-dimensional column vector c. 

Definition 2.5.6 [3] 

An     (square) matrix   is said to be convergent if: 
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Theorem 2.5.7 [3] 

When the linear system        converting into equivalent system 

           where T is an n × n iteration matrix. Then the following 

statements are equivalent: 

1.   is convergent matrix. 

2.       . 

Theorem 2.5.8 [3] 

If the coefficient matrix   for the linear system        is strictly 

diagonally dominant, then the sequence of vectors          
  generated by 

the Jacobi method converges to the unique solution of that system. 

Theorem 2.5.9 [3] 

For any initial approximation, a sequence of vectors          
  converges to 

the exact solution x if and only if the spectral radius of the square matrix T 

      . (T is the iteration matrix). 

To see the proof, see reference [3], page 406. 

Theorem 2.5.10 [3] 

If         , then the sequence of vectors          
  converges to a vector 

x     for any initial approximation vector        . 

For more details, see reference [3]. 

Theorem 2.5.11 

Theorem 2.5.8 holds for Gauss-Seidel Method. 
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Theorem 2.5.12 

Theorem 2.5.9 holds for Gauss-Seidel Method. 

Theorem 2.5.13 

Theorem 2.5.10 holds for Gauss-Seidel Method. 

For more details, see reference [3]. 

Theorem 2.5.14 "Ostrowski-Reich" [3] 

If the coefficient matrix   of the linear system        is a positive 

definite matrix and the relaxation parameter (factor)        , then the 

SOR method converges for any choice of initial approximation vector     . 

Theorem 2.5.15 

Theorem 2.5.8 holds for SOR method. 

Theorem 2.5.16 

If    2, then the SOR method diverges. 

Theorem 2.5.17 [14] 

The sequence of vectors          
  generated by the Conjugate Gradient 

algorithm converges to the solution x of the square linear system        

of n variables in at most n steps for any choice of initial approximation 

vector     . 

Proof [14]: suppose x is the exact solution and      is the initial solution. 
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The set of direction vectors are orthogonal so they are linearly independent. 

Therefore, they span the space   . Hence, we can write: 

x –      =     +     +    + … +        ,  where   ’s   . 

Multiplying both sides of the last expression by   
  , we obtain 

  
   (x –     ) =  

  (                            ) 

Simplifying the above expression, we get: 

  
   –  

       =     
 A  +     

 A  +     
 A  + … +       

 A     

but       ,   =   -       and   
     = 0,      

 So, it becomes: 

  
    =     

     

Thus, 

   
  

   

  
    

      (*) 

Now, we want to show that    =   , where: 

   
  

    

  
       

                                

   =   +     +     +     + … +          

Multiply both sides of the last equation by   
    

  
     =   

  (  +     +     +     + … +         ) 

=   
    +   

  (    +     +     + … +         ) 
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=   
    + 0 

The above can be written as: 

  
     -   

     = 0 

or 

  
      -   ) = 0 

Therefore,  

  
       

 (   –       ) 

    
  (  –             ) 

    
  (  –   ) 

    
     –       

    
    –       

  
      

    

Now, put   
    =   

    in (*), then we get: 

   
  

   

  
    

  
  

   

  
    

    

This completes the proof [14]. 
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Chapter Three 

Numerical Results 

In this chapter, we will deal with Laplace equation and Poisson equation as 

model problems with Dirichlet and Neumann boundary conditions using 

the Finite Difference Method. Similarly, we will use the Finite Element 

Method.  

Example 3.1 

Consider the following Laplace equation 

            

with square domain R = {(x,y) | a = 0 < x < b = 1, c = 0 < y < d = 1} 

subject to Dirichlet boundary conditions given on the boundaries: 

u(x,1) = x, u(1,y) = y, and u(0,y) =  u(x,0) = 0    

as shown in figure 3.1 .  

We want to approximate the solution u by using Finite Difference 

Algorithm: 

Step 1: Choose integers n = m = 3. 

Step 2: Define    
    

 
 = 

   

 
   

 

 
 

              and     
    

 
 = 

   

 
   

 

 
 

On X – axis, the interval [0,1] is divided into n = 3 equal parts of width  

h = 
 

 
  also the interval [0,1] is divided, on Y – axis, into m = 3 equal parts 

of width k = 
 

 
 . 
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Step 3: Define the (horizontal) grid lines as                                                                        

   = a + ih,     i = 0,1,2,n=3. 

for i=0 :               (
 

 
)       

for i=1 :                
 

 
   

 

 
 

for i=2 :               (
 

 
)   

 

 
 

for i=3 :                
 

 
   

 

 
         

In the same mannar we can find the vertical grid lines           ,  

 j = 0,1,2,m=3 where           
 

 
    

 

 
   and         

The grid given in the following figure. 

  

                              Y-axis                                      

 

  

  

 

 

  

The blue points are known boundary points and the green points are corner 

points that are easy to be calculated by Eq.(1.18). However, the black  

Right boundary  

u(1,y) = y 

Left boundary 

u(0,y) = 0 

Bottom boundary: u(x,0) = 0 

Figure 3.1 

Top boundary: u(x,1) = x 

X-axis 
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(interior) points are not known which are to be approximate. 

Now, we use the difference equation (1.17) to approximate the interior 

(black points) mesh points as follows: 

      = 
 

 
 [                              ] 

For i=1 and j=1 

     = 
 

 
 [                             ] 

      = 
 

 
 [                   ]                                                      (3.1) 

but both              are known boundary points whereas               are 

not known. So the value of              are  

       0 (on left boundary) and       0 (on bottom boundary) 

So the difference equation (3.1) becomes 

     = 
 

 
 [             ] 

4    –                                                                                 (3.2) 

We can label these mesh points as follows: 

         ,          ,          and          

                                                

after labeling the interior mesh points, then Eq.(3.2) becomes: 

                                             (3.3) 
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In similar manner, we get the following difference equations 

For i=2 and j=1:                               
 

 
                                 (3.4) 

For i=1 and j=2:                              
 

 
                                    (3.5) 

For i=2 and j=2:                               
 

 
                                 (3.6) 

rearrange the equations (3.3),(3.4),(3.5), and (3.6) then we get 

          
 

 
 

            
 

 
 

              

            
 

 
 

this linear system could be written in matrix form as 

      ,    where 

   [

                  
                  
              
                      

] , u =[

  

  

  

  

] ,  and   = 

[
 
 
 
 
 
 

 
 

 

 
 

 ]
 
 
 
 
 

 

If we apply Gaussian elimination to this linear system, then we get the 

following exact solution:  

u = (0.222222, 0.444444, 0.111111, 0.222222)
T 
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We can solve this linear system by any iterative methods like Jacobi 

method, Gauss-Seidel method, Successive over Relaxation (SOR) method 

and Conjugate Gradient method. 

Jacobi method 

It is given by the sequence (2.2): 

  
   

 
 

   
[∑      

     
   

 

   

]                           

where      and n is the number of the unknown variables. 

  
   

  
 

 
  

     
   

 

 
  

     
   

 

  
 

  
   

  
 

 
  

     
   

 

 
  

     
   

 

 
 

  
   

  
 

 
  

     
   

 

 
  

     
  

  
   

  
 

 
  

     
   

 

 
  

     
   

 

  
 

Consider the initial solution is         
   

   
   

   
   

   
   

             . 

For k = 1 (the first iteration) 
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So the first approximation is         
   

   
   

   
   

   
   

   

 
 

  
 
 

 
   

 

  
  . 

In the same manner, we can find      approximation if we know        

approximation for any k              . Continuing this procedure, we 

obtain a sequence of approximations.  

The following approximate solution is found by Matlab program for the 

first sixteen iterations: 

u = (0.222219, 0.444440, 0.111107, 0.222219)
T 

To see Matlab code for Jacobi iterative method back to appendix A.  

 



58 

Gauss-Seidel method 

It is given by the sequence (2.3): 

  
   

 
 

   
[ ∑      

   
   

   
 ∑      

     
 

     
   ],  

                =4. 

where      and n is the number of the unknown variables. 

  
   

  
 

 
  

     
   

 

 
  

     
   

 

  
 

  
   

  
 

 
  

   
   

 

 
  

     
   

 

 
 

  
   

  
 

 
  

   
   

 

 
  

     
  

  
   

  
 

 
  

   
   

 

 
  

   
   

 

  
 

For k = 1 (the first iteration) 
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So the first approximation is  

        
   

   
   

   
   

   
   

    
 

  
 
  

  
 

 

  
 

  

   
  . 

The following approximate solution is found by Matlab program for the 

first nine iterations: 

u = (0.222219, 0.444443, 0.111110, 0.222222)
T 

To see Matlab code for Gauss-Seidel iterative method back to appendix B. 

SOR Method 

The SOR method is given by the sequence (2.4): 

  
   

         
     

  
 

   

[
 
 
 
 

 ∑     
   

   

   

 ∑      
     

 

     

   

]
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suppose the relaxation factor    1.3  

first, write the Gauss-Seidel equations  

  
   

  
 

 
  

     
   

 

 
  

     
   

 

  
 

  
   

  
 

 
  

   
   

 

 
  

     
   

 

 
 

  
   

  
 

 
  

   
   

 

 
  

     
  

  
   

  
 

 
  

   
   

 

 
  

   
   

 

  
 

Now, the SOR equations with    1.3 are:  

  
   

          
     

      
 

 
  

     
   

 

 
  

     
   

 

  
   

  
   

          
     

      
 

 
  

   
   

 

 
  

     
   

 

 
   

  
   

          
     

       
 

 
  

   
   

 

 
  

     
   

  
   

          
     

      
 

 
  

   
   

 

 
  

   
   

 

  
   

where     . 

For k = 1 (the first iteration) 

  
   

          
     

      
 

 
  

     
   

 

 
  

     
   

 

  
   

         = (-0.3)(0) + 1.3 [0 + 0 +
 

  
 ] 

         =  
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         = (-0.3)(0) + 1.3 [
 

 
 × 

  

   
 + 0 + 

 

 
 ] 

         = 
    

    
 

  
   

          
     

       
 

 
  

   
   

 

 
  

     
   

         = (-0.3)(0) + 1.3 [
 

 
 × 

  

   
 + 0 ] 

         = 
   

    
 

  
   

          
     

      
 

 
  

   
   

 

 
  

   
   

 

  
   

         = (-0.3)(0) + 1.3 [
 

 
 × 

    

    
 + 

 

 
 × 

   

    
  + 

 

  
 ] 

         = 
     

      
 

The following approximate solution is found by Matlab program for the 

first nine iterations: 

u = (0.222186, 0.444439, 0.111128, 0.222230)
T 

To see Matlab code for SOR iterative method back to appendix C.  

Conjugate Gradient method 

It is given by the following algorithm 

Step 1: Start with initial guess   , say  

   = [

 
 
 
 

] 

Step 2: Calculate the residual vector    as follows 



62 

         

[
 
 
 
 
 
 

 
 

 

 
 

 ]
 
 
 
 
 

  [

                   
                   
                
                   

] [

 
 
 
 

] 

so 

   

[
 
 
 
 
 
 
 

 
 

 
 
 

 ]
 
 
 
 
 
 

 

Step 3: Let the initial direction vector        . So  

   

[
 
 
 
 
 
 
 

 
 

 
 
 

 ]
 
 
 
 
 
 

 

Step 4: Compute the scalars   's by the formula  

   
  

    

  
       

                        

For k = 0 
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*
 

 

 

 
 

 

 
+  

[
 
 
 
 
 
 

 
 

 

 
 

 ]
 
 
 
 
 

*
 

 

 

 
 

 

 
+  [

                   
                   
                
                  

]

[
 
 
 
 
 
 

 
 

 

 
 

 ]
 
 
 
 
 

 

 

 
 

       
 

= 0.3216 

Step 5: Compute the first iteration    by the formula 

               

 [

 
 
 
 

]         

[
 
 
 
 
 
 
 

 
 

 
 
 

 ]
 
 
 
 
 
 

 

[

       
      
      
      

] 

The approximate solution for the first three iterations is given by Matlab 

code: 

u = (0.222222, 0.444444, 0.111111, 0.222222)
T 

To see Matlab code for conjugate gradient iterative method back to 

appendix D. 
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Comparison between the iterative methods 

The generated linear system in example 3.1 that should be solved by some 

iterative techniques, namely: Jacobi, Gauss-Seidel, Successive over 

Relaxation (SOR), and the Conjugate Gradient methods with       . 

Table 3.1 shows numerical results for these iterative techniques. Each of 

them obtains the approximate solution in different number of iterations. 

However, more iterations give less errors and leads to accurate solutions. 

Table 3.1 

The exact solution is 

u = (0.222222, 0.444444, 0.111111, 0.222222)
T 

Method u1 u2 u3 u4 

number 

of 

iterations 

Jacobi 

solution 
0.222219 0.444440 0.111107 0.222219 16 

Gauss-

Seidel 

solution 

0.222219 0.444443 0.111110 0.222222 9 

(SOR) 

solution 
0.222186 0.444439 0.111128 0.222230 8 

Conjugate 

Gradient  

method 

solution 

0.222222 0.444444 0.111111 0.222222 3 

Example 3.2 

Consider the following Poisson equation 

             

with square domain R = {(x,y) | a = 0 < x < b = 2, c = 0 < y < d = 2} with 

Neumann boundary condition  
  

  
 

  

  
   g(y) = y given on the left 
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Y1= 
 

 
 

Y2= 1 

Y3= 
 

 
 

Y4= 2 The actual grid 

(blue) points will be 

shifted toward the 

left until locate on 

the imaginary 

boundary (red line) 

boundary and Dirichlet boundary conditions u = 1 on the remaining 

boundaries. We will use the finite difference method to approximate the 

solution of Poisson equation.  

The mesh size h = 
 

 
 as shown in figure 3.2. 

 

  

 

 

Figure 3.2 

we want to put the grid points (1,j) that is the blue points outside the 

domain toward the left. Let m = n = 4, the following are known as 

boundary conditions for 2   i   4-1 and n = 4 

u(2,4)= 1 , u(3,4)= 1, 

and 2   j   4-1 and m = 4 

u(4,2)= 1 , u(4,3)= 1 ,  

and 2    i   4-1 and j=1 

u(2,1)= 1 , and u(3,1)= 1 . 

Now, we use Eq.(1.26) to approximate the values of boundary points on 

left boundary : 

 

X1= 
 

 
 X2=   X3= 

 

 
 X4=   i = 0 
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u(1,j) = 
 

 
 [                                    

 

  
 Gi,j 

for 2   j   4 -1 , g1,j = g(x1,yj) = g(yj) = yj and Gi,j = xiyj 

u(1,2) = 
 

 
 [          

 

 
                         

 

  
 x1y2 

u(1,2) = 
 

 
 [                          

 

  
 ×

 

 
 × 1 

but        is a corner point which we can evaluate its value by Eq.(1.18)  

so, u(1,2) = 
 

 
 [               

 

 
  

 

 
           

 

  
 

rearrange this equation, then we get: 

 

 
 u(1,2) – 2u(2,2) – u(1,3) = 

  

 
                                           (3.1) 

now, u(1,3) = 
 

 
 [          

 

 
                            

 

  
 x1y3 

u(1,3) = 
 

 
 [                       

 

 
  

 

  
 ×

 

 
 × 

 

 
 

but        is a corner point which we can evaluate its value by Eq.(1.18) 

so, u(1,3) = 
 

 
 [        

 

 
       

 

 
          

 

 
  

 

  
 

rearrange this equation, then we get: 

 

 
 u(1,3) – 2u(2,3) –  u(1,2) = 

  

  
                               (3.2) 

Now, for i = 2,3 and j = 2,3 , we use Eq.(1.20) 

u(2,2) =  
 

 
 [                              

 

  
 × 1 × 1 

but        is a known boundary point which is equal to 1 

so, substitute its value and then rearrange the equation, then we get 
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 u(2,2) –                      = 
 

 
                                (3.3) 

u(2,3) =  
 

 
 [                              

 

  
 × 1 × 

 

 
 

but        is a known boundary point which is equal to 1 

so, substitute its value and then rearrange the equation, then we get 

4u(2,3) –                     = 
 

 
                                            (3.4) 

u(3,2) =  
 

 
 [                              

 

  
 × 

 

 
 × 1 

but        and        are known boundary points which are equal to 1 

so, substitute their values and then rearrange the equation, then we get 

4 (3,2) –               = 
  

 
                                             (3.5) 

u(3,3) =  
 

 
 [                              

 

  
 × 

 

 
× 

 

 
 

but        and        are known boundary points which are equal to 1 

so, substitute their values and then rearrange the equation, then we get 

4u(3,3) –              = 
  

  
                                    (3.6) 

Now, we have six equations in six variables: 

 

 
 u(1,2) – 2u(2,2) –  u(1,3) = 

  

 
 

 

 
 u(1,3) – 2u(2,3) –  u(1,2) = 

  

  
 

4u(2,2) –                      = 
 

 
 

4u(2,3) –                      = 
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4u(3,2) –              = 
  

 
 

4u(3,3) -              = 
  

  
 

Label the variables as follow  

u(1,3) = u1 , u(2,3) = u2 , u(3,3) = u3 , u(1,2) = u4 , u(2,2) = u5 , and u(3,2) = u6 

So, the linear system can be written as:  

 

 
 u1 – 2 u2 – u4 = 

  

  
 

–u1 +4 u2 – u3 - u5 = 
 

 
 

– u2 + 4 u3 – u6 = 
  

  
 

– u1+ 
 

 
 u4 – 2 u5 = 

  

 
 

– u2 – u4 + 4 u5 – u6 = 
 

 
 

– u3 – u5 + 4 u6 = 
  

 
 

This linear system should be written in matrix form as follows: 

[
 
 
 
 
 
 

 

 
                 

                
                     

           
 

 
      

                   
                    ]

 
 
 
 
 
 

[
 
 
 
 
 
  

  

  

  

  

  ]
 
 
 
 
 

  = 

[
 
 
 
 
 
 
 
 
 
  

  
 

 
  

  
  

 
 

 
  

 ]
 
 
 
 
 
 
 
 
 

 

If we apply Gaussian elimination to this linear system, then we get the 

following exact solution:  



69 

u = (1.4694, 0.9758, 0.8179, 1.3788, 0.9908, 0.8584)
T 

Now, we can solve it by iterative method begin with Jacobi method and 

end with conjugate gradient method. 

Jacobi method 

It is given by the sequence (2.2). The using of Matlab program gives 

approximate solutions in table 3.2:  

Table 3.2 

Iteration #                   

1 0.5179 0.1563 0.3594 0.3929 0.1875 0.4063 

2 0.7194 0.4224 0.5000 0.6480 0.4263 0.5430 

3 0.9444 0.5677 0.6007 0.8420 0.5908 0.6378 

4 1.0828 0.6902 0.6608 1.0003 0.6994 0.7041 

5 1.1981 0.7670 0.7080 1.1019 0.7862 0.7463 

6 1.2710 0.8293 0.7377 1.1844 0.8413 0.7798 

The following approximate solution is found by Matlab program for the 

twenty eight iterations: 

u = (1.4693, 0.9757, 0.8179, 1.3787, 0.9907, 0.8584)
T 

To see Matlab code for Jacobi iterative method back to appendix E.  

Gauss-Seidel method 

It is given by the sequence (2.3). The first six iterations by Matlab are 

given in table 3.3: 
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Table 3.3 

Iteration#                   

1 0.5179 0.2857 0.4308 0.5408 0.3941 0.6125 

2 0.8356 0.5714 0.6553 0.8568 0.6977 0.7445 

3 1.0892 0.7668 0.7372 1.1027 0.8410 0.8008 

4 1.2711 0.8686 0.7767 1.2366 0.9140 0.8289 

5 1.3675 0.9208 0.7968 1.3059 0.9514 0.8433 

6 1.4171 0.9476 0.8071 1.3414 0.9706 0.8507 

To see Matlab code for Gauss-Seidel iterative method back to appendix F. 

SOR Method 

The SOR method is given by the sequence (2.4). The approximate solution 

is given by Matlab code after ten iterations: 

u = (1.4694, 0.9758, 0.8179, 1.3788, 0.9908, 0.8584)
T 

To see Matlab code for SOR iterative method back to appendix G.  

Conjugate Gradient method 

The Conjugate Gradient method is given by the algorithem in section (2.4). 

The approximate solutions in table 3.4 are given by Matlab code after six 

iterations: 

Table 3.4 

Iteration #                   

1 1.0105 0.3485 0.8015 0.7666 0.4181 0.9060 

2 1.2050 1.0141 0.8372 1.1984 0.9641 0.8698 

3 1.4845 0.9950 0.8348 1.3637 1.0463 0.8479 

4 1.4962 0.9957 0.8247 1.4041 1.0123 0.8661 

5 1.4825 0.9833 0.8241 1.3982 0.9924 0.8665 

6 1.4669 0.9695 0.8208 1.3775 0.9832 0.8595 
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The approximate solution is given by Matlab code after ten iterations: 

 u = (1.4688, 0.9775, 0.8150, 1.3794, 0.9922, 0.8572)
T 

To see Matlab code for Conjugate Gradient iterative method back to 

appendix H. 

Comparison between the iterative methods 

The generated linear system in example 3.2 that should be solved by some 

iterative techniques, namely: Jacobi, Gauss-Seidel, Successive over 

Relaxation (SOR), and the Conjugate Gradient methods with       . 

Table 3.5 shows numerical results for these iterative techniques. However, 

more iterations give less errors and leads to accurate solutions. 

Table 3.5      

The exact solution of the linear system is 

u =(1.4694, 0.9758, 0.8179, 1.3788, 0.9908, 0.8584)
T 

Method u1 u2 u3 u4 u5 u6 
number of 

iterations 

Jacobi solution 1.4693 0.9757 0.8179 1.3787 0.9907 0.8584 28 

Gauss-Seidel 

solution 

 

1.4693 
0.957 0.8179 1.3787 0.9907 0.8584 15 

(SOR) solution 1.4694 0.9758 0.8179 1.3788 0.9908 0.8584 10 

Conjugate 

Gradient  

method solution 

 

1.4688 

 

0.9775 0.8150 1.3794 0.9922 0.8572 10 

Example 3.3 

Consider the following Laplace equation 
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with square domain R = {(x,y) | a = 0 < x < b = 1, c = 0 < y < d = 1} with 

Dirichlet boundary conditions given on the boundaries in figure 3.3 . We 

will use the finite element method to approximate the solution of Laplace 

equation.   

u(0,y) = 0 , u(1,y) = y , u(x,0) = 0 , and u(x,1) = x. 

 

  

 

           u = 0                              u = y u = y 

 

u = 0 

                                                      Figure 3.3 

The region is divided into 18 equal triangular elements which are identified 

by encircled numbers 1 through 18 as indicated in figure 3.3. In this 

discretization there are 16 global nodes (blue points) numbered 1 through 

16 as indicated in the figure. 

Note that the bottom boundary is partitioned into 3 portions which are  

from node 1 to node 2, from node 2 to node 3 and from node 3 to node 4. 

Also, the left boundary is partitioned into 3 portions which are from node 1 

to node 8, from node 8 to node 9 and from node 9 to node 16.  

1 
2

3
4

5
6

7

8
9

10
11

12

13

14

15

16

17

18

10 

7 6 5 

 4 3 2 1 

12 11 9 

8 

14 13 16 15 

u =  x 
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So, each portion has 
 

 
 × 1 = 

 

 
 length. Now, we will write the coordinates 

for each node: 

node 1 : ( 0 , 0 ), node 2 : ( 
 

 
 , 0 ), node 3 : ( 

 

 
 , 0 ), node 4 : ( 1 , 0 ) 

node 5 : ( 1 , 
 

 
 ), node 6 : ( 

 

 
 , 

 

 
 ), node 7 : ( 

 

 
 , 

 

 
 ), node 8 : ( 0 , 

 

 
 ) 

node 9 : ( 0 , 
 

 
 ), node 10 : ( 

 

 
 , 

 

 
 ), node 11 : ( 

 

 
 , 

 

 
 ), node 12 :( 1 , 

 

 
 ) 

node 13 : ( 1 , 1 ), node 14 : ( 
 

 
 , 1 ), node 15 : ( 

 

 
 , 1 ), node 16 : ( 0 , 1 ) 

For each element e, we will label the local node numbers 1, 2, and 3 of 

element e in a counterclockwise sense. 

Table 3.6 shows that for each element we write its global nodes and their 

local node numbers and coordinates. 
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Table 3.6 

Now, for each element e, the following must be computed: 

For element 1:    

P1 = y2 – y3 = 0 – 
 

 
= - 

 

 
                   = x3 – x2 = 0 – 

 

 
 = - 

 

 
 

P2 = y3 – y1 = 
 

 
 – 0 = 

 

 
                     = x1 – x3 = 0 – 0 = 0 

Element # 
Its 

global 
nodes 

local node numbers 1,2, and 3  in 
a counterclockwise sense 

 

The coordinates of 
each global node 

element 1 

1 1 (x1,y1) = ( 0 , 0 ) 

2 2 (x2,y2) = ( 
 

 
 , 0) 

8 3 (x3,y3) = ( 0 , 
 

 
 ) 

element 2 

2 1 (x1,y1) = ( 
 

 
 , 0 ) 

7 2 (x2,y2) = ( 
 

 
 , 

 

 
 ) 

8 3 (x3,y3) = ( 0 , 
 

 
 ) 

element 3 

2 1 (x1,y1) = ( 
 

 
 , 0 ) 

3 2 (x2,y2) = ( 
 

 
 , 0 ) 

7 3 (x3,y3) = ( 
 

 
 , 

 

 
 ) 

…
…

.. 

…
…

.. 

…
…

.. 

…
…

.. 

element 17 

11 1 (x1,y1) = ( 
 

 
 , 

 

 
 ) 

12 2 (x2,y2) = ( 1 , 
 

 
 ) 

14 3 (x3,y3) = ( 
 

 
 , 1 ) 

element 18 

12 1 (x1,y1) = ( 1 , 
 

 
 ) 

13 2 (x2,y2) = ( 1 , 1 ) 

14 3 (x3,y3) = ( 
 

 
 , 1 ) 



75 

P3 = y1 – y2 = 0 – 0 = 0                     = x2 – x1 = 
 

 
 – 0 = 

 

 
 

In the same manner, we compute Pi's and   i's for each remaining elements 

where i = 1,2,3. 

Now, we use Eq.(1.27) to write the entries of the 3 × 3 element coefficient 

matrix, for example for element 1:  

   
   

 
 

  
[         ]                              
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[    

 

 
 

 

 
] 

         = 
 

 
 

Thus, the 3 × 3 element coefficient matrix for element 1 is: 

     [

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

]  
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In same manner, we find the 3 × 3 element coefficient matrix for element 

2,3,4,…,18. 
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Now, the global coefficient matrix C is then assembled from the element  

coefficient matrices. Since there are 16 nodes, the global coefficient matrix  

will be a 16 × 16 matrix. The one diagonal entries can be computed as 

follows: 

Take for example C1,1  : 

The entry C1,1 in the global coefficient matrix C corresponds to node 1 

which belongs to element 1 but node 1 is assigned local node number 1 in  
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element 1, thus the entry C1,1 equals to 

        
   

   

Also the entry C2,2 in the global coefficient matrix corresponds to node 2 

which belongs to elements 1, 2 and 3 but node 2 is assigned local node 

number 1 in elements 2 and 3 and local number 2 in element 1, thus the 

entry C2,2 equals to 

        
   

    
   

    
   

  0.5 + 0.5 + 1 = 2 

In the same manner, we can find the remaining entries: 

        
   

    
   

    
   

  0.5 + 0.5 + 1 = 2 

        
   

    
   

  0.4 + 0.7 = 1 

        
   

    
    

    
    

  1 + 0.4 + 0.7 = 2 

        
   

    
   

    
   

    
    

    
    

    
   

  4 

        
   

    
   

    
   

    
   

    
   

    
   

  4 

        
   

    
   

    
   

  2 

        
   

    
   

    
    

  2 

          
   

    
   

    
    

    
    

    
    

    
    

  4 

          
    

    
    

    
    

    
    

    
    

    
    

  4 

          
    

    
    

    
    

  2 

          
   

  1 
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  2 

          
    

    
    

    
    

  2 

          
    

    
    

  1 

Now, the one off-diagonal entries can be computed as follows: 

For the off-diagonal entry       ,for example, the global link 7−10 

corresponds to local link 1−2 of element 8 and local link 1−3 of element 9 

as shown in figure 3.3 and hence 

         
   

    
   

  – 0.5 + – 0.5 = – 1 

We can compute the value of other off-diagonal entries in the same 

manner.  

The global coefficient matrix C is then assembled from the element 

coefficient matrices. Since there are 16 nodes, the global coefficient matrix 

will be a 16 × 16 matrix. 
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The global coefficient matrix C. Red numbers are the entries of matrix Cvn while blue numbers are the entries of matrix Cvv 

both are discussed later. 
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Now, defining the vector    to be vector of unknowns (interior nodes) and 

vector    to be vector of prescribed boundary values (nodes that are 

located on the boundaries) as shown in table 3.7. 

Table 3.7: represents vector of prescribed boundary values (nodes that 

are located on the boundaries). 

Global Node 
(Boundary 

Node) 
Boundary condition 

The value of Global 
Node 
   

1 (corner node) 

Depend on bottom and left 
boundaries 

u = 0 and u = 0 
respectively. 

The average of its 

boundary values 
   

 
 = 

0 

2 
Depend on bottom 

boundary only u = 0. 
0 

3 
Depend on bottom 

boundary only u = 0. 
0 

4 (corner node) 

Depend on bottom and 
right boundaries 

u = 0 and u(1,y) = y 
respectively. 

The coordinate of node 
4 is (1,0) so its value 

under right condition is 
u(1,0) = 0. So, The 

average of its boundary 
values is 
   

 
 = 0 

5 
Depend on right boundary 

only 
u(1,y) = y. 

The coordinate of node 

5 is (1 ,
 

 
) so its value 

under right condition is 

u(1 ,
 

 
) = 

 

 
. So, the 

value of node 5 is 
 

 
. 

8 
Depend on left boundary 

only u = 0. 
0 

9 
Depend on left boundary 

only u = 0. 

0 
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12 
Depend on right boundary 

only 
u(1,y) = y. 

The coordinate of node 

5 is (1 ,
 

 
) so its value 

under right condition is 

u(1 ,
 

 
 ) = 

 

 
. So, the 

value of node 5 is 
 

 
. 

13 (corner node) 

Depend on top and right 
boundaries 

u(x,1) = x and u(1,y) = y 
respectively. 

The coordinate of node 
13 is (1,1) so its value 
under top condition is 

u(1,1) = 1 and its value 
under right condition is 

u(1,1) = 1. So, the 
average value of node 

13 is 
   

 
 = 1. 

Global Node 
(Boundary 

Node) 
Boundary condition 

The value of Global 
Node 

14 
Depend on top boundary 

only 
u(x,1) = x. 

The coordinate of node 

14 is ( 
 

 
, 1) so its value 

under top condition is 

u( 
 

 
, 1) = 

 

 
. So, the 

value of node 5 is 
 

 
. 

 

15 
Depend on top boundary 

only 
u(x,1) = x. 

The coordinate of node 

15 is ( 
 

 
, 1) so its value 

under top condition is 

u(
 

 
, 1) = 

 

 
. So, the 

value of node 5 is 
 

 
. 

16 (corner node) 

Depend on left and top 
boundaries 

u = 0 and u(x,1) = x 
respectively. 

The coordinate of node 
16 is (0,1) so its value 
under top condition is 

u(0,1) = 0. So, the 
average value of node 

16 is 
   

 
 = 0. 
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So,  

            
 

 
     

 

 
   

 

 
 
 

 
   T 

Now, defining the matrix     to be the matrix of unknown nodes (interior 

nodes) as in table 3.8 and the matrix     to be the matrix of unknown 

nodes and prescribed boundary values as in table 3.9. Both matrices     

and     obtained from global coefficient matrix C. 

Table 3.8 

    6 7 10 11 

6 4 -1 0 -1 

7 -1 4 -1 0 

10 0 -1 4 -1 

11 -1 0 -1 4 

Table 3.9 

    1 2 3 4 5 8 9 12 13 14 15 16 

6 0 0 -1 0 -1 0 0 0 0 0 0 0 

7 0 -1 0 0 0 -1 0 0 0 0 0 0 

10 0 0 0 0 0 0 -1 0 0 0 -1 0 

11 0 0 0 0 0 0 0 -1 0 -1 0 0 

Now, the inverse of matrix     is 

 

   
   [

                                
                                
                                
                                

]  

The vector    of unknowns nodes can be found by using Eq.(1.28): 

   = –    
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     = – [

                                
                                
                                
                                

] 

[

              
              
              
              

]

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
 

 
 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

= [

        
        
        
        

] 

Therefore, the approximate values of unknown nodes (interior nodes) are: 

   = [

      
      
       
       

]= [

        
        
        
        

] 

Example 3.4 

A very simple form of the steady state heat conduction in the rectangular 

domain shown in the following: 

     
   

   
  

   

   
   

for                    , with   a = 4 ,  b = 2. 
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where        is the steady state temperature distribution in the domain. 

The boundary conditions are: 

             , imposed temperatures on the left boundary. 

             , imposed temperatures on the right boundary. 

            , imposed temperatures on the bottom boundary. 

             , imposed temperatures on the top boundary. 

 

The solution along the line       (listed in Table 1, and shown in Figure 

1) was also computed at the locations                                   

for comparison with the Finite Difference solution. Better agreement 

should be obtained between the two results by using a finer grid for the FD 

solution, and by using higher level h-meshing for the FE solution. 
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Figure 1 

These results are taken form reference [1]. 

Example 3.5 

Another example arising in electrostatics. Consider the charge-free region 

depicted in Figure 2. The region has prescribed potentials along its 

boundaries. 

The potential           at an interior point       within the region is  

governed by the two-dimensional Laplace’s equation: 
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The triangular region is divided into a rectangular grid of nodes, with the 

numbering of free nodes as indicated in the figure. 

 

Figure 2: Charge-free region showing prescribed potentials at the boundaries and 

rectangular grid of free nodes to illustrate the finite difference method. 
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Figure 3: Finite element arrangement for electrostatic problem. 

 

Table 2: Comparison of results obtained by FDM and FEM. 

 

These results are taken from reference [11]. 
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1.3 Comparison between results for finite difference method and finite 

element method: 

A simple comparison between the results in example 3.1 and example 3.3 

as in table 3.10 with          

Table 3.10 

Finite difference method 

(using SOR iterative method) 
Finite element method 

u1 = u1,2 0.222186 Node 10 0.222222 

u2 = u2,2 0.444439 Node 11 0.444445 

u3 = u1,1 0.111128 Node 7 0.111111 

u4 = u2,1 0.222230 Node 6 0.222222 

A better approximation can be obtained if more iterations of SOR method 

are performed. 

We also see from example 3.4 the difference between the FDM and the 

FEM as in table 1: 

 

Example 3.5 gives simple comparison of results obtained by FDM and 

FEM in table 2: 
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Table 2: Comparison of results obtained by FDM and FEM. 

 

3.2 Conclusions 

In this thesis we have used the two numerical techniques, namely: the finite 

difference method and the finite element method to solve boundary value 

problems involving the Laplace equation and the Poisson equation. The 

discretization procedure transfers the BVP into a linear system of n-

algebraic equations. 

This linear system has been solved iteratively by various iterative schemes. 

These are:  Jacobi, the Gauss-Seidel, Successive over Relaxation (SOR), 

and the Conjugate Gradient methods. 

We observe that the finite difference method is very simple and efficient 

method for approximating the solution of the BVP when the domain has 

regular shape. On the other hand the finite element method is more efficient 

for complex and irregular domains. Moreover, we see clearly that the SOR 

iterative scheme is the most efficient method among the other iterative 

schemes for approximating the solution of the BVP.    
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Appendix A 

Matlab code for Jacobi iterative method 

% Iterative Solutions of linear equations: Jacobi Method 

% Linear system: A u = B 

% Coefficient matrix A, right-hand side vector B 

A=[4 -1 -1 0; -1 4 0 -1; -1 0 4 -1; 0 -1 -1 4]; 

B= [1/3;4/3;0;1/3]; 

% Set initial value of u to zero column vector  

u0=zeros(1,4); 

% Set Maximum iteration number k_max 

k_max=6; 

% Set the convergence control parameter erp 

erp=0.0001; 

% Show the q matrix 

% loop for iterations 

for k=1:k_max 

   for i=1:4 

     s=0.0; 

     for j=1:4 

 if j==i  

            continue 

        else     

            s=s+A(i,j)*u0(j); 

        end 
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    end 

    u1(i)=(B(i)-s)/A(i,i); 

   end 

   if norm(u1-u0)<erp 

      break 

   else 

   u0=u1;    

  end 

end 

% show the final solution 

u=u1 

% show the total iteration number 

n_iteration=k 
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Appendix B 

Matlab code for Gauss-Seidel iterative method 

clear;clc 

format compact 

%%  Read or Input any square Matrix 

A = [4 -1 -1 0; 

    -1 4 0 -1;  

    -1 0 4 -1;  

    0 -1 -1 4];% coefficients matrix 

C = [1/3;4/3;0;1/3];% constants vector 

n = length(C); 

X = zeros(n,1); 

Error_eval = ones(n,1); 

%% Check if the matrix A is diagonally dominant 

for i = 1:n 

    j = 1:n; 

    j(i) = []; 

    B = abs(A(i,j)); 

    Check(i) = abs(A(i,i)) - sum(B); % Is the diagonal value greater than the 

remaining row values combined? 

    if Check(i) < 0 

        fprintf('The matrix is not strictly diagonally dominant at row 

%2i\n\n',i) 

    end 
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end 

%% Start the Iterative method 

iteration = 0; 

while max(Error_eval) > 0.001 

    iteration = iteration + 1; 

    Z = X;  % save current values to calculate error later 

    for i = 1:n 

        j = 1:n; % define an array of the coefficients' elements 

        j(i) = [];  % eliminate the unknow's coefficient from the remaining 

coefficients 

        Xtemp = X;  % copy the unknows to a new variable 

        Xtemp(i) = [];  % eliminate the unknown under question from the set 

of values 

        X(i) = (C(i) - sum(A(i,j) * Xtemp)) / A(i,i); 

    end 

    Xsolution(:,iteration) = X; 

    Error_eval = sqrt((X - Z).^2); 

end 

%% Display Results 

GaussSeidelTable = [1:iteration;Xsolution]' 

MaTrIx = [A X C] 
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Appendix C 

Matlab code for SOR method. 

clc 

clear all 

A = [4 -1 -1 0 ; -1 4 0 -1; -1 0 4 -1; 0 -1 -1 4]; 

b = [1/3; 4/3; 0; 1/3]; 

% error tolerance 

tol = 0.0001; 

%initial guess: 

x0 = zeros(4,1); 

%  Jacobi method 

%--------------- 

xnew=x0; 

error=1; 

while error>tol 

    xold=xnew; 

    for i=1:length(xnew) 

        off_diag = [1:i-1 i+1:length(xnew)]; 

        xnew(i) = 1/A(i,i)*( b(i)-sum(A(i,off_diag)*xold(off_diag)) ); 

    end 

    error=norm(xnew-xold)/norm(xnew); 

end 

x_jacobian=xnew 

%Gauss?Seidel: 
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%--------------- 

maxiter=6; 

lambda=1; 

n=length(x0); 

x=x0; 

error=1; 

iter = 0; 

while (error>tol & iter<maxiter) 

    xold=x; 

    for i=1:n 

        I = [1:i-1 i+1:n]; 

        x(i) = (1-lambda)*x(i)+lambda/A(i,i)*( b(i)-A(i,I)*x(I) ); 

    end 

    error = norm(x-xold)/norm(x); 

    iter = iter+1; 

end 

x_siedal=x 

%SOR 

%--------------- 

lambda=1.3; 

n=length(x0); 

x=x0; 

error=1; 

iter = 0; 
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while (error>tol & iter<maxiter) 

    xold=x; 

    for i=1:n 

        I = [1:i-1 i+1:n]; 

        x(i) = (1-lambda)*x(i)+lambda/A(i,i)*( b(i)-A(i,I)*x(I) ); 

    end 

    error = norm(x-xold)/norm(x); 

    iter = iter+1; 

end 

x_SOR=x 
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Appendix D 

Matlab code for conjugate gradient method. 

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter) 

% SOLVECG   Conjugate Gradients method. 

% 

%    Input parameters:  

%           A : Symmetric, positive definite NxN matrix  

%           f : Right-hand side Nx1 column vector  

%           s : Nx1 start vector (the initial guess) 

%         tol : relative residual error tolerance for break 

%               condition  

%     maxiter : Maximum number of iterations to perform 

% 

%    Output parameters: 

%           u : Nx1 solution vector 

%       niter : Number of iterations performed 

%        flag : 1 if convergence criteria specified by TOL could 

%               not be fulfilled within the specified maximum 

%               number of iterations, 0 otherwise (= iteration 

%               successful). 

A=[4 -1 -1 0; -1 4 0 -1; -1 0 4 -1; 0 -1 -1 4] 

f=[1/3;4/3;0;1/3] 

s=[0;0;0;0] 

maxiter = 6 
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u = s;         % Set u_0 to the start vector s 

r = f - A*s;   % Compute first residuum 

p = r;          

rho = r'*r; 

niter = 0;     % Init counter for number of iterations 

flag = 0;      % Init break flag 

% Compute norm of right-hand side to take relative residuum as 

% break condition. 

normf = norm(f); 

if normf < eps  % if the norm is very close to zero, take the 

                % absolute residuum instead as break condition 

                % ( norm(r) > tol ), since the relative 

                % residuum will not work (division by zero). 

  warning(['norm(f) is very close to zero, taking absolute residuum' ...  

      ' as break condition.']); 

 normf = 1; 

end 

while (norm(r)/normf > 0.00001)   % Test break condition 

 a = A*p; 

 alpha = rho/(a'*p); 

 u = u + alpha*p; 

 r = r - alpha*a; 

 rho_new = r'*r; 

 p = r + rho_new/rho * p; 



311 

 rho = rho_new; 

 niter = niter + 1; 

 if (niter == maxiter)         % if max. number of iterations 

  flag = 1;                   % is reached, break. 

  break 

 end 

end 
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Appendix E 

Matlab code for Jacobi method. 

% Iterative Solutions of linear equations: Jacobi Method 

% Linear system: A x = B 

% Coefficient matrix A, right-hand side vector B 

A=[7/2 -2 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 7/2 -2 0; 0 -1 0 -1 4 -

1; 0 0 -1 0 -1 4]; 

B= [29/16; 5/8; 23/16; 11/8; 3/4; 13/8]; 

% Set initial value of x to zero column vector  

x0=zeros(1,6); 

% Set Maximum iteration number k_max 

k_max=28; 

% Set the convergence control parameter erp 

erp=0.0001; 

% Show the q matrix 

% loop for iterations 

for k=1:k_max 

   for i=1:6 

     s=0.0; 

     for j=1:6 

 if j==i  

            continue 

        else     

            s=s+A(i,j)*x0(j); 
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        end 

    end 

    x1(i)=(B(i)-s)/A(i,i); 

   end 

   if norm(x1-x0)<erp 

      break 

   else 

   x0=x1;    

  end 

end 

% show the final solution 

x=x1 

% show the total iteration number 

n_iteration=k 
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Appendix F 

Matlab code for Gauss-Seidel method. 

clear;clc 

format compact 

%%  Read or Input any square Matrix 

A = [7/2 -2 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 7/2 -2 0; 0 -1 0 -1 4 

-1; 0 0 -1 0 -1 4];  % coefficients matrix 

C = [29/16; 5/8; 23/16; 11/8; 3/4; 13/8];% constants vector 

n = length(C); 

X = zeros(n,1); 

Error_eval = ones(n,1); 

 

%% Check if the matrix A is diagonally dominant 

for i = 1:n 

    j = 1:n; 

    j(i) = []; 

    B = abs(A(i,j)); 

    Check(i) = abs(A(i,i)) - sum(B); % Is the diagonal value greater than the 

remaining row values combined? 

    if Check(i) < 0 

        fprintf('The matrix is not strictly diagonally dominant at row 

%2i\n\n',i) 

    end 

end 
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%% Start the Iterative method 

 

iteration = 0; 

while max(Error_eval) > 0.001 

    iteration = iteration + 1; 

    Z = X;  % save current values to calculate error later 

    for i = 1:n 

        j = 1:n; % define an array of the coefficients' elements 

        j(i) = [];  % eliminate the unknow's coefficient from the remaining 

coefficients 

        Xtemp = X;  % copy the unknows to a new variable 

        Xtemp(i) = [];  % eliminate the unknown under question from the set 

of values 

        X(i) = (C(i) - sum(A(i,j) * Xtemp)) / A(i,i); 

    end 

    Xsolution(:,iteration) = X; 

    Error_eval = sqrt((X - Z).^2); 

end 

 

%% Display Results 

GaussSeidelTable = [1:iteration;Xsolution]' 

MaTrIx = [A X C] 
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Appendix G 

Matlab code for SOR method. 

clc 

clear all 

A = [7/2 -2 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 7/2 -2 0; 0 -1 0 -1 4 

-1; 0 0 -1 0 -1 4];  % coefficients matrix 

b = [29/16; 5/8; 23/16; 11/8; 3/4; 13/8] 

% error tolerance 

tol = 0.0001; 

%initial guess: 

x0 = zeros(6,1); 

%  Jacobi method 

%--------------- 

xnew=x0; 

error=1; 

while error>tol 

    xold=xnew; 

    for i=1:length(xnew) 
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        off_diag = [1:i-1 i+1:length(xnew)]; 

        xnew(i) = 1/A(i,i)*( b(i)-sum(A(i,off_diag)*xold(off_diag)) ); 

    end 

    error=norm(xnew-xold)/norm(xnew); 

end 

x_jacobian=xnew 

%Gauss?Seidel: 

%--------------- 

maxiter=10; 

lambda=1; 

n=length(x0); 

x=x0; 

error=1; 

iter = 0; 

while (error>tol & iter<maxiter) 

    xold=x; 

    for i=1:n 

        I = [1:i-1 i+1:n]; 



331 

        x(i) = (1-lambda)*x(i)+lambda/A(i,i)*( b(i)-A(i,I)*x(I) ); 

    end 

    error = norm(x-xold)/norm(x); 

    iter = iter+1; 

end 

x_siedal=x 

%SOR 

%--------------- 

lambda=1.3; 

n=length(x0); 

x=x0; 

error=1; 

iter = 0; 

while (error>tol & iter<maxiter) 

    xold=x; 

    for i=1:n 

        I = [1:i-1 i+1:n]; 

        x(i) = (1-lambda)*x(i)+lambda/A(i,i)*( b(i)-A(i,I)*x(I) ); 
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    end 

    error = norm(x-xold)/norm(x); 

    iter = iter+1; 

end 

x_SOR=x 
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Appendix H 

Matlab code for Conjugate Gradient method. 

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter) 

% SOLVECG   Conjugate Gradients method. 

% 

%    Input parameters: 

%           A : Symmetric, positive definite NxN matrix 

%           f : Right-hand side Nx1 column vector 

%           s : Nx1 start vector (the initial guess) 

%         tol : relative residual error tolerance for break 

%               condition 

%     maxiter : Maximum number of iterations to perform 

% 

%    Output parameters: 

%           u : Nx1 solution vector 

%       niter : Number of iterations performed 

%        flag : 1 if convergence criteria specified by TOL could 

%               not be fulfilled within the specified maximum 

%               number of iterations, 0 otherwise (= iteration 

%               successful). 

A=[7/2 -2 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 7/2 -2 0; 0 -1 0 -1 4 -

1; 0 0 -1 0 -1 4] 

f=[29/16; 5/8; 23/16; 11/8; 3/4; 13/8]; 

s=[0;0;0;0;0;0] 
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maxiter = 6 

u = s;         % Set u_0 to the start vector s 

r = f - A*s;   % Compute first residuum 

p = r; 

rho = r'*r; 

niter = 0;     % Init counter for number of iterations 

flag = 0;      % Init break flag 

% Compute norm of right-hand side to take relative residuum as 

% break condition. 

normf = norm(f); 

if normf < eps  % if the norm is very close to zero, take the 

% absolute residuum instead as break condition 

% ( norm(r) > tol ), since the relative 

% residuum will not work (division by zero). 

warning(['norm(f) is very close to zero, taking absolute residuum' ... 

' as break condition.']); 

normf = 1; 

end 

while (norm(r)/normf > 0.00001)   % Test break condition 

a = A*p; 

alpha = rho/(a'*p); 

u = u + alpha*p; 

r = r - alpha*a; 

rho_new = r'*r; 
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p = r + rho_new/rho * p; 

rho = rho_new; 

niter = niter + 1; 

if (niter == maxiter)         % if max. number of iterations 

flag = 1;                   % is reached, break. 

break 

end 

end 
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  ب

Jacobi method, Gauss-Seidel method, Successive over Relaxation (SOR) 

method and Conjugate Gradient method. 

SOR 

 




