
An-Najah National University

Faculty of Graduate Studies

Finite Difference and Finite Element

Methods for Solving Elliptic Partial

Differential Equations

By

Malik Fehmi Ahmed Abu Al-Rob

Supervisor

Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Mathematics, Faculty of Graduate

Studies, An-Najah National University, Nablus, Palestine.

2016

III

 بسم الله الزحمه الزحيم

" والله بما تعملون خبيز" يزفع الله الذيه اوتوا العلم منكم درجات

 صدق الله العظيم

IV

Dedication

I dedicate my work to all my family members, to my

parents, my sister, my brothers who encourage me to

learn, grow and develop and who have been a source of

encouragement and inspiration to me.

I also dedicate this dissertation to my homeland Palestine.

V

Acknowledgement

In the beginning, I am grateful to the God to complete this

thesis. I wish to express my sincere thanks to Prof. Naji

Qatanani for providing me with all the necessary facilities

for the research and I am extremely thankful and indebted

to him for sharing expertise, and sincere and valuable

guidance and encouragement extended to me.

My thanks also to my internal examiner Dr. Anwar Saleh

and my external examiner Dr. Saed Mallak from Palestine

Technical University – Kadoorie for their positive

comments.

I am extremely thankful to Mr. Hayel Hussein from the

Arab American University who directly help me to

complete this thesis.

I take this opportunity to express gratitude to all my

family members for their help and support. I also thank

my parents for the unceasing encouragement, support and

attention.

My sense of gratitude to everyone, who directly or

indirectly, have lent their hand in this venture.

VII

Contents

Dedication ... IV

Acknowledgement .. V

Declaration .. VI

Contents ... VII

Abstract ... IX

Introduction ... 1

Chapter One ... 5

Finite Difference and Finite Element Methodsfor Solving Elliptic Partial

Differential Equations ... 5

1.1 Discretization of Elliptic PDE by Finite Difference Method 6

1.2 The Principle of Finite Difference Method: 7

1.3 Strategy of Discretization ... 8

1.4 Elliptic PDE subject to Boundary Conditions: 13

1.4.1 Laplace equation with Dirichlet Boundary Conditions: 13

1.4.2 Poisson Equation with Dirichlet Boundary Conditions: 18

1.4.3 Laplace Equation with Neumann Boundary Conditions: 18

1.4.4 Poisson equation with Neumann Boundary Conditions: 20

1.5 Finite Element Method: .. 21

1.6 The Principle of Finite Element Method: 21

1.6.1 Finite Element Method for Dirichlet boundary value problems: 22

1.6.2 Finite Element Method with Neumann Boundary condition: 29

Chapter Two .. 33

Iterative Methods for Solving Linear systems ... 33

2.1 Jacobi Method ... 34

2.2 Gauss-Seidel Method .. 37

2.3 Successive over Relaxation Method (SOR Method) 40

2.4 Conjugate Gradient Method.. 42

2.5 Convergence of Iterative Methods .. 45

VIII

Chapter Three .. 52

Numerical Results ... 52

Example 3.1 .. 52

Example 3.2 .. 64

Example 3.3 .. 71

Example 3.4 .. 84

Example 3.5 .. 86

1.3 Comparison between results for finite difference method and finite

element method: .. 89

3.2 Conclusions ... 90

References ... 91

Appendix A ... 94

Appendix B ... 96

Appendix C ... 98

Appendix D ... 101

Appendix E .. 104

Appendix F .. 106

Appendix G ... 108

Appendix H ... 112

 ب ... الولخص

IX

Finite Difference and Finite Element Methods for Solving Elliptic

Partial Differential Equations

By

Malik Fehmi Ahmed Abu Al-Rob

Supervisor

Prof. Dr. Naji Qatanani

Abstract

Elliptic partial differential equations appear frequently in various fields of

science and engineering. These involve equilibrium problems and steady

state phenomena. The most common examples of such equations are the

Poisson's and Laplace equations. These equations are classified as second

order linear partial differential equations.

Most of these physical problems are very hard to solve analytically,

instead, they can be solved numerically using computational methods.

In this thesis, boundary value problems involving Poisson's and Laplace

equations with different types of boundary conditions will be solved

numerically using the finite difference method (FDM) and the finite

element method (FEM).

The discretizing procedure transforms the boundary value problem into a

linear system of n algebraic equations. Some iterative techniques, namely:

the Jacobi, the Gauss-Seidel, Successive over Relaxation (SOR), and the

Conjugate Gradient method will be used to solve such linear system.

Numerical results show that the finite difference method is more efficient

than the finite element method for regular domains, whereas the finite

element method is more accurate for complex and irregular domains.

Moreover, we observe that the SOR iterative technique gives the most

efficient results among the other iterative schemes.

3

Introduction

Many physical phenomena and engineering problems involving

temperature, electrical potential, astronomy and membrane displacement

can be described by elliptic partial differential equations.

The boundary value problems modeling these physical phenomena are too

hard to be solved analytically. Alternatively, we can use some

computational methods to solve such problems.

The use of Finite Difference Method (FDM) depends upon Taylor

expansion to approximate the solution of partial differential equation (PDE)

that uses a regular shape of network of lines to construct the discretization

of the PDE. This is a potential bottleneck of the method when handling

complex geometries in multiple dimensions. This issue motivated the use

of an integral form of the PDEs and subsequently the development of the

Finite Element Method (FEM) [22].

On the other hand, the FEM is the most general method for the numerical

solution of the three types of partial differential equations, namely: elliptic,

parabolic, and hyperbolic equations.

This method was introduced by engineers in the late 50’s and early 60’s for

the numerical solution of partial differential equations in structural

engineering (elasticity equations, plate equations, and so on) [9].

At that point of time, this method was thought of as a generalization of

earlier methods in structural engineering for beams, frames, and plates

where the structure was subdivided into small parts, so called finite

elements.

When the mathematical study of the finite element method started in the

mid 60's, it soon became clear that the method is a general technique for the

2

numerical solution of partial differential equations with roots in the

variational methods in mathematics introduced in the beginning of the

century.

The FEM dates back to 1909 when Ritz developed an effective method for

the approximate solution of problems in the mechanics of deformable

solids. It includes an approximation of energy functional by the known

functions with unknown coefficients. Minimization of functional in relation

to each unknown leads to a system of equations from which the unknown

coefficients may be determined. One of the main restrictions in the Ritz

method is that functions used should satisfy the boundary conditions of the

problem [7].

In 1943 Courant considerably increased possibilities of the Ritz method by

introducing special linear functions defined over triangular regions and

applied the method for the solution of torsion problems. As unknowns, the

values of functions in the node points of triangular regions were chosen.

Thus, the main restriction of the Ritz functions – a satisfaction to the

boundary conditions was eliminated [7]. The Ritz method together with the

Courant modification is similar with FEM proposed independently by

Clough many years later introducing for the first time in 1960 the term

“finite element” in the paper “The finite element method in plane stress

analysis” [7]. The main reason of wide spreading of FEM in 1960 is the

possibility to use computers for the big volume of computations required

by FEM. However, Courant did not have such possibility in 1943 [7].

An important contribution was brought into FEM development by the

papers of Argyris, Turner, Martin, Hrennikov and many others [23]. The

first book on FEM was published in 1967 by Zienkiewicz and Cheung and

1

called “The finite element method in structural and continuum

mechanics”[23]. This book presents the broad interpretation of the method

and its applicability to any general field problems. Although the method

has been extensively used previously in the field of structural mechanics, it

has been successfully applied now for the solution of several other types of

engineering problems like heat conduction, fluid dynamics, electric and

magnetic fields, and others [23].

On the other hand, the finite difference method was invented by a Chinese

scientist named Feng Kang in the late 1950’s. He proposed the finite

difference method as a systematic numerical method for solving partial

differential equations that are applied to the computations of dam

constructions. It is speculated that the same method was also independently

invented in the west, named in the west the FEM. It is now considered that

the invention of the finite difference method is a milestone of

computational mathematics.

Error bounds for difference approximations of elliptic problems were first

derived by Gerschgorin (1930) whose work was based on a discrete

analogue of the maximum principle for Laplace’s equation. This approach

was actively pursued through the 1960s by Collatz, Motzkin, Wasow,

Bramble, and Hubbard, and various approximations of elliptic equations

and associated boundary conditions were analyzed [19].

For time-dependent problems, considerable progress in finite difference

methods was made during the period of, and immediately following, the

second world war, when large-scale practical applications became possible

with the aid of computers [19]. A major role was played by the work of von

Neumann, partly reported in O’Brien, Hyman and Kaplan (1951). For

4

parabolic equations a highlight of the early theory was the important paper

by John (1952) [19]. For mixed initial–boundary value problems the use of

implicit methods was also established in this period by, e.g., Crank and

Nicolson (1947). The finite difference theory for general initial value

problems and parabolic problems then had an intense period of

development during the 1950s and 1960s, when the concept of stability was

explored in the Lax equivalence theorem and the Kreiss matrix lemmas,

with further major contributions given by Douglas, Lees, Samarskii,

Widlund and others [19]. For hyperbolic equations, and particularly for

nonlinear conservation laws, the finite difference method has continued to

play a dominating role up until the present time, starting with work by

Friedrichs, Lax, Wendroff, and others.

Some standard references on finite difference methods are the textbooks of

Collatz, Forsythe and Wasow and Richtmyer and Morton [19].

This thesis is organized as follows:

Chapter one introduces both the finite difference method and the finite

element method used to solve elliptic partial differential equations. The

discretization procedure for partial differential equations and boundary

conditions are represented explicitly. In chapter two, some iterative

techniques namely, the Jacobi, the Guass-Seidel, Successive over

Relaxation (SOR), and the Conjugate Gradient method are presented

together with their convergence properties. Chapter three contains some

numerical examples and concluding results.

5

Chapter One

Finite Difference and Finite Element Methodsfor Solving

Elliptic Partial Differential Equations

Physical and engineering problems such as equilibrium problems and

steady state phenomena (independent of time) can be described as elliptic

partial differential equations (elliptic PDEs). These equations express the

behavior of such problems. Second order linear partial differential

equations are mainly considered as

 +

 +

 +

 +

 + u = G(x,y)

or simply

 (1.1)

where , , , D, E, F, and the free term G are the coefficients of Eq. (1.1)

which can be constants or functions of two independent variables x and y

and u is the unknown function of two independent variables x and y.

Eq. (1.1) is classified into three types depending on the discriminant

() as follows:

1. Hyperbolic if the discriminant is positive (> 0).

2. Parabolic if the discriminant is zero ().

3. Elliptic if the discriminant is negative ().

We will deal with elliptic PDEs (or in general, with steady state problems)

with respect to two types of boundary conditions. These conditions are:

6

1. Dirichlet Boundary Condition:

The condition where the value of the unknown function is prescribed

on the boundary of the domain.

2. Neumann Boundary Condition:

The condition where the value of the normal derivative

 is given

on the boundary of the domain.

In this thesis, we use Finite Difference and Finite Element methods for

solving elliptic partial differential equations in two dimensions such as

Laplace equation and Poisson equation.

When these techniques are used for solving elliptic PDEs, a system of

linear equations will be generated and should be solved using several

iterative schemes such as Jacobi, Guass-Seidel, Successive over Relaxation

(SOR), and Conjugate Gradient methods.

1.1 Discretization of Elliptic PDE by Finite Difference Method

The Finite Difference Method (FDM) is a well-known method that is used

to approximate the solution of partial differential equations. It was already

known by L. Euler (1707-1783) in one dimension of space and was

probably extended to dimension two by C. Runge (1856-1927). This

method is effective when the domain of the problem has boundaries with

regular shapes. In this thesis, we will deal with the finite difference method

with rectangular domain of regular boundaries shapes.

7

1.2 The Principle of Finite Difference Method:

The idea of FDM is to replace the partial derivatives of dependent variable

(unknown function) with partial differential equation using finite difference

approximations with errors. This procedure converts the region

(where the independent variables in PDE are defined on) to a mesh grid of

points where the dependent variables are approximated. The replacement of

partial derivatives with difference approximation formulas depends on

Taylor's Theorem. So, Taylor's Theorem is introduced.

Taylor's Theorem 1.2.1

Let u(x) has n continuous derivatives over the interval (a,b). Then, for

a< , +h< b, we can write the value of u(x) and its derivatives nearby

the point +h as follows:

 (+ h) = () +

 +

 +

+ … +

 + (1.2)

where

1. () is the first derivative of with respect to x at the point .

2. () is the n-1
th
 derivative of with respect to x at the point .

3. [pronounced as order h to the n] is an unknown error term that

satisfies the property: for f(h) =

for any nonzero constant c.

8

When we eliminate the error term, , from the right-hand side of Eq.

(1.2), we get an approximation to (+h).

1.3 Strategy of Discretization

Using finite difference method to discretize elliptic PDE with its boundary

conditions, we can consider the following Poisson equation:

 ²u(x,y)

 (x,y) +

 (x,y) = G(x,y)

or we can simply write this equation in another form as:

 + = G(x,y), for (x,y) R (1.3)

The rectangular domain R = {(x,y) | a < x < b, c < y < d} and

u(x,y) = g(x,y) for any (x,y) S, where:

S denotes the boundary of a region R, G(x,y) is a continuous function on R

and g(x,y) is continuous on S. The continuity of both G and g guarantees a

unique solution of Eq. (1.3).

Now, we will use the finite difference algorithm for solving elliptic PDE,

like Eq. (1.3).

The Finite Difference Algorithm

Step 1: Choose positive integers n and m.

Step 2: Define

 and

 .

9

This step partitions the interval [a,b] into n equal parts of width h and

partitions the interval [c,d] into m equal parts of width k as step 3

illustrates.

Step 3: Define

 = a + ih, i = 0,1,2,….., n

 = c + jk, j = 0,1,2,….., m

Step 2 and step 3 are illustrated in figure 1.1.

Figure 1.1

It is clear from figure 1.1 that we have horizontal and vertical lines inside

the rectangle R. These lines are called "grid lines" and their intersections

are called "mesh points" of the grid. For each mesh point inside the grid,

(), i = 1, 2, …, n-1 and j = 1, 2,…, m-1[2],[21]. We use Taylor series in

the variable x about to generate the central-difference formula:

 () =

 (1.4)

31

where .

Also, we use Taylor series in the variable y about to generate the central-

difference formula:

 () =

 () (1.5)

where [15].

By inserting Eq. (1.4) and Eq. (1.5) into Eq. (1.3), we get:

 + (1.6)

 () = G(

for each i = 1, 2, 3, … , n-1 and j = 1, 2, 3, … , m-1.

The boundary conditions are:

1. u() = g(), j = 0,1,2,…,m.

2. u() = g(), j = 0,1,2,…,m. (1.7)

3. u() = g(), i = 1,2,…,n-1.

4. u() = g(), i = 1,2,…,n-1.

Now, by rearranging Eq. (1.6), we get:

 +

 +

 +

=

 +

 () + G(

or it can simply be written as

2*

+u() +

 +

33

=

 +

 () + G(

Multiplying both sides by h², we get:

2[(

)

]u() – [() ()] (

)

=

 +

 () h² G()

In difference-equation form, this results in the central–difference method

with local truncation error O(h² + k²).

Simplifying the last equation and letting approximate u(), we get:

2[(

)

] – [] (

)

= - h² G((1.8)

for each i = 1, 2, …, n-1 and j = 1, 2, …, m-1.

with boundary conditions:

 }

 (1.9)

where approximates u(.

For more details, see references [2], [3] and [8].

Eq. (1.8) involves approximations to the unknown function u(x,y) at the

points

32

 , , , , and

These points form a star–shape region in the grid (as figure 1.2 shows)

which shows that any equation involves approximations about ()

Figure 1.2

When we use formula (1.8) with boundary conditions (1.9), then at all

points () that are adjacent to a boundary mesh point, we have an

 by linear system with the

unknowns being the approximations to () at the interior meth

points.

The generated linear system should be solved by Jacobi, Guass-Seidel,

Successive over Relaxation (SOR), or Conjugate Gradient methods. This

system (that involves the unknowns) produces satisfactory results if a

relabeling of the interior mesh points is introduced. A favorable labeling of

these points is [3] , [8] and [20]:

 ()

31

1.4 Elliptic PDE subject to Boundary Conditions:

Solution of Laplace equation and Poisson equation on the boundary of a

domain R needs certain conditions where the unknown function (dependent

variable) must satisfy these conditions on the boundary S. We will deal

with Laplace equation and Poisson equation with respect to two types of

boundary conditions. These are Dirichlet and Neumann boundary

conditions.

1.4.1 Laplace equation with Dirichlet Boundary Conditions:

When the function is defined on any part of a domain , then we call this

part Dirichlet boundary , i.e. the unknown function is prescribed on the

boundary, that is, where the function is a

known function.

 : u = g

To derive the formula of finite difference approximation with Dirichlet

boundary condition for Laplace equation

 (1.10)

We consider three points i+1, i, and i-1 which are located on X-axis with

equal distance h between them (as figure 1.3 shows).

34

X-axis
i+1 i-1

h h

Figure 1.3

Let the value of the function u(x,y) at the points (i-1,j), (i,j), and (i+1,j) be

 , ,and , respectively.

Now, use Taylor series to express and in the form of Taylor

expansions about the point i as follows:

 = +

 +

.

 +

.

 +

.

 + (1.11)

 = -

 +

.

 -

.

 +

.

 + (1.12)

By adding Eq. (1.11) and Eq. (1.12), we get:

 + = 2 +

 +

.

 +

By rearranging the above equation, we get:

 =

+ (1.13)

Eq.(1.13) is a finite difference approximation formula with error term

 of second order for

 .

Now, subtracting Eq. (1.12) from Eq. (1.11), we get:

 - =

 +

.

 +

By rearranging the above equation, we get:

 =

+ (1.14)

35

Eq.(1.14) is a finite difference approximation formula with error term

 of second order for

 .

Similarly, consider three points j+1, j, and j-1 which are located on the Y-

axis with equal distance h between them (as figure 1.4 shows).

Figure 1.4

Let the value of the function u(x,y) at the points (i,j+1), (i, j), and (i, j-1) be

 , , and , respectively. Using Taylor series to express

and in the form of Taylor expansions at the point j, the finite

difference approximation formulas with error term of second order

for

 and

 are, respectively:

 =

+ (1.15)

and

 =

+ (1.16)

Now, by combining figure 1.3 and figure 1.4 together, we get the star–

shape (or 5-points stencil) region about the point (i,j) as shown in figure

1.5 [4].

h

h

j

j+1

j-1

36

(i+1,j

Figure 1.5

Inserting Eq. (1.13) and Eq. (1.15) into Eq. (1.10) yields:

(

 =

 +

 = 0

By rearranging the above equation, we get [12]:

() = 0

So,

 =

 [] (1.17)

In general, if u satisfies Laplace equation, then u, at any point in the

domain R, is the average of the values of u at the four surrounding points

in the 5-point stencil as shown in figure 1.2, page 12.

Now, suppose we have Dirichlet boundary conditions defined on the

rectangular domain such that 1 i m and 1 n as shown in figure

1.6 [4].

(i,j+1)

(i,j-1)

(i,j)

)
(i-1,j)

37

 Figure 1.6

Let u(x,y) = g(x,y) be given on all boundaries of the domain, that is u = g is

defined on the left, top, right, and bottom boundary walls so that the

boundary grid points (blue points) and the corner grid points (green points)

are known [3].

In other words, the values of the points ()

 under the function g are known. For the corner

grid points, we use the following equations:

 u(1,1) =

 [u(2,1) + u(1,2)]

u(m,1) =

 [u(m-1,1) + u(m,2)] (1.18)

 u(1,n) =

 [u(1,n-1) + u(2,n)]

 u(m,n) =

 [u(m,n-1) + u(m-1,n)]

[4] and [17].

38

1.4.2 Poisson Equation with Dirichlet Boundary Conditions:

To derive the formula of finite difference approximation with Dirichlet

boundary condition for Poisson equation:

 (1.19)

Following similar approach for Laplace equation with some amendments in

Eq. (1.17), that is [12]:

 =

 [] -

 (1.20)

1.4.3 Laplace Equation with Neumann Boundary Conditions:

When the normal derivative of the unknown function u is prescribed on the

boundary of a domain R, then we call this part Neumann boundary , i.e.

the value of the normal derivative

 g(x,y) is given on the boundary of

the domain, where g(x,y) is a given function.

 n

 :

 g(x,y)

To derive the formula of finite difference approximation with Neumann

boundary condition for Laplace equation

Consider that we have a rectangle domain as shown in figure 1.7.

Suppose that Dirichlet condition is specified on top, right, and bottom walls

and Neumann condition is defined on the remaining wall which is the left

wall as follows:

39

i i=1

 – g(y) (1.21)

Now, we want to approximate Eq. (1.21) using the second order

approximation using Eq. (1.14). This procedure puts the grid points (1,j)

outside the domain towards the left that is located on imaginary boundary

(red line) that their fake coordinates will be (0,j) [4] , [8].

 Top boundary

Figure 1.7

So, Eq. (1.21) is approximated using Eq. (1.14) at the line i = 1

 =

 =

=  g(1,j)

Thus,

 u(0,j) = u(2,j) + 2h g(1,j) (1.22)

Now, we write Eq. (1.17) at the point (1,j) as

 =

 []

u(1,j) =

 []

=

 [

Left

boundary

i=2

(2,j)
j

j-1

j+1

i=m

j=n

21

By substituting Eq. (1.22) in the previous formula, we get:

u(1,j) =

 [

u(1,j) =

 [(1.23)

For any two positive integers m and n, we use Eq. (1.23) for 2 j n -1,

where g(1, j) is a specified function. As Dirichlet condition is specified on

north, east, and south walls, the values

{u(i,n), 2 i m-1}, {u(m,j), 2 j n-1}, and {u(i,1), 2 i m-1} are

known.

To find the values of corner grid points, we use Eq. (1.18).

1.4.4 Poisson equation with Neumann Boundary Conditions:

Consider the Poisson equation:

with Neumann boundary condition:

  g(y)

defined on the rectangular domain.

Similar to Laplace equation, the difference approximation formula of

Neumann condition at the fake (ghost) grid point (0,j) is Eq. (1.22), that is:

u(0,j) = u(2,j) + 2h g(1,j)

Now, using Eq. (1.20) to find the value of the point (1,j), we get:

23

 =

 [] –

 (1.25)

By substitute Eq. (1.22) into Eq. (1.25) with u(0,j) = , we get:

 =

 [] –

So

 =

 [] –

 =

 [] –

 (1.26)

If i ≠ 1, we use Eq. (1.20).

Using the same method, we can deal with other boundary points except the

corner points. For corner points, we use Eq. (1.18) to find their values.

[4] and [8].

1.5 Finite Element Method:

The Finite Element Method (FEM) is the most known numerical method

used for approximating the solution of partial differential equations on

domains with irregular shapes.

1.6 The Principle of Finite Element Method:

The idea of the FEM is to partition the region (domain) to finite number of

elements (parts) of regular shapes that are either triangles or rectangles (as

figure 1.8 shows). These elements describe the behavior of the domain. A

node is a vertex where two or more elements are intersected (Red points as

in figure 1.8). The FEM can be applied on many scientific and engineering

22

problems such as fluid flow, heat transfer, electromagnetic fields,

aerospace, civil engineering, and so on.

 nodes

Two dimensional irregular region divided

into triangular elements

Figure 1.8

1.6.1 Finite Element Method for Dirichlet boundary value problems:

This section discusses the finite element method that is used to solve two

dimensional elliptic partial differential equations with Dirichlet boundary

conditions in a rectangular domain and focuses on finite element solution

using spreadsheets with triangular grid.

Now, we want to approximate the solution of Laplace equation

 + = 0

defined on a rectangular domain with Dirichlet boundary conditions

defined on the top, left, right and bottom boundaries (edges) as shown in

figure 1.9.

21

Divide the interval into m equal subinterval on bottom

boundary. Also, divide the interval into n equal subinterval on

left boundary. The interior nodes (points) are unknown whereas the

boundary nodes are.

For example, divide the region into 40 equal triangular elements.

In this discretization, there are 30 global nodes. The blue nodes are known

since they are located on the boundaries that the function u is defined on

them but the green nodes (interior nodes) are not.

In this case, = 5 portions (from node 1 to node 2, from node 2 to node 3,

from node 3 to node 4, from node 4 to node 5, and from node 5 to node 6).

The length of each subinterval is equal to

 =

 .

1 2 3 5 4 6

12 11 10 8 9 7

13 14 15 17 16 18

24 23 22 20 21 19

25 26 27 29 28 30

Top

u = g1

Left

u = g2

Right

u = g3

u = g4

Bottom

Figure 1.9

1
2

3
4

5
6

7

8
9

1

1
1

1
1

4
1

1

6
1

1 2
1

2
2

2
2

2
2

2
2 3

02

3

1

3
3

3

 3
3

3

7

3 4
3

24

(
𝑎

×2,

𝑏

×2)

(
𝑎

× 4,

𝑏

×3)

n = 4 (from node 1 to node 12, from node 12 to node 13, from node 13 to

node 24, and from node 24 to node 25). The length of each subinterval is

equal to

 =

 .

 Y

Left Boundary

X

Bottom Boundary

Figure 1.10

Now, we can easily find the coordinates for each node as shown in figure

1.10 as follows [11]:

Node 1: (0,0)

Node 15: (

 × 2 ,

 × 2)

Node 20: (

 × 4 ,

 × 3)

Node 30: (a,b)

In the same manner for the remaining nodes.

1 2 3 5 4 6

12

13

24

25

𝑎

 × 3

𝑎

 × 2

𝑎

 × 1

𝑎

 × 4

𝑎

 × 5 = a

𝑏

 × 3

𝑏

 × 2

𝑏

 × 1

𝑏

 × 4 = b

15

20

30

25

Local node

number 1

Local node

number 3

Local node

number 2

Now, for each element (triangle) e, we determine the local node numbers 1,

2, and 3 that must be assigned so that global nodes associated with an

element are traversed in a counterclockwise sense.

For element 1:

At node 1: the local node number is 1, so (x1,y1) = (0,0)

At node 2: the local node number is 2, so (x2,y2) = (

 , 0)

At node 12: the local node number is 3, so (x3,y3) = (0 ,

)

These are shown in figure 1.11.

Figure 1.11

Similarly, we determine the local node numbers 1, 2 and 3 for each element

e in the same way as in element 1.

The following must be computed for each element e:

P1 = y2 – y3 = x3 – x2

P2 = y3 – y1 = x1 – x3

P3 = y1 – y2 = x2 – x1

Eleme

nt 1

1 2

12
(x3,y3)

(x1,y1) (x2,y2)

numbers are

determined on nodes start

from node1,then node 2 and

finally with node 12

(in acounterclockwise).

26

For element 1:

(x1,y1) = (0 , 0) , (x2,y2) = (

 , 0) , (x3,y3) = (0 ,

)

P1 = y2 – y3 = 0 –

 = –

 = x3 – x2 = 0 –

 = –

The same thing for other elements.

Now, for each element e, we want to find the 3 × 3 element coefficient

matrix for which the entries are given by the equation [10]:

[] (1.27)

where:

 =

When we find the element coefficient matrices, then the global coefficient

matrix C is assembled from the element coefficient matrices. If the number

of nodes is N, then the global coefficient matrix C will be an N × N matrix

(in our case, N = 30).

We can compute the entries of main diagonal as follows:

 : is the entry that is located on row 1 and column 1 in the global

coefficient matrix C which corresponds to node 1that belongs to element 1

only. Node 1 is assigned local node number 1 in element 1 as shown in the

following figure.

27

Local node

number 1

Node 2 has Local node number 2 in element 1 and

Local node number 1 in elements2 and 3.

Figure 1.12

 =

, where

 is the entry that is located on row 1 and column 1 in

the element coefficient matrix for element 1.

 : is the entry that is located on row 2 and column 2 in the global

coefficient matrix C which corresponds to node 2that belongs to elements

1, 2, and 3. Node 2 is assigned local node number 2 in element 1 and local

node number 1 in elements 2 and 3 as shown in the following figure.

 =

, where

 is the entry that is located on row 2

and column 2 in the element coefficient matrix for element 1 and

are the entries that are located on row 1 and column 1 in the element

coefficient matrix for element 2 and element 3, respectively.

Using the same method, we can find the remaining diagonal entries , for

i =1,…,N. For other entries in the global coefficient matrix C, we do that

using a different method.

1 2 3

12 11

Elemen

t 1

Elemen

t 2

Elemen

t 3

Eleme

nt 1
1

28

For more details, see reference [11].

Take, for example, the entry in the global coefficient matrix C. It

corresponds to node 2 and node 11. So, the link between node 2 and node

11 is called global link which corresponds to local link 1−2 of element 2

and local link 1−3 of element 3 as shown in figure 1.12. Hence,

 =

.

The other off-diagonal entries are treated similarly.

Now, defining vector to be a vector of unknowns (interior nodes, green

nodes) and vector to be a vector of prescribed boundary values. In other

words, is a vector of the value of nodes that are located on the

boundaries (blue nodes) as shown in figure 1.9.

Define matrix to be a matrix of unknown nodes obtained from the

global coefficient matrix C and matrix to be a matrix of unknown

nodes and prescribed boundary values that is also obtained from the global

coefficient matrix C.

In our case, is a 12 × 12 matrix since we have 12 interior nodes (green

nodes) and is a 12 × 18 matrix since we have 12 interior nodes (green

nodes) and 18 boundary nodes (blue nodes) as shown in figure 1.9.

The vector of unknown nodes can be computed by using:

 =
 (1.28)

29

The vector contains the approximations to the unknown nodes (interior

nodes) [11].

1.6.2 Finite Element Method with Neumann Boundary condition:

We consider a stationary problem in two dimensions:

− ∆ u = f in Ω, (1.29)

 u = 0 on Γ,

Where Ω is a bounded domain in the plane with boundary Γ, f is a given

real-valued piecewise continuous bounded function in Ω.

Define the following subspace of a Sobolev space:

C = {α(x,y)| α is a continuous function on Ω, αx and αy are piecewise

continuous and bounded on Ω, and α = 0 on Γ}.

Now, let B = () be a vector-valued function. By applying Green’s

theorem and the divergence theorem, we get:

∫

 ∫

 (1.30)

Where:

 n = <n1,n2> is the outward unit normal to Γ.

 is the dot product between B and n.

 is the divergence operator of B.

Take α, β C with B defined as:

11

 = (

 , 0) and = (0 ,

) (1.31)

Inserting Eq. (1.31) into Eq. (1.30), respectively, then we get:

∫

 ∫

 ∫

 (1.32)

and

∫

 ∫

 ∫

 (1.33)

Combining Eq. (1.32) and Eq. (1.33), we obtain [23]:

∫

 ∫

 ∫

 ∫

 ∫

 ∫

 (1.34)

∫

 ∫

 ∫

In virtue of

 =

 ,

 = ∆

and

 = .

 Eq. (1.34) becomes:

∫

 ∫

 ∫

 (1.35)

Rearranging Eq. (1.35) yields:

∫

 ∫

 ∫

 (1.36)

Define a bilinear form on C×C as follows:

13

 (u ,) = ∫

and

(f ,) = ∫

Also, we define the functional F:C → IR by

F() =

 (u ,) (f ,)

Now, multiply both sides of Eq. (1.29) by and then integrating over Ω:

 ∫

 ∫

 (1.37)

Note that if we substitute the right hand side of Eq. (1.37) into Eq. (1.36)

with = 0 on the boundary , then we get:

∫

 0 ∫

Eq. (1.37) becomes [23]:

∫

 ∫

Now, suppose the domain Ω is divided into finite number of elements

(triangles) such that:

 =∪

where

 is the domain and its boundary, i.e.

 = Ω ∪ . The same

definition for the triangular elements .

Let Th be a partition of Ω. Take any triangle T Th where:

diam() = the longest edge of
–

 and h =

 .

12

Now, we can define the finite element space as follows:

Ch = { (x,y)| is a continuous function on Ω and it is linear on each

triangle T , and = 0 on Γ}.

Each triangle has three vertices denoted by v1, v2, v3. We

define the basis function as follows:

 {

 and j = 1,2,3.

Let v be a set of vertices where (v) 0 and let m be the number of

interior vertices in , any function Ch has a unique representation

written as:

 , v Ω

Where = ().

A linear system is appeared in the matrix form written as:

Au = f

where:

A= (aij), aij = (,)

u = (uj), (unknowns)

f = (fj), fj = (f ,)

 [6],[13] and [18].

11

Chapter Two

Iterative Methods for Solving Linear systems

In chapter 1, linear systems were generated using the finite difference

method and the finite element method to describe the partial differential

equations that should be solved by iterative techniques. In this chapter, we

will solve such linear systems by iterative methods and discuss the

convergence for each of them and make a comparison between these

iterative methods to conclude the best.

 For solving an linear system

We start with an initial approximation to the solution x and then

generate a sequence
 that converges to x.

Most iterative techniques involve a process of converting the system

 into an equivalent system:

where :

1. T is an iteration matrix.

2. C is a column vector of dimension n.

After selecting an initial approximation , we generate a sequence of

vectors
 defined as:

14

The iterative methods are:

1. Jacobi Method.

2. Gauss-Seidel Method.

3. Successive over Relaxation (SOR) Method.

4. Conjugate Gradient Method.

2.1 Jacobi Method

The Jacobi method is the simplest iterative method for solving a (square)

linear system .

The General Formula of Jacobi Method

To derive a general formulation of this method, consider the n×n (square)

linear system:

 }

 (2.1)

where :

 =

[

]

 , x =

[

]

 , and =

[

]

We can simply write this system in matrix form as:

15

[

]

[

]

 =

[

]

Now, we start by converting (2.1) into the form [3]:

x = T x + C

that is:

By writing this system in matrix form, we get:

[

]

 =

[

]

[

]

 +

[

]

So,

x = T x + C

Given initial approximation , we generate the sequence of vectors

 by computing:

16

In general, the Jacobi iterative method is given by the sequence:

[∑

] (2.2)

 [3] and [16].

We can derive formula (2.2) by splitting matrix into its diagonal and off-

diagonal parts.

Let be the diagonal matrix where entries are those of matrix , let be

the strictly lower triangular part of matrix and let be the strictly

upper triangular part of matrix . With this notation matrix is split into:

A = D – L – U

[

]

= [

]

[

] [

]

Then,

By substituting A = D – L – U, we get:

(D – L – U)x = b

17

The above equation can be written as:

If exists, then:

This result is the matrix form of the Jacobi scheme:

Using and , we obtain the Jacobi technique

of the form:

So,

 ∑

 .

Conclusion: to find approximation we must know

approximation for any k . Continuing this procedure, we

obtain a sequence of approximations [3] and [15].

2.2 Gauss-Seidel Method

This iterative method is used for solving a (square) linear system .

The General Formula of Gauss-Seidel Method

Consider the n×n (square) linear system:

18

 }

Where:

 =

[

]

 , x =

[

]

 , and =

[

]

We can simply write this system in matrix form as:

[

]

[

]

 =

[

]

Given initial approximation , we generate the sequence of vectors

 by computing:

In general, the Gauss-Seidel iterative method is given by the sequence :

19

[∑

 ∑

] , (2.3)

 .

We can derive formula (2.3) by splitting matrix A into its diagonal and off-

diagonal parts [3].

Let be the diagonal matrix where entries are those of matrix , let – be

the strictly lower triangular part of matrix , and let – be the strictly

upper triangular part of matrix . With this notation matrix is split into:

 – –

Then,

By substituting – – , we get:

The above equation can be written as:

 –

If exists, then:

x = x +

This result is the matrix form of the Gauss-Seidel iterative method:

 +

41

Using and C = , we obtain the Gauss-

Seidel iterative method of the form:

see references [3],[5] and [16].

2.3 Successive over Relaxation Method (SOR Method)

The main constraint to using this method is that the coefficient matrix of

the linear system must be symmetric and positive definite. For any

positive real number called the relaxation parameter (factor) ,

when 0 < < 1, the method is called Successive under Relaxation and can

be used to achieve convergence for systems that are not convergent by the

Gauss-Seidel method. However, if 1 < < 2, then the method is called

Successive over Relaxation method and can be used to accelerate

convergence of linear systems that are already convergent by the Gauss-

Seidel method. If = 1, then we get Gauss-Seidel method [10].

The General Formula of SOR Method

The derivation of the general formula of SOR method depends on Gauss-

Seidel formula. Consider Gauss-Seidel formula that is (2.3):

[∑

 ∑

] ,

Defining the difference:

 i

43

This can be written as:

 i

Now, multiplying the relaxation parameter by in the last expression,

we get:

 i

Substituting the Gauss-Seidel formula (2.3) into the last expression, we get:

[∑

 ∑

](2.4)

 .

Formula (2.4) is called the SOR iterative method [3].

We can write Eq. (2.4) in matrix form as follows:

Since , then we can multiply Eq. (2.4) by to get:

[

 ∑

 ∑

]

Simplifying the last equation, we get

 ∑

 ∑

42

By rearranging the above equation, we get

 ∑

 ∑

So,

 ()

Now, if exists, then we have:

 ()

Then, we get the matrix form of SOR method as:

 ,

Where:

 () and

 [3] and [16].

2.4 Conjugate Gradient Method

The conjugate gradient method is a numerical iterative method used to

approximate the exact solution of particular linear system where

the coefficient matrix must be symmetric and positive definite.

General Formulas Needed to Compute Conjugate Gradient Method

Algorithm

Suppose we want to solve the following linear system:

41

Where is symmetric and positive definite matrix, x and b are column

vectors (matrices).

The solution of uniquely minimizes the following quadratic form:

Suppose that is a basis of where:

 {

 } is a set of n mutually conjugate (orthogonal) directions [14] .

We will write the conjugate gradient iterative method algorithm as follows:

Step 1:

Start with initial guess that may be considered 0 if otherwise is given.

Step 2:

Calculate the residual vector as follows:

Step 3:

Let the initial direction vector , that is, the negative of thegradient

ofthe quadratic function:

at .

44

Note that will change in each iteration.

Step 4:

Compute the scalars 's using the formula:

Step 5:

Compute the first iteration using the formula:

Step 6:

Compute the residual vectors 's using the formula:

 ,

Step 7:

Compute the scalars 's using the formula:

Step 8:

Compute the direction vectors 's using the formula:

 ,

Step 9:

45

Compute the iterations using the formula [14],[16] and [20] :

2.5 Convergence of Iterative Methods

In this section, the general goal is to study the convergence for each

previous iterative methods and then make a comparison between them.

After that, we will conclude the fastest method. In any computational

problem, we get high accuracy if the error becomes very small. In our

iterative methods problem, the actual error e is the difference between the

exact solution x and the approximate solution . But we cannot compute

its value since we do not know the exact solution. Instead of that, we will

deal with the estimate error which is equal the difference between the

approximate solution and the next approximate solution .

Therefore, we can compute more iterations with less errors and hence we

get high level of accuracy.

Suppose x is the exact solution of the following linear system:

 (2.5)

This can be written in equivalent form as:

 , (2.6)

where:

1. T is an matrix.

2. C is a column vector.

46

The idea of the iterative methods is to generate a sequence of vectors

 that converges to the exact solution x of the linear system (2.5).

(Note that each vector in the sequence is an approximation to the exact

solution). To begin the study of convergence, we depend on some

definitions and theorems.

Definition2.5.1 [16]

Suppose . A matrix norm, ||.||, is a real-

valued function defined on . This function satisfies the following

properties for any and :

1. || || 0,

2. || || = 0 if and only if is the zeromatrix 0,

3. || || = | | || ||,

4. || || || || + || ||,

5. || || || |||| ||.

Definition 2.5.2 [3]

The spectral radius of any (square) matrix is:

where ’s are the eigenvalues of a matrix .

(Note: may be real or complex eigenvalue, then is the absolute value

or the magnitude of the eigenvalue.)

47

Definition 2.5.3 [5]

For any matrix :

1.

∑ | |

 "called the norm"

2. √ "called the norm"

where is the transpose of the matrix .

3.

∑ | |

 "called the norm"

Definition 2.5.4 [16]

We call the (square) matrix strictly diagonally dominant if:

 ∑| |

holds .

Definition 2.5.5 [3]

We call the (square) matrix positive definite if is a symmetric

matrix and for any nonzero n-dimensional column vector c.

Definition 2.5.6 [3]

An (square) matrix is said to be convergent if:

48

Theorem 2.5.7 [3]

When the linear system converting into equivalent system

 where T is an n × n iteration matrix. Then the following

statements are equivalent:

1. is convergent matrix.

2. .

Theorem 2.5.8 [3]

If the coefficient matrix for the linear system is strictly

diagonally dominant, then the sequence of vectors
 generated by

the Jacobi method converges to the unique solution of that system.

Theorem 2.5.9 [3]

For any initial approximation, a sequence of vectors
 converges to

the exact solution x if and only if the spectral radius of the square matrix T

 . (T is the iteration matrix).

To see the proof, see reference [3], page 406.

Theorem 2.5.10 [3]

If , then the sequence of vectors
 converges to a vector

x for any initial approximation vector .

For more details, see reference [3].

Theorem 2.5.11

Theorem 2.5.8 holds for Gauss-Seidel Method.

49

Theorem 2.5.12

Theorem 2.5.9 holds for Gauss-Seidel Method.

Theorem 2.5.13

Theorem 2.5.10 holds for Gauss-Seidel Method.

For more details, see reference [3].

Theorem 2.5.14 "Ostrowski-Reich" [3]

If the coefficient matrix of the linear system is a positive

definite matrix and the relaxation parameter (factor) , then the

SOR method converges for any choice of initial approximation vector .

Theorem 2.5.15

Theorem 2.5.8 holds for SOR method.

Theorem 2.5.16

If 2, then the SOR method diverges.

Theorem 2.5.17 [14]

The sequence of vectors
 generated by the Conjugate Gradient

algorithm converges to the solution x of the square linear system

of n variables in at most n steps for any choice of initial approximation

vector .

Proof [14]: suppose x is the exact solution and is the initial solution.

51

The set of direction vectors are orthogonal so they are linearly independent.

Therefore, they span the space . Hence, we can write:

x – = + + + … + , where ’s .

Multiplying both sides of the last expression by
 , we obtain

 (x –) =

 ()

Simplifying the above expression, we get:

 –

 =
 A +

 A +
 A + … +

 A

but , = - and
 = 0,

 So, it becomes:

 =

Thus,

 (*)

Now, we want to show that = , where:

 = + + + + … +

Multiply both sides of the last equation by

 =

 (+ + + + … +)

=
 +

 (+ + + … +)

53

=
 + 0

The above can be written as:

 -

 = 0

or

 -) = 0

Therefore,

 (–)

 (–)

 (–)

 –

 –

Now, put
 =

 in (*), then we get:

This completes the proof [14].

52

Chapter Three

Numerical Results

In this chapter, we will deal with Laplace equation and Poisson equation as

model problems with Dirichlet and Neumann boundary conditions using

the Finite Difference Method. Similarly, we will use the Finite Element

Method.

Example 3.1

Consider the following Laplace equation

with square domain R = {(x,y) | a = 0 < x < b = 1, c = 0 < y < d = 1}

subject to Dirichlet boundary conditions given on the boundaries:

u(x,1) = x, u(1,y) = y, and u(0,y) = u(x,0) = 0

as shown in figure 3.1 .

We want to approximate the solution u by using Finite Difference

Algorithm:

Step 1: Choose integers n = m = 3.

Step 2: Define

 =

 and

 =

On X – axis, the interval [0,1] is divided into n = 3 equal parts of width

h =

 also the interval [0,1] is divided, on Y – axis, into m = 3 equal parts

of width k =

 .

51

Step 3: Define the (horizontal) grid lines as

 = a + ih, i = 0,1,2,n=3.

for i=0 : (

)

for i=1 :

for i=2 : (

)

for i=3 :

In the same mannar we can find the vertical grid lines ,

 j = 0,1,2,m=3 where

 and

The grid given in the following figure.

 Y-axis

The blue points are known boundary points and the green points are corner

points that are easy to be calculated by Eq.(1.18). However, the black

Right boundary

u(1,y) = y

Left boundary

u(0,y) = 0

Bottom boundary: u(x,0) = 0

Figure 3.1

Top boundary: u(x,1) = x

X-axis

54

(interior) points are not known which are to be approximate.

Now, we use the difference equation (1.17) to approximate the interior

(black points) mesh points as follows:

 =

 []

For i=1 and j=1

 =

 []

 =

 [] (3.1)

but both are known boundary points whereas are

not known. So the value of are

 0 (on left boundary) and 0 (on bottom boundary)

So the difference equation (3.1) becomes

 =

 []

4 – (3.2)

We can label these mesh points as follows:

 , , and

after labeling the interior mesh points, then Eq.(3.2) becomes:

 (3.3)

55

In similar manner, we get the following difference equations

For i=2 and j=1:

 (3.4)

For i=1 and j=2:

 (3.5)

For i=2 and j=2:

 (3.6)

rearrange the equations (3.3),(3.4),(3.5), and (3.6) then we get

this linear system could be written in matrix form as

 , where

 [

] , u =[

] , and =

[

]

If we apply Gaussian elimination to this linear system, then we get the

following exact solution:

u = (0.222222, 0.444444, 0.111111, 0.222222)
T

56

We can solve this linear system by any iterative methods like Jacobi

method, Gauss-Seidel method, Successive over Relaxation (SOR) method

and Conjugate Gradient method.

Jacobi method

It is given by the sequence (2.2):

[∑

]

where and n is the number of the unknown variables.

Consider the initial solution is

 .

For k = 1 (the first iteration)

57

So the first approximation is

 .

In the same manner, we can find approximation if we know

approximation for any k . Continuing this procedure, we

obtain a sequence of approximations.

The following approximate solution is found by Matlab program for the

first sixteen iterations:

u = (0.222219, 0.444440, 0.111107, 0.222219)
T

To see Matlab code for Jacobi iterative method back to appendix A.

58

Gauss-Seidel method

It is given by the sequence (2.3):

[∑

 ∑

],

 =4.

where and n is the number of the unknown variables.

For k = 1 (the first iteration)

59

So the first approximation is

 .

The following approximate solution is found by Matlab program for the

first nine iterations:

u = (0.222219, 0.444443, 0.111110, 0.222222)
T

To see Matlab code for Gauss-Seidel iterative method back to appendix B.

SOR Method

The SOR method is given by the sequence (2.4):

[

 ∑

 ∑

]

61

suppose the relaxation factor 1.3

first, write the Gauss-Seidel equations

Now, the SOR equations with 1.3 are:

where .

For k = 1 (the first iteration)

 = (-0.3)(0) + 1.3 [0 + 0 +

]

 =

63

 = (-0.3)(0) + 1.3 [

 ×

 + 0 +

]

 =

 = (-0.3)(0) + 1.3 [

 ×

 + 0]

 =

 = (-0.3)(0) + 1.3 [

 ×

 +

 ×

 +

]

 =

The following approximate solution is found by Matlab program for the

first nine iterations:

u = (0.222186, 0.444439, 0.111128, 0.222230)
T

To see Matlab code for SOR iterative method back to appendix C.

Conjugate Gradient method

It is given by the following algorithm

Step 1: Start with initial guess , say

 = [

]

Step 2: Calculate the residual vector as follows

62

[

]

 [

] [

]

so

[

]

Step 3: Let the initial direction vector . So

[

]

Step 4: Compute the scalars 's by the formula

For k = 0

61

*

+

[

]

*

+ [

]

[

]

= 0.3216

Step 5: Compute the first iteration by the formula

 [

]

[

]

[

]

The approximate solution for the first three iterations is given by Matlab

code:

u = (0.222222, 0.444444, 0.111111, 0.222222)
T

To see Matlab code for conjugate gradient iterative method back to

appendix D.

64

Comparison between the iterative methods

The generated linear system in example 3.1 that should be solved by some

iterative techniques, namely: Jacobi, Gauss-Seidel, Successive over

Relaxation (SOR), and the Conjugate Gradient methods with .

Table 3.1 shows numerical results for these iterative techniques. Each of

them obtains the approximate solution in different number of iterations.

However, more iterations give less errors and leads to accurate solutions.

Table 3.1

The exact solution is

u = (0.222222, 0.444444, 0.111111, 0.222222)
T

Method u1 u2 u3 u4

number

of

iterations

Jacobi

solution
0.222219 0.444440 0.111107 0.222219 16

Gauss-

Seidel

solution

0.222219 0.444443 0.111110 0.222222 9

(SOR)

solution
0.222186 0.444439 0.111128 0.222230 8

Conjugate

Gradient

method

solution

0.222222 0.444444 0.111111 0.222222 3

Example 3.2

Consider the following Poisson equation

with square domain R = {(x,y) | a = 0 < x < b = 2, c = 0 < y < d = 2} with

Neumann boundary condition

 g(y) = y given on the left

65

Y1=

Y2= 1

Y3=

Y4= 2 The actual grid

(blue) points will be

shifted toward the

left until locate on

the imaginary

boundary (red line)

boundary and Dirichlet boundary conditions u = 1 on the remaining

boundaries. We will use the finite difference method to approximate the

solution of Poisson equation.

The mesh size h =

 as shown in figure 3.2.

Figure 3.2

we want to put the grid points (1,j) that is the blue points outside the

domain toward the left. Let m = n = 4, the following are known as

boundary conditions for 2 i 4-1 and n = 4

u(2,4)= 1 , u(3,4)= 1,

and 2 j 4-1 and m = 4

u(4,2)= 1 , u(4,3)= 1 ,

and 2 i 4-1 and j=1

u(2,1)= 1 , and u(3,1)= 1 .

Now, we use Eq.(1.26) to approximate the values of boundary points on

left boundary :

X1=

 X2= X3=

 X4= i = 0

66

u(1,j) =

 [

 Gi,j

for 2 j 4 -1 , g1,j = g(x1,yj) = g(yj) = yj and Gi,j = xiyj

u(1,2) =

 [

 x1y2

u(1,2) =

 [

 ×

 × 1

but is a corner point which we can evaluate its value by Eq.(1.18)

so, u(1,2) =

 [

rearrange this equation, then we get:

 u(1,2) – 2u(2,2) – u(1,3) =

 (3.1)

now, u(1,3) =

 [

 x1y3

u(1,3) =

 [

 ×

 ×

but is a corner point which we can evaluate its value by Eq.(1.18)

so, u(1,3) =

 [

rearrange this equation, then we get:

 u(1,3) – 2u(2,3) – u(1,2) =

 (3.2)

Now, for i = 2,3 and j = 2,3 , we use Eq.(1.20)

u(2,2) =

 [

 × 1 × 1

but is a known boundary point which is equal to 1

so, substitute its value and then rearrange the equation, then we get

67

 u(2,2) – =

 (3.3)

u(2,3) =

 [

 × 1 ×

but is a known boundary point which is equal to 1

so, substitute its value and then rearrange the equation, then we get

4u(2,3) – =

 (3.4)

u(3,2) =

 [

 ×

 × 1

but and are known boundary points which are equal to 1

so, substitute their values and then rearrange the equation, then we get

4 (3,2) – =

 (3.5)

u(3,3) =

 [

 ×

×

but and are known boundary points which are equal to 1

so, substitute their values and then rearrange the equation, then we get

4u(3,3) – =

 (3.6)

Now, we have six equations in six variables:

 u(1,2) – 2u(2,2) – u(1,3) =

 u(1,3) – 2u(2,3) – u(1,2) =

4u(2,2) – =

4u(2,3) – =

68

4u(3,2) – =

4u(3,3) - =

Label the variables as follow

u(1,3) = u1 , u(2,3) = u2 , u(3,3) = u3 , u(1,2) = u4 , u(2,2) = u5 , and u(3,2) = u6

So, the linear system can be written as:

 u1 – 2 u2 – u4 =

–u1 +4 u2 – u3 - u5 =

– u2 + 4 u3 – u6 =

– u1+

 u4 – 2 u5 =

– u2 – u4 + 4 u5 – u6 =

– u3 – u5 + 4 u6 =

This linear system should be written in matrix form as follows:

[

]

[

]

 =

[

]

If we apply Gaussian elimination to this linear system, then we get the

following exact solution:

69

u = (1.4694, 0.9758, 0.8179, 1.3788, 0.9908, 0.8584)
T

Now, we can solve it by iterative method begin with Jacobi method and

end with conjugate gradient method.

Jacobi method

It is given by the sequence (2.2). The using of Matlab program gives

approximate solutions in table 3.2:

Table 3.2

Iteration #

1 0.5179 0.1563 0.3594 0.3929 0.1875 0.4063

2 0.7194 0.4224 0.5000 0.6480 0.4263 0.5430

3 0.9444 0.5677 0.6007 0.8420 0.5908 0.6378

4 1.0828 0.6902 0.6608 1.0003 0.6994 0.7041

5 1.1981 0.7670 0.7080 1.1019 0.7862 0.7463

6 1.2710 0.8293 0.7377 1.1844 0.8413 0.7798

The following approximate solution is found by Matlab program for the

twenty eight iterations:

u = (1.4693, 0.9757, 0.8179, 1.3787, 0.9907, 0.8584)
T

To see Matlab code for Jacobi iterative method back to appendix E.

Gauss-Seidel method

It is given by the sequence (2.3). The first six iterations by Matlab are

given in table 3.3:

71

Table 3.3

Iteration#

1 0.5179 0.2857 0.4308 0.5408 0.3941 0.6125

2 0.8356 0.5714 0.6553 0.8568 0.6977 0.7445

3 1.0892 0.7668 0.7372 1.1027 0.8410 0.8008

4 1.2711 0.8686 0.7767 1.2366 0.9140 0.8289

5 1.3675 0.9208 0.7968 1.3059 0.9514 0.8433

6 1.4171 0.9476 0.8071 1.3414 0.9706 0.8507

To see Matlab code for Gauss-Seidel iterative method back to appendix F.

SOR Method

The SOR method is given by the sequence (2.4). The approximate solution

is given by Matlab code after ten iterations:

u = (1.4694, 0.9758, 0.8179, 1.3788, 0.9908, 0.8584)
T

To see Matlab code for SOR iterative method back to appendix G.

Conjugate Gradient method

The Conjugate Gradient method is given by the algorithem in section (2.4).

The approximate solutions in table 3.4 are given by Matlab code after six

iterations:

Table 3.4

Iteration #

1 1.0105 0.3485 0.8015 0.7666 0.4181 0.9060

2 1.2050 1.0141 0.8372 1.1984 0.9641 0.8698

3 1.4845 0.9950 0.8348 1.3637 1.0463 0.8479

4 1.4962 0.9957 0.8247 1.4041 1.0123 0.8661

5 1.4825 0.9833 0.8241 1.3982 0.9924 0.8665

6 1.4669 0.9695 0.8208 1.3775 0.9832 0.8595

73

The approximate solution is given by Matlab code after ten iterations:

 u = (1.4688, 0.9775, 0.8150, 1.3794, 0.9922, 0.8572)
T

To see Matlab code for Conjugate Gradient iterative method back to

appendix H.

Comparison between the iterative methods

The generated linear system in example 3.2 that should be solved by some

iterative techniques, namely: Jacobi, Gauss-Seidel, Successive over

Relaxation (SOR), and the Conjugate Gradient methods with .

Table 3.5 shows numerical results for these iterative techniques. However,

more iterations give less errors and leads to accurate solutions.

Table 3.5

The exact solution of the linear system is

u =(1.4694, 0.9758, 0.8179, 1.3788, 0.9908, 0.8584)
T

Method u1 u2 u3 u4 u5 u6
number of

iterations

Jacobi solution 1.4693 0.9757 0.8179 1.3787 0.9907 0.8584 28

Gauss-Seidel

solution

1.4693
0.957 0.8179 1.3787 0.9907 0.8584 15

(SOR) solution 1.4694 0.9758 0.8179 1.3788 0.9908 0.8584 10

Conjugate

Gradient

method solution

1.4688

0.9775 0.8150 1.3794 0.9922 0.8572 10

Example 3.3

Consider the following Laplace equation

72

with square domain R = {(x,y) | a = 0 < x < b = 1, c = 0 < y < d = 1} with

Dirichlet boundary conditions given on the boundaries in figure 3.3 . We

will use the finite element method to approximate the solution of Laplace

equation.

u(0,y) = 0 , u(1,y) = y , u(x,0) = 0 , and u(x,1) = x.

 u = 0 u = y u = y

u = 0

 Figure 3.3

The region is divided into 18 equal triangular elements which are identified

by encircled numbers 1 through 18 as indicated in figure 3.3. In this

discretization there are 16 global nodes (blue points) numbered 1 through

16 as indicated in the figure.

Note that the bottom boundary is partitioned into 3 portions which are

from node 1 to node 2, from node 2 to node 3 and from node 3 to node 4.

Also, the left boundary is partitioned into 3 portions which are from node 1

to node 8, from node 8 to node 9 and from node 9 to node 16.

1
2

3
4

5
6

7

8
9

10
11

12

13

14

15

16

17

18

10

7 6 5

 4 3 2 1

12 11 9

8

14 13 16 15

u = x

71

So, each portion has

 × 1 =

 length. Now, we will write the coordinates

for each node:

node 1 : (0 , 0), node 2 : (

 , 0), node 3 : (

 , 0), node 4 : (1 , 0)

node 5 : (1 ,

), node 6 : (

 ,

), node 7 : (

 ,

), node 8 : (0 ,

)

node 9 : (0 ,

), node 10 : (

 ,

), node 11 : (

 ,

), node 12 :(1 ,

)

node 13 : (1 , 1), node 14 : (

 , 1), node 15 : (

 , 1), node 16 : (0 , 1)

For each element e, we will label the local node numbers 1, 2, and 3 of

element e in a counterclockwise sense.

Table 3.6 shows that for each element we write its global nodes and their

local node numbers and coordinates.

74

Table 3.6

Now, for each element e, the following must be computed:

For element 1:

P1 = y2 – y3 = 0 –

= -

 = x3 – x2 = 0 –

 = -

P2 = y3 – y1 =

 – 0 =

 = x1 – x3 = 0 – 0 = 0

Element #
Its

global
nodes

local node numbers 1,2, and 3 in
a counterclockwise sense

The coordinates of
each global node

element 1

1 1 (x1,y1) = (0 , 0)

2 2 (x2,y2) = (

 , 0)

8 3 (x3,y3) = (0 ,

)

element 2

2 1 (x1,y1) = (

 , 0)

7 2 (x2,y2) = (

 ,

)

8 3 (x3,y3) = (0 ,

)

element 3

2 1 (x1,y1) = (

 , 0)

3 2 (x2,y2) = (

 , 0)

7 3 (x3,y3) = (

 ,

)

…
…

..

…
…

..

…
…

..

…
…

..

element 17

11 1 (x1,y1) = (

 ,

)

12 2 (x2,y2) = (1 ,

)

14 3 (x3,y3) = (

 , 1)

element 18

12 1 (x1,y1) = (1 ,

)

13 2 (x2,y2) = (1 , 1)

14 3 (x3,y3) = (

 , 1)

75

P3 = y1 – y2 = 0 – 0 = 0 = x2 – x1 =

 – 0 =

In the same manner, we compute Pi's and i's for each remaining elements

where i = 1,2,3.

Now, we use Eq.(1.27) to write the entries of the 3 × 3 element coefficient

matrix, for example for element 1:

[]

[

]

=

[

]

= 1

[

]

= –

[

]

76

= –

[

]

 = –

[

]

 =

[

]

 = 0

[

]

 = –

[

]

 = 0

77

[

]

 =

Thus, the 3 × 3 element coefficient matrix for element 1 is:

 [

]

[

]

In same manner, we find the 3 × 3 element coefficient matrix for element

2,3,4,…,18.

[

]

 ,

[

]

[

]

 ,

[

]

[

]

 ,

[

]

[

]

 ,

[

]

78

[

]

 ,

[

]

[

]

 ,

[

]

[

]

 ,

[

]

[

]

 ,

[

]

[

]

Now, the global coefficient matrix C is then assembled from the element

coefficient matrices. Since there are 16 nodes, the global coefficient matrix

will be a 16 × 16 matrix. The one diagonal entries can be computed as

follows:

Take for example C1,1 :

The entry C1,1 in the global coefficient matrix C corresponds to node 1

which belongs to element 1 but node 1 is assigned local node number 1 in

79

element 1, thus the entry C1,1 equals to

Also the entry C2,2 in the global coefficient matrix corresponds to node 2

which belongs to elements 1, 2 and 3 but node 2 is assigned local node

number 1 in elements 2 and 3 and local number 2 in element 1, thus the

entry C2,2 equals to

 0.5 + 0.5 + 1 = 2

In the same manner, we can find the remaining entries:

 0.5 + 0.5 + 1 = 2

 0.4 + 0.7 = 1

 1 + 0.4 + 0.7 = 2

 4

 4

 2

 2

 4

 4

 2

 1

81

 2

 2

 1

Now, the one off-diagonal entries can be computed as follows:

For the off-diagonal entry ,for example, the global link 7−10

corresponds to local link 1−2 of element 8 and local link 1−3 of element 9

as shown in figure 3.3 and hence

 – 0.5 + – 0.5 = – 1

We can compute the value of other off-diagonal entries in the same

manner.

The global coefficient matrix C is then assembled from the element

coefficient matrices. Since there are 16 nodes, the global coefficient matrix

will be a 16 × 16 matrix.

83

[

]

The global coefficient matrix C. Red numbers are the entries of matrix Cvn while blue numbers are the entries of matrix Cvv

both are discussed later.

83

Now, defining the vector to be vector of unknowns (interior nodes) and

vector to be vector of prescribed boundary values (nodes that are

located on the boundaries) as shown in table 3.7.

Table 3.7: represents vector of prescribed boundary values (nodes that

are located on the boundaries).

Global Node
(Boundary

Node)
Boundary condition

The value of Global
Node

1 (corner node)

Depend on bottom and left
boundaries

u = 0 and u = 0
respectively.

The average of its

boundary values

 =

0

2
Depend on bottom

boundary only u = 0.
0

3
Depend on bottom

boundary only u = 0.
0

4 (corner node)

Depend on bottom and
right boundaries

u = 0 and u(1,y) = y
respectively.

The coordinate of node
4 is (1,0) so its value

under right condition is
u(1,0) = 0. So, The

average of its boundary
values is

 = 0

5
Depend on right boundary

only
u(1,y) = y.

The coordinate of node

5 is (1 ,

) so its value

under right condition is

u(1 ,

) =

. So, the

value of node 5 is

.

8
Depend on left boundary

only u = 0.
0

9
Depend on left boundary

only u = 0.

0

82

12
Depend on right boundary

only
u(1,y) = y.

The coordinate of node

5 is (1 ,

) so its value

under right condition is

u(1 ,

) =

. So, the

value of node 5 is

.

13 (corner node)

Depend on top and right
boundaries

u(x,1) = x and u(1,y) = y
respectively.

The coordinate of node
13 is (1,1) so its value
under top condition is

u(1,1) = 1 and its value
under right condition is

u(1,1) = 1. So, the
average value of node

13 is

 = 1.

Global Node
(Boundary

Node)
Boundary condition

The value of Global
Node

14
Depend on top boundary

only
u(x,1) = x.

The coordinate of node

14 is (

, 1) so its value

under top condition is

u(

, 1) =

. So, the

value of node 5 is

.

15
Depend on top boundary

only
u(x,1) = x.

The coordinate of node

15 is (

, 1) so its value

under top condition is

u(

, 1) =

. So, the

value of node 5 is

.

16 (corner node)

Depend on left and top
boundaries

u = 0 and u(x,1) = x
respectively.

The coordinate of node
16 is (0,1) so its value
under top condition is

u(0,1) = 0. So, the
average value of node

16 is

 = 0.

81

So,

 T

Now, defining the matrix to be the matrix of unknown nodes (interior

nodes) as in table 3.8 and the matrix to be the matrix of unknown

nodes and prescribed boundary values as in table 3.9. Both matrices

and obtained from global coefficient matrix C.

Table 3.8

 6 7 10 11

6 4 -1 0 -1

7 -1 4 -1 0

10 0 -1 4 -1

11 -1 0 -1 4

Table 3.9

 1 2 3 4 5 8 9 12 13 14 15 16

6 0 0 -1 0 -1 0 0 0 0 0 0 0

7 0 -1 0 0 0 -1 0 0 0 0 0 0

10 0 0 0 0 0 0 -1 0 0 0 -1 0

11 0 0 0 0 0 0 0 -1 0 -1 0 0

Now, the inverse of matrix is

 [

]

The vector of unknowns nodes can be found by using Eq.(1.28):

 = –

84

 = – [

]

[

]

[

]

= [

]

Therefore, the approximate values of unknown nodes (interior nodes) are:

 = [

]= [

]

Example 3.4

A very simple form of the steady state heat conduction in the rectangular

domain shown in the following:

for , with a = 4 , b = 2.

85

where is the steady state temperature distribution in the domain.

The boundary conditions are:

 , imposed temperatures on the left boundary.

 , imposed temperatures on the right boundary.

 , imposed temperatures on the bottom boundary.

 , imposed temperatures on the top boundary.

The solution along the line (listed in Table 1, and shown in Figure

1) was also computed at the locations

for comparison with the Finite Difference solution. Better agreement

should be obtained between the two results by using a finer grid for the FD

solution, and by using higher level h-meshing for the FE solution.

86

Figure 1

These results are taken form reference [1].

Example 3.5

Another example arising in electrostatics. Consider the charge-free region

depicted in Figure 2. The region has prescribed potentials along its

boundaries.

The potential at an interior point within the region is

governed by the two-dimensional Laplace’s equation:

87

The triangular region is divided into a rectangular grid of nodes, with the

numbering of free nodes as indicated in the figure.

Figure 2: Charge-free region showing prescribed potentials at the boundaries and

rectangular grid of free nodes to illustrate the finite difference method.

88

Figure 3: Finite element arrangement for electrostatic problem.

Table 2: Comparison of results obtained by FDM and FEM.

These results are taken from reference [11].

89

1.3 Comparison between results for finite difference method and finite

element method:

A simple comparison between the results in example 3.1 and example 3.3

as in table 3.10 with

Table 3.10

Finite difference method

(using SOR iterative method)
Finite element method

u1 = u1,2 0.222186 Node 10 0.222222

u2 = u2,2 0.444439 Node 11 0.444445

u3 = u1,1 0.111128 Node 7 0.111111

u4 = u2,1 0.222230 Node 6 0.222222

A better approximation can be obtained if more iterations of SOR method

are performed.

We also see from example 3.4 the difference between the FDM and the

FEM as in table 1:

Example 3.5 gives simple comparison of results obtained by FDM and

FEM in table 2:

91

Table 2: Comparison of results obtained by FDM and FEM.

3.2 Conclusions

In this thesis we have used the two numerical techniques, namely: the finite

difference method and the finite element method to solve boundary value

problems involving the Laplace equation and the Poisson equation. The

discretization procedure transfers the BVP into a linear system of n-

algebraic equations.

This linear system has been solved iteratively by various iterative schemes.

These are: Jacobi, the Gauss-Seidel, Successive over Relaxation (SOR),

and the Conjugate Gradient methods.

We observe that the finite difference method is very simple and efficient

method for approximating the solution of the BVP when the domain has

regular shape. On the other hand the finite element method is more efficient

for complex and irregular domains. Moreover, we see clearly that the SOR

iterative scheme is the most efficient method among the other iterative

schemes for approximating the solution of the BVP.

93

References

1. L. Agbezuge, Finite Element Solution of the Poisson equation with

Dirichlet Boundary Conditions in a rectangular domain. Rochester

Institute of Technology, Rochester, NY, 2006.

2. V. Bokil and N. Gibson, Finite Difference, Finite Element and Finite

Volume Methods for the Numerical Solution of PDEs,DOE Multiscale

Summer School, June, 30, 2007.

3. L. Burden & J. Faires, NUMERICAL ANALYSIS, PWS- KENT

Publishing Company, Fourth Edition, 1989 Edition.

4. D. Causon and C. Mingham, Introductory Finite Difference Methods

PDEs, 2010, Ventus Publishing ApS ISBN 978-87-7681-642-1.

5. S. Chapra, Applied Numerical Methods with MATLAB for Engineers,

Published by the McGraw-Hill Companies 2012, Third Edition.

6. Z. Chen, Finite Element Methods and Their Applications, Springer-

Verlag Berlin Heidelberg, 2005.

7. R. Clough, The Finite Element Method in Plane Stress Analysis,

American Society of Civil Engineers, 1960.

8. M. Davis, Numerical Methods and Modeling for Chemical Engineers,

1984 by John Wiley & Sons, Inc.

9. C. Johson, Numerical Solution of Partial Differential Equations by

the Finite Element Method. Royal Institute of Technology, Stockholm.

Copyright © 1987,2009 by Claes Johnson.

92

10. I. Kalambi, A Comparison of three Iterative Methods for the Solution

of Linear Equations, JASEM ISSN 1119-8362, J. Appl. Sci. Environ.

Manage, 2008.

11. M. Lau and S. Kuruganty, Spreadsheet Implementations for Solving

Boundary-Value Problems in Electromagnetics, Spreadsheets in

Education (eJSiE): Vol. 4: Iss. 1, Article 1, Sastry P. 2010.

12. R. LeVeque, Finite Difference Methods for Differential Equations,

Draft Version for use in the course A Math 585–586 University of

Washington, R. J. LeVeque, 1998–2005.

13. G. Micula and S.Micula, Mathematics and Its Applications, Springer

Science+Business Media Dordrecht, Originally published by Kluwer

Academic Publishers in 1999 ,1
st
 edition.

14. J. Nocedal and S. Wright, Numerical Optimization, 1999 Springer-

Verlag New York, Inc.

15. W. Press, S. Teukolsky, W. VetterlingandB. Flannery, Numerical

Recipes in C, second edition, Published by the Press Syndicate of the

University of Cambridge, 1992.

16. Y. Saad, Iterative Methods for Sparse Linear Systems, Second

Edition, the Society for Industrial and Applied Mathematics, 2003.

17. R. Sekhar, Numerical methods of Ordinary and Partial Differential

Equations, Indian Institute of Technology, Jul 22, 2013.

18. P. Seshu, Textbook of Finite Element Analysis, 2012 by PHI Learning

Private Limited, New Delhi.

91

19. V. Thomee, From finite differences to finite elements A short history

of numerical analysis of partial differential equations, Elsevier

Science B.V., 2001.

20. C. Vuik, Iterative solution methods, Research School for Fluid

Mechanics, Delft Institute of Applied Mathematics, 2015.

21. R. Wannan, Multigrid Methods for Elliptic Partial Differential

Equations, MSc. Thesis, An-Najah National University, 2010.

22. S. Yip, Handbook of Materials Modeling, Springer 2005, Volume 1, P.

1–32.

23. O.C. Zienkiewicz and R. L. Taylor, The Finite Element Method,

Vol. 1. Butterworth-Heinemann, Oxford, Fifth Edition, 2000.

94

Appendix A

Matlab code for Jacobi iterative method

% Iterative Solutions of linear equations: Jacobi Method

% Linear system: A u = B

% Coefficient matrix A, right-hand side vector B

A=[4 -1 -1 0; -1 4 0 -1; -1 0 4 -1; 0 -1 -1 4];

B= [1/3;4/3;0;1/3];

% Set initial value of u to zero column vector

u0=zeros(1,4);

% Set Maximum iteration number k_max

k_max=6;

% Set the convergence control parameter erp

erp=0.0001;

% Show the q matrix

% loop for iterations

for k=1:k_max

 for i=1:4

 s=0.0;

 for j=1:4

 if j==i

 continue

 else

 s=s+A(i,j)*u0(j);

 end

95

 end

 u1(i)=(B(i)-s)/A(i,i);

 end

 if norm(u1-u0)<erp

 break

 else

 u0=u1;

 end

end

% show the final solution

u=u1

% show the total iteration number

n_iteration=k

96

Appendix B

Matlab code for Gauss-Seidel iterative method

clear;clc

format compact

%% Read or Input any square Matrix

A = [4 -1 -1 0;

 -1 4 0 -1;

 -1 0 4 -1;

 0 -1 -1 4];% coefficients matrix

C = [1/3;4/3;0;1/3];% constants vector

n = length(C);

X = zeros(n,1);

Error_eval = ones(n,1);

%% Check if the matrix A is diagonally dominant

for i = 1:n

 j = 1:n;

 j(i) = [];

 B = abs(A(i,j));

 Check(i) = abs(A(i,i)) - sum(B); % Is the diagonal value greater than the

remaining row values combined?

 if Check(i) < 0

 fprintf('The matrix is not strictly diagonally dominant at row

%2i\n\n',i)

 end

97

end

%% Start the Iterative method

iteration = 0;

while max(Error_eval) > 0.001

 iteration = iteration + 1;

 Z = X; % save current values to calculate error later

 for i = 1:n

 j = 1:n; % define an array of the coefficients' elements

 j(i) = []; % eliminate the unknow's coefficient from the remaining

coefficients

 Xtemp = X; % copy the unknows to a new variable

 Xtemp(i) = []; % eliminate the unknown under question from the set

of values

 X(i) = (C(i) - sum(A(i,j) * Xtemp)) / A(i,i);

 end

 Xsolution(:,iteration) = X;

 Error_eval = sqrt((X - Z).^2);

end

%% Display Results

GaussSeidelTable = [1:iteration;Xsolution]'

MaTrIx = [A X C]

98

Appendix C

Matlab code for SOR method.

clc

clear all

A = [4 -1 -1 0 ; -1 4 0 -1; -1 0 4 -1; 0 -1 -1 4];

b = [1/3; 4/3; 0; 1/3];

% error tolerance

tol = 0.0001;

%initial guess:

x0 = zeros(4,1);

% Jacobi method

%---------------

xnew=x0;

error=1;

while error>tol

 xold=xnew;

 for i=1:length(xnew)

 off_diag = [1:i-1 i+1:length(xnew)];

 xnew(i) = 1/A(i,i)*(b(i)-sum(A(i,off_diag)*xold(off_diag)));

 end

 error=norm(xnew-xold)/norm(xnew);

end

x_jacobian=xnew

%Gauss?Seidel:

99

%---------------

maxiter=6;

lambda=1;

n=length(x0);

x=x0;

error=1;

iter = 0;

while (error>tol & iter<maxiter)

 xold=x;

 for i=1:n

 I = [1:i-1 i+1:n];

 x(i) = (1-lambda)*x(i)+lambda/A(i,i)*(b(i)-A(i,I)*x(I));

 end

 error = norm(x-xold)/norm(x);

 iter = iter+1;

end

x_siedal=x

%SOR

%---------------

lambda=1.3;

n=length(x0);

x=x0;

error=1;

iter = 0;

311

while (error>tol & iter<maxiter)

 xold=x;

 for i=1:n

 I = [1:i-1 i+1:n];

 x(i) = (1-lambda)*x(i)+lambda/A(i,i)*(b(i)-A(i,I)*x(I));

 end

 error = norm(x-xold)/norm(x);

 iter = iter+1;

end

x_SOR=x

313

Appendix D

Matlab code for conjugate gradient method.

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)

% SOLVECG Conjugate Gradients method.

%

% Input parameters:

% A : Symmetric, positive definite NxN matrix

% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform

%

% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum

% number of iterations, 0 otherwise (= iteration

% successful).

A=[4 -1 -1 0; -1 4 0 -1; -1 0 4 -1; 0 -1 -1 4]

f=[1/3;4/3;0;1/3]

s=[0;0;0;0]

maxiter = 6

312

u = s; % Set u_0 to the start vector s

r = f - A*s; % Compute first residuum

p = r;

rho = r'*r;

niter = 0; % Init counter for number of iterations

flag = 0; % Init break flag

% Compute norm of right-hand side to take relative residuum as

% break condition.

normf = norm(f);

if normf < eps % if the norm is very close to zero, take the

 % absolute residuum instead as break condition

 % (norm(r) > tol), since the relative

 % residuum will not work (division by zero).

 warning(['norm(f) is very close to zero, taking absolute residuum' ...

 ' as break condition.']);

 normf = 1;

end

while (norm(r)/normf > 0.00001) % Test break condition

 a = A*p;

 alpha = rho/(a'*p);

 u = u + alpha*p;

 r = r - alpha*a;

 rho_new = r'*r;

 p = r + rho_new/rho * p;

311

 rho = rho_new;

 niter = niter + 1;

 if (niter == maxiter) % if max. number of iterations

 flag = 1; % is reached, break.

 break

 end

end

314

Appendix E

Matlab code for Jacobi method.

% Iterative Solutions of linear equations: Jacobi Method

% Linear system: A x = B

% Coefficient matrix A, right-hand side vector B

A=[7/2 -2 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 7/2 -2 0; 0 -1 0 -1 4 -

1; 0 0 -1 0 -1 4];

B= [29/16; 5/8; 23/16; 11/8; 3/4; 13/8];

% Set initial value of x to zero column vector

x0=zeros(1,6);

% Set Maximum iteration number k_max

k_max=28;

% Set the convergence control parameter erp

erp=0.0001;

% Show the q matrix

% loop for iterations

for k=1:k_max

 for i=1:6

 s=0.0;

 for j=1:6

 if j==i

 continue

 else

 s=s+A(i,j)*x0(j);

315

 end

 end

 x1(i)=(B(i)-s)/A(i,i);

 end

 if norm(x1-x0)<erp

 break

 else

 x0=x1;

 end

end

% show the final solution

x=x1

% show the total iteration number

n_iteration=k

316

Appendix F

Matlab code for Gauss-Seidel method.

clear;clc

format compact

%% Read or Input any square Matrix

A = [7/2 -2 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 7/2 -2 0; 0 -1 0 -1 4

-1; 0 0 -1 0 -1 4]; % coefficients matrix

C = [29/16; 5/8; 23/16; 11/8; 3/4; 13/8];% constants vector

n = length(C);

X = zeros(n,1);

Error_eval = ones(n,1);

%% Check if the matrix A is diagonally dominant

for i = 1:n

 j = 1:n;

 j(i) = [];

 B = abs(A(i,j));

 Check(i) = abs(A(i,i)) - sum(B); % Is the diagonal value greater than the

remaining row values combined?

 if Check(i) < 0

 fprintf('The matrix is not strictly diagonally dominant at row

%2i\n\n',i)

 end

end

317

%% Start the Iterative method

iteration = 0;

while max(Error_eval) > 0.001

 iteration = iteration + 1;

 Z = X; % save current values to calculate error later

 for i = 1:n

 j = 1:n; % define an array of the coefficients' elements

 j(i) = []; % eliminate the unknow's coefficient from the remaining

coefficients

 Xtemp = X; % copy the unknows to a new variable

 Xtemp(i) = []; % eliminate the unknown under question from the set

of values

 X(i) = (C(i) - sum(A(i,j) * Xtemp)) / A(i,i);

 end

 Xsolution(:,iteration) = X;

 Error_eval = sqrt((X - Z).^2);

end

%% Display Results

GaussSeidelTable = [1:iteration;Xsolution]'

MaTrIx = [A X C]

318

Appendix G

Matlab code for SOR method.

clc

clear all

A = [7/2 -2 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 7/2 -2 0; 0 -1 0 -1 4

-1; 0 0 -1 0 -1 4]; % coefficients matrix

b = [29/16; 5/8; 23/16; 11/8; 3/4; 13/8]

% error tolerance

tol = 0.0001;

%initial guess:

x0 = zeros(6,1);

% Jacobi method

%---------------

xnew=x0;

error=1;

while error>tol

 xold=xnew;

 for i=1:length(xnew)

319

 off_diag = [1:i-1 i+1:length(xnew)];

 xnew(i) = 1/A(i,i)*(b(i)-sum(A(i,off_diag)*xold(off_diag)));

 end

 error=norm(xnew-xold)/norm(xnew);

end

x_jacobian=xnew

%Gauss?Seidel:

%---------------

maxiter=10;

lambda=1;

n=length(x0);

x=x0;

error=1;

iter = 0;

while (error>tol & iter<maxiter)

 xold=x;

 for i=1:n

 I = [1:i-1 i+1:n];

331

 x(i) = (1-lambda)*x(i)+lambda/A(i,i)*(b(i)-A(i,I)*x(I));

 end

 error = norm(x-xold)/norm(x);

 iter = iter+1;

end

x_siedal=x

%SOR

%---------------

lambda=1.3;

n=length(x0);

x=x0;

error=1;

iter = 0;

while (error>tol & iter<maxiter)

 xold=x;

 for i=1:n

 I = [1:i-1 i+1:n];

 x(i) = (1-lambda)*x(i)+lambda/A(i,i)*(b(i)-A(i,I)*x(I));

333

 end

 error = norm(x-xold)/norm(x);

 iter = iter+1;

end

x_SOR=x

332

Appendix H

Matlab code for Conjugate Gradient method.

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)

% SOLVECG Conjugate Gradients method.

%

% Input parameters:

% A : Symmetric, positive definite NxN matrix

% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform

%

% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum

% number of iterations, 0 otherwise (= iteration

% successful).

A=[7/2 -2 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 7/2 -2 0; 0 -1 0 -1 4 -

1; 0 0 -1 0 -1 4]

f=[29/16; 5/8; 23/16; 11/8; 3/4; 13/8];

s=[0;0;0;0;0;0]

331

maxiter = 6

u = s; % Set u_0 to the start vector s

r = f - A*s; % Compute first residuum

p = r;

rho = r'*r;

niter = 0; % Init counter for number of iterations

flag = 0; % Init break flag

% Compute norm of right-hand side to take relative residuum as

% break condition.

normf = norm(f);

if normf < eps % if the norm is very close to zero, take the

% absolute residuum instead as break condition

% (norm(r) > tol), since the relative

% residuum will not work (division by zero).

warning(['norm(f) is very close to zero, taking absolute residuum' ...

' as break condition.']);

normf = 1;

end

while (norm(r)/normf > 0.00001) % Test break condition

a = A*p;

alpha = rho/(a'*p);

u = u + alpha*p;

r = r - alpha*a;

rho_new = r'*r;

334

p = r + rho_new/rho * p;

rho = rho_new;

niter = niter + 1;

if (niter == maxiter) % if max. number of iterations

flag = 1; % is reached, break.

break

end

end

2016

 ب

Jacobi method, Gauss-Seidel method, Successive over Relaxation (SOR)

method and Conjugate Gradient method.

SOR

