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Animal species’ body sizes result from the balance between selection for survival and 

selection for reproduction. In species with sexual size dimorphism (SSD), this balance 

differs between females and males, resulting in distinct sizes despite similar 

constraints. I used an integrative approach to understand how sexual section, and 

differences in developmental trajectories and metabolic physiology, resulted in the 

female biased SSD of the crab spider Mecaphesa celer (Thomisidae). SSD in spiders 

is often assumed to be a consequence of selection for early male maturation, which 

should provide males with additional mating opportunities. My results allow us to 

discard mate choice and differential fitness benefits as sexually selected drivers of M. 

celer’s SSD. Interestingly, I found evidence that M. celer females may mate with 

multiple males, and that, in such instances, eggs are fertilized by a mix of the males’ 

sperm. Such sperm mixing contradicts the hypothesis that M. celer males benefit from 

early-male maturation, as early-matured males do not necessarily fertilize most of a 

females’ eggs. To gain a better understanding of the relation between M. celer’s SSD 

and early male maturation, I identified the proximate mechanisms underlying 

differences in size between females and males, as well as the effects of the 

environment on the degree of SSD. Female M. celer reach larger sizes by growing 

faster and for longer than males, although both sexes have the same metabolism at 

rest. Also, female, but not male size, may be influenced by the interaction between 



	

	

diet and temperature. Integrating all of these results, I followed the reproductive 

season of a population of M. celer in the wild and found evidences that early 

maturation does indeed grant males with increased mating opportunities. 

Interestingly, I also found that the timing of male maturation is not proportional to 

female and male size, challenging the relationship between early maturation and SSD. 

My research offers a new perspective to the study of sexual dimorphism evolution, 

highlighting the importance of studying both sexes from an integrative perspective 

and shedding light on the developmental processes underlying SSD.   
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OVERVIEW 

 

Selection for survival and selection for reproduction are the main processes 

leading to differences in female and male body size (Shine 1989; Blanckenhorn 

2005). Selection, however, has its limits: the degree to which a group of organisms 

diverge from its ancestral state depends on its physiological and phylogenetic 

constraints and can be greatly influenced by its environment (Blanckenhorn 2000). 

Understanding how and why organisms have a specific size requires that we 

understand how selection for survival and selection for reproduction interact in each 

sex, how physiology and phylogeny mediate this interaction, and, finally, how does 

the environment influence the expression of phenotypic traits.  

In species with sexual size dimorphism (SSD), differences in size between the 

sexes may result from directional selection on one sex’s size only or disruptive 

selection due to different sources, directions, or intensities of selection acting on each 

sex independently (Fairbairn 2005). Physiological constraints and genetic correlations 

are expected to maintain the size of both sexes within similar ranges (the null 

hypothesis of size equality - Hedrick & Temeles 1989; Andersson 1996). Yet, 

differences in female and male sizes are not only very common but sometimes quite 

extreme, such as in many examples of female biased SSD (Blanckenhorn 2000; 

Stillwell et al. 2010).  

Crab spiders (Thomisidae) are among the 

most extreme examples of female biased SSD, with 

females being up to 10 times the size of males and 

weighing up to 100 times the mass of males 

(Legrand & Morse 2000; Morse 2007a; Chelini & Fig. 1: Mecaphesa celer female 
(bottom) and male 
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Hebets 2016). The evolution of female-biased SSD in spiders is often attributed to 

early-male maturation and male-male competition for virgin females (protandry), 

particularly in species where females mate only once and/or have first male sperm 

priority (Vollrath & Parker 1992; Dodson & Beck 1993a; Elgar 1998; Legrand & 

Morse 2000; Morse 2013a). The relation between competition for virgin females and 

SSD has, however, seldom been tested empirically. In the following four studies, I 

explored the role of selection for reproduction in the evolution of SSD in a species of 

flower-dwelling crab spider, Mecaphesa celer (Fig. 1) and identify physiological 

differences between the sexes that may constrain or facilitate the expression of 

disparate sizes (Fig. 2). Using a combination of laboratory mating trials and field 

observations, I tested if SSD was 

selected for through 

precopulatory or postcopulatory 

benefits. By following the 

development of laboratory-raised 

spiderlings, I explored the 

proximate causes of SSD, and 

tested the influence of 

environmental factors on the 

degree of SSD of this species.  

In my first chapter, published in Ethology, I focus on mate choice and 

postcopulatory benefits of SSD, testing for fitness benefits associated to larger female 

size and smaller male size. My results show that mate choice and postcopulatory 

fitness benefits are not related to the evolution of SSD in Mecaphesa celer. All virgin 

females mated readily with the first male presented to them, showing no evidence of 

Sexual	size	dimorphism	

Proximal	
causes	 Evolu5onary	

causes	
Differen5al	
development	

Sexual	
selec5on	

Postcopulatory	
benefits	

Phylogene5c	
constraint	

Natural	
selec5on	

Precopulatory	
benefits	

Mate	search	
Mate	choice	

Fitness	
benefits	Polyandry	

Fig.	1:	Integrative	approach	to	the	understanding	of	
sexual	size	dimorphism	evolution.	
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precopulatory mate choice. Once mated these same females became extremely 

aggressive towards males, but some of them accepted copulating with a second male 

(polyandry).  

Females mating with multiple males (i.e. polyandry), even if infrequent, 

challenges the benefits of early access to virgin females (Wiklund & Forsberg 1991). 

To gain a better understanding of the role of polyandry in M. celer’s mating system, 

in my second chapter I focused on the relation between SSD and a female’s decision 

to mate with multiple males. I found no evidence that female or male size influence 

the female’s decision to mate with multiple males. Moreover, I found no difference in 

fitness between monandric and polyandric females. Interestingly, however, I found 

that paternity in polyandric females follows a pattern of sperm mixing, with a 

potential slight advantage for second males. These results, now accepted for 

publication at Animal Behaviour, confirm that mate choice and postcopulatory fitness 

benefits are not related to the evolution of SSD (Chelini & Hebets, in press).   

Results from my first and second chapter provide mixed support for the 

hypothesis that SSD in M. celer is a consequence of selection for protandry (i.e. early 

male maturation). Although the lack of mate choice in virgin females and the short 

window of time during which females are receptive to second males support a 

scenario of scramble competition for virgin females, the fact that some females do 

mate with multiple males, and that this species show a pattern of sperm mixing, with a 

slight advantage for last males, contradict this hypothesis (Elgar 1998). In my third 

chapter I focus on understanding the developmental trajectories of females and males 

in order to test whether and how males mature earlier than females. By tracking the 

growth and standard metabolic rate of laboratory-born spiderlings, I found that 

growth rate, and not simply number of instars, underlies SSD in M. celer. Females 
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show longer and faster growth, but this is not fueled by a higher metabolic rate. On 

the contrary, females’ and males’ mass-specific metabolic rates at rest fall within the 

same range. I also tested the influence of environmental factors, more specifically diet 

and temperature, on the degree of SSD of this species and found that the interaction of 

diet and temperature affected only female size, and not male size. I suggest that 

females achieve a higher growth rate through a combination of high food ingestion 

and low activity levels.  

Finally, in in my fourth chapter, I compared the results obtained in the 

laboratory in my first three chapters with the population dynamics of M. celer in the 

wild. Selection for protandry may indirectly lead to SSD due to a reduction in the 

development time of males, but selection may also act directly on SSD, with 

protandry as an indirect consequence (Morbey & Ydenberg 2001). I followed a 

population of M. celer in the field through an entire reproductive season, to test if 

female biased SSD evolved through selection for protandry due to increased mating 

opportunities. M. celer is indeed protandric in the field, but the difference between 

female and male maturation time is much shorter in the field than in the laboratory, 

indicating a high degree of plasticity in M. celer’s growth rates. Contrary to what I 

expected, the proportion of virgin females was higher at the end of the reproductive 

season than at the beginning. The absolute number of virgin females, however, is 

likely to be higher early in the season, as all females are virgin upon maturation and 

M. celer lives for only one year. Also surprisingly, the degree of protandry isn’t 

proportional to the degree of SSD, as late-matured females and males are smaller than 

early-matured ones. As such, my results provide partial support for the mating 

opportunity hypothesis, as early-matured males benefit from access to a higher 

number of virgin females.  
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SSD seems to be a consequence of protandry in this species, but the high 

plasticity in female and male growth rates challenges the assumption that SSD in 

spiders is simply a consequence of selection for early male maturation. My results 

highlight the need for integrative studies analyzing the role of multiple sources of 

selection leading to differences in female and male size, as well as the proximate 

mechanisms underlying SSD, for an in depth understanding of the evolution of sexual 

size dimorphism.  
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CHAPTER 1 

 

Absence of mate choice and postcopulatory benefits in a species with extreme 

sexual size dimorphism  

 

Abstract 

Most hypotheses related to the evolution of female-biased extreme sexual size 

dimorphism (SSD) attribute the differences in the size of each sex to selection for 

reproduction, either through selection for increased female fecundity or selection for 

male increased mobility and faster development. Very few studies, however, have 

tested for direct fitness benefits associated with the latter - small male size. 

Mecaphesa celer is a crab spider with extreme SSD, whose males are less than half 

the size of females and often weigh 10 times less. Here, we test the hypothesis that 

larger size in females and smaller size in males are sexually selected through 

differential pre- and postcopulatory reproductive benefits. To do so, we tested the 

following predictions: matings between small males and large females are more likely 

to occur due to mate choice; females mated to small males are less likely to accept 

second copulation attempts; and matings between small males and large females will 

result in larger clutches of longer-lived offspring. Following staged mating trials in 

the laboratory, we found no support for any of our predictions, suggesting that SSD in 

M. celer may not be driven by pre or post-reproductive fitness benefits to small males.   
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Introduction  

 

The average body size of most animals at sexual maturation results from the 

delicate balance between selection for survival and selection for reproduction 

(Stillwell et al. 2010). In species with sexual size dimorphism (SSD), the size 

difference between the sexes can be attributed to these two sources of selection acting 

differently upon each sex, and reaching equilibrium at different points (SSD 

equilibrium model: Blanckenhorn 2005). While sexually dimorphic traits, such as 

male ornaments and weapons, are a classic example of strong selection for 

reproduction acting upon males only (Andersson & Simmons 2006), physiological 

constraints and genetic correlations are expected to maintain the size of both sexes 

within similar ranges (the null hypothesis of size equality - Hedrick & Temeles 1989; 

Andersson 1996). Differences in female and male sizes are, however, not only very 

common, but sometimes quite extreme, such as in many examples of female biased 

SSD (Stillwell et al. 2010). The evolution of such female biased SSD must reflect 

selection acting in opposing directions, or at least with different intensities, in males 

and females (Blanckenhorn 2000, 2005; Kuntner & Elgar 2014). 

Selection for reproduction in females is often associated to increased egg 

production (Clutton-Brock & Vincent 1991; Stillwell & Davidowitz 2010a). 

Fecundity benefits related to a larger female body size are well documented across 

various animal groups (e.g. mammal: Fokidis et al 2007; birds: Sedinger et al 1995; 

reptiles: Hendry et al 2014; insects: Honěk, 1993 and spiders: Beck & Connor 1992, 

Prenter, Elwood, & Montgomery 1999). As such, selection for increased fecundity is 

often assumed to be the main mechanism leading to maintenance and/or exaggeration 
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of female size in species with female biased SSD (see Blanckenhorn 2005 and 

references therein, Stillwell et al. 2010).  

In contrast to our understanding of selection for increased female size, in most 

taxa, little is understood about how selection might act to reduce or maintain small 

male size (Blanckenhorn 2005). The role of selection in the reduction or maintenance 

of small male size is typically attributed to an increase in the chances of a male’s 

encounter with suitable females, or a reduction in the risks associated with such 

encounters (Ghiselin 1974; Vollrath 1998). It is hypothesized that small males may 

benefit by being more agile (e.g. midges –  Crompton et al. 2003), or by reaching 

sexual maturation faster than females (e.g. paedomorphic bone-worms – Rouse, 

Goffredi & Vrijenhoek 2004), or faster than larger male competitors (Kasumovic & 

Andrade 2009). Once a suitable female is encountered, small males may also benefit 

through opportunistic cohabitation and kleptoparasitism (e.g. golden orb-web spiders 

– Kasumovic et al. 2006).  

Spiders are the only taxon where males are often less than half the size of 

females, with such extreme SSD having evolved independently in at least seven 

families (Scharff & Coddington 1997; Hormiga et al. 2000). Three not mutually 

exclusive hypotheses are commonly associated to the evolution of small male size in 

spiders. The first is adaptive protandry, where males mature earlier than females and 

benefit from minimum competition for access to sexually receptive females, being 

particularly adaptive in species where females mate only once and/or where there is 

first male sperm priority (Maklakov, Bilde & Lubin 2004; Kasumovic & Andrade 

2009). The second is the differential male mortality hypothesis, which predicts that in 

species whose adults have distinct lifestyles (such as sedentary orb-weaving females 

and wandering males), small size would allow males to suffer smaller mortality risks 
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(Vollrath & Parker 1992; De Mas, Ribera & Moya-Laraño 2009). Finally, the 

adaptive sexual cannibalism hypothesis predicts that small male size increases the 

probability of a male being eaten by a female post-copulation, which is adaptive in 

species where the consumption of the male by a female immediately after copulation 

can increase the reproductive success of both sexes (Andrade 1996; Welke & 

Schneider 2010, 2012; but see Fromhage, Uhl & Schneider 2003; Foellmer & 

Fairbairn 2004). While many sexually cannibalistic species also exhibit extreme SSD, 

however, not all spider species exhibiting SSD perform sexual cannibalism (Wilder & 

Rypstra 2008). Interestingly, despite the abundance of work done on the evolution of 

SSD in spiders, very few studies have examined the hypothesis that there may be pre 

and/or postcopulatory fitness benefits associated with female and male size (but see 

(Schneider et al. 2000). 

Crab spiders (family Thomisidae), exhibit some of the most extreme examples 

of SSD among animals (Legrand & Morse 2000). Females seldom cannibalize their 

mates, making adaptive sexual cannibalism unlikely to account for the extreme 

female-biased SSD observed in crab spiders. Nothing is known about size-dependent 

differential survival and/or mortality in this group, leaving the potential for 

differential male mortality wide-open.  Males of several Thomisidae species are 

known to be protandric, maturing earlier than females (Muniappan & Chada 1970; 

Dodson & Beck 1993; Morse, 2013a). In some species this earlier maturation seems 

to favor small males given that females mate only once (e.g. Holdsworth & Morse 

2000). In other species, however, females mate multiply, which could hinder the 

benefits associated to an early male maturation (Dodson & Beck 1993, Chelini 

Chapter 2).  
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In this study, we expand upon the wealth of prior work assessing SSD to test 

the relatively unexplored hypotheses that pre and/or postcopulatory fitness benefits 

select for the combination of small male size and large female size in the crab spider 

Mecaphesa celer. Mecaphesa celer is a flower-dwelling crab spider specialized in 

preying upon pollinators. Males of this species are approximately one half the total 

body size of females, and often weigh less than 1/10th of the average female mass. 

Nothing is known about the evolutionary drivers of SSD in this species.  

In this study, we aim to answer two specific questions. (1) Does female and/or 

male size influence the probability of mating and/or remating? (2) Does female and/or 

male size affect clutch size and offspring survival? If body size influences the 

probability of mating and/or remating and if this has influenced SSD in this species, 

then we predict that: (1a) small males will be more likely to obtain copulations with 

large females than large males and (1b) females mated to large males will be more 

likely to accept subsequent copulation attempts than females mated to small males. If 

body size influences clutch size and offspring survival and this has influenced SSD in 

this species, then we predict that dissortative matings according to body size– 

specifically between large females and small males - will result in: (2a) larger 

clutches and (2b) offspring that will be longer-lived than the offspring of other size 

combinations.   

 

Methods 

 

Animal collection and maintenance 

We collected spiders as juveniles (3nd – 5th instar) in Oxford, MS, USA in 

March 2013 and Lincoln, NE, USA in May 2013. In the laboratory, we housed 
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spiders in individual 4 x 4 x 6 cm acrylic cages, with ad libitum water, and small 

artificial plants for perching. All plants were composed of a ramified plastic stem with 

two flowers set 3 cm apart. All spiders were in a room at 26° C and 60% relative 

humidity, under a 14:10 light:dark cycle. We fed all individuals twice a week with 

juvenile crickets (Acheta domesticus, 1 mm, Ghann’s Cricket Farms – GA, USA) and 

recorded the date of all molts.  

 

Mating trials 

We conducted all mating trials between June 3rd and July 21th 2013, from 

10:00 to 17:00. Trial arenas were cylindrical 12 x 7 cm (diameter x height) acrylic 

tubes. We placed the artificial plant from each female’s cage in the center of the 

arenas prior to a trial, fixed in a square 1 x 1 cm piece of plasticine.  We placed each 

arena on top of a small square mirror on a 20 cm of diameter rotating platform, in 

order to be able to observe any behavior happening on the underside of the flowers 

without disturbing the focal individuals. We transferred females into the arenas along 

with their own artificial plant. Females were usually resting on top of the flower 

petals inside their cage, making their transfer easy. In cases where the females were 

not originally on top of their plants, we transferred them gently using a soft paint 

brush, allowing them to climb back onto the top flower once the plant was inside the 

experimental arena. We then allowed females to acclimate for 5 min before 

introducing males. We transferred males into the arena using a soft paint brush, and 

placed them on the stem of the artificial flower, at least 3 cm away from the females. 

Based on preliminary observations we determined that the decision to mate or not was 

made within minutes of the first contact between male and female. As such, our trials 

ran for 30 minutes, or until copulation was over in the cases where mating did occur. 
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We cleaned arenas and mirrors with 70% ethanol and used new pieces of plasticine 

for each trial, to eliminate potential chemical cues. 

 

Female and male size quantification 

Once all trials had been run (see Precopulatory benefits of large female size 

and small male size), we sacrificed all individuals by freezing them, and later 

transferred them to 75 % ethanol. To quantify female and male size, we photographed 

all adult individuals using a Spot Flex digital camera (Model 15.2 64 MP, Diagnostic 

Instruments, Inc.) mounted on a Leica DM 4000 B Microscope. Using the software 

ImageJ (Rasband 1997-2012) with our photographs, we took two measures of size 

from each adult individual: cephalothorax width (cw) and first right femur length (fl). 

Female and male femurs and cephalothorax widths are normally distributed variables 

(Shapiro-Wilk test, female cw: w = 0.98, p = 0.65; male cw: w = 0.96, p = 0.13; 

female fl: w = 0.98, p = 0.31; male fl: w = 0.98, p = 0.12).  

 

Precopulatory benefits of large female size and small male size  

In order to test our predictions related to the precopulatory benefits of M. celer’s 

female biased SSD, we paired each of 60 females with three distinct males, with a 

two-day interval between each trial. We opted for presenting males to females in a 

sequential order rather than simultaneously based on preliminary observations that 

mutual avoidance by males and a heightened state of aggressiveness of the female 

would often hinder copulation attempts when males were presented to the females 

simultaneously. Our main response variable was occurrence of copulation, but in 

order to describe the mating behavior of this species, we also took note of copulation 

duration, aggressiveness of females towards males and mate guarding of females by 
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males. Given the small size of these animals and the fact that we did not want to 

manipulate individuals prior to behavioral trials, we paired females and males 

randomly according to size and took their measurements under the microscope only 

after sacrificing them (see Female and male size quantification, above). Females and 

males ages varied between 2 and 15 days post sexual maturation (average = 5 days). 

All females were virgin at the time of their first trial, but due to a limitation in the 

number of adult males available we were constrained to use some males more than 

once (n = 13). Virgin and non-virgin males did not differ in size (average virgin male 

cw = 1.48 mm, average non-virgin male cw = 1.47 mm, t test: t = -0.57, df = 102.12, 

p = 0.56; average virgin male fl = 2.89 mm, average non-virgin male fl = 2.88 mm, t 

test: t = -0.34, df = 103.04, p = 0.73).  

We tested the effect of male virginity on all of our response variables using a 

generalized linear model (GLM), with the virginity status as the predictor variable. 

When male virginity had an effect on the response variable, we ran the analyses using 

only data from matings with virgin males. When the male virginity did not have an 

effect on the response variable, we used the complete dataset. To test if M. celer’s 

female biased SSD is related to precopulatory benefits, we built two sets of models – 

one for each prediction: 

1a) Mate choice: To test if small males are more likely to obtain copulations 

with large females than large males, we used a generalized linear model (GLM) with 

a Binomial distribution and a logit link function. We used female size, male size, and 

the interaction between these two variables as independent variables and mating 

success as the binomial response variable.  

1b) Probability of remating: To test the prediction that females mated to large 

males will be more likely to remate, we used a similar statistical approach, replacing 
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mating success by remating success as the binomial response variable and adding the 

size of the second male as a predictor variable. To avoid model overfitting due to the 

small number of successful rematings and our large number of parameters, we ran six 

separate simple binomial models instead of one full model, each corresponding to one 

predictor variable or one interaction. For the same purposes, we treated second and 

third males as equivalents. We ran these analyses using the software R (R 

Development Core Team 2009).  

 

Postcopulatory benefits of large female size and small male size 

To test our predictions related to postcopulatory benefits of M. celer’s female biased 

SSD, we focused on the females that had mated with only one male in the above-

mentioned mating trials, and quantified two potential benefits: (2a) clutch size, and 

(2b) spiderling survival. In order to quantify clutch and survival, we kept all females 

alive for up to three months after the trials, feeding them once a week. We monitored 

these females three times a week to record if they had laid an egg sac, and if the 

spiderlings had hatched from their egg sac. Once the spiderlings had hatched and 

dispersed from the egg sac (approximately 3 days after eclosion, Muniappan & Chada 

1970), we separated them from the mothers and counted them in order to estimate 

spiderling number. Egg sacs that had not hatched after 60 days were counted as a 

failed clutch. We preserved the remaining non-developed eggs and the egg sac in 

ethanol 70%, and later counted these eggs using a stereomicroscope (see Female and 

male size quantification).  

 After counting all live spiderlings, we housed them individually under the 

same conditions as the adults, but in 1 x 3 cm glass vials with a 0.5 x 2 cm strip of 

plastic netting for perching, and checked them every two days to estimate survival. 
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We chose to keep the spiderlings with no food in order to assess their resistance to 

starvation. Resistance to starvation is often correlated with the amount of yolk 

contained in each egg, and therefore with female investment in a clutch (Fox & 

Czesak 2000). This proxy allowed us to test the hypothesis that females invest 

differently in their clutches according to their own size and their mate’s size. We 

could not assess maternal investment through the mass of recently hatched young 

given that M. celer spiderlings weigh less than 0.1 milligram, making it extremely 

challenging to obtain a reliable measure of mass, even when averaging the mass of an 

entire clutch. To test if M. celer’s female biased SSD is related to postcopulatory 

benefits, we ran four analyses:  

2a) Clutch size: We tested the prediction that dissortative matings between 

small males and large females will produce larger clutches in three steps. First, to test 

if large females produced more eggs than small females, particularly when mated to 

small males, we ran a linear model (LM), using female size, male size, and their 

interaction as independent variables and total number of eggs as the response variable. 

Then, to test the effect of female and male size on the probability of a female having a 

successful clutch, we ran a GLM with a Binomial distribution and a logit link 

function, using female size, male size, and their interaction as independent variables 

and clutch success as the binomial response variable. In order to avoid having 

overdispersion issues, and given that we had only one spiderling number outlier (a 

clutch of only four spiderlings), we treated this clutch as failed and included it in this 

analysis. Finally, to assess if female and male size affect the number of spiderlings 

hatching from a successful clutch, we focused on matings that had produced a 

successful clutch, and ran a linear model (LM), using female size, male size, and their 

interaction as independent variables and number of spiderlings as the response 
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variable. We ran these analyses using the software R (R Development Core Team 

2009). 

2c) Spiderling survival: To test the prediction that large females and small 

males will produce longer-lived offspring, we ran a Mixed Effects Cox model with 

the functions Surv, survfit and coxme, of the R software library package survival 

(Therneau 2015). We used each clutch as a random variable, and female femur, male 

femur, their addition and their interaction as predictor variables.  

 

Results 

 

Precopulatory benefits of large female size and small male size 

1a) Mate choice and mating behavior: All tested females (n = 60) mated with the first 

male introduced to them. Only one female tried to cannibalize the male, biting his leg 

during copulation and forcing the male down from the typical mating position (i.e. the 

male on the back of the female’s abdomen). That particular male autotomized his leg 

and ran away. All females seemingly passively allowed their paired male to mount 

and mate them, showing no evidence of precopulatory mate choice.  

Males mounted the females shortly after first touching them, with no 

observable stereotyped courtship behavior, and often no more than a single contact. If 

the female turned aggressively towards the male prior to or upon contact, the male 

would retreat rapidly, then slowly re-approach the female and tap on her abdomen 

with his first pair of legs fully extended in front of his body. Once the male touched 

the female’s abdomen, females would accept the males’ approach. Copulation started 

with the male climbing on the female’s abdomen, then lowering his opisthosoma and 

front legs along the side of her body in such a manner that one of his pedipalps could 
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be in contact with one of her genital openings, on the ventral surface of her abdomen. 

After the insertion of one pedipalp was complete, the male would back up onto the 

dorsal side of the female’s abdomen, and lower himself again against her other side. 

Copulation lasted 22.74 minutes on average (min = 5, max = 82, sd = 14.89), and 

ended with the male descending from the female’s abdomen and distancing himself 

rapidly. Four males remained on the female’s back for periods between 45 minutes to 

3 hours after finishing their insertions. Given that no female rejected her first mate, 

we did not perform any statistical analysis regarding the influence of female and male 

size on the probability of copulation. 

1b) Probability of remating: Only nine (15%) females accepted a second 

copulation, four with the second male only, four with the third male only, and one 

with both males. Females that did not remate often reacted aggressively to the 

approach of the male, attacking them upon contact and sometimes biting them, either 

forcing males to drop legs or killing them (n = 17 attacks, 10 of which resulted in 

male death or leg loss). Females that did not attack males usually just moved away 

from them, or raised their front legs in a predatory posture without striking, and males 

did not pursue them.  

Male virginity status did not influence the probability of remating (GLM: p = 

0.89, d.f. = 55, deviance = 0.23, 1st male virginity status: p = 0.87; 2nd male virginity 

status: p = 0.63). Female size, male size and their interactions did not influence the 

probability of remating  (GLMs cephalothorax width (cw): female cw: p = 0.93, d.f. = 

56, 1st male cw: p = 0.52, d.f. = 56, 2nd male cw: p = 0.19, d.f = 56, female cw * 1st 

male cw: p = 0.24, d.f. = 54, female cw * 2nd male cw: p = 0.19, d.f = 54, 1st male cw 

* 2nd male cw: p = 0.59, d.f = 54; GLMs femur length (fl): female fl: p = 0.56, d.f. = 

56, 1st male fl: p = 0.71, d.f. = 56, 2nd male fl: p = 0.66, d.f = 56, female fl * 1st male 
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fl: p = 0.932, d.f. = 54, female fl * 2nd male fl: p = 0.31, d.f = 54, 1st male fl * 2nd male 

fl: p = 0.60, d.f = 54).  

 

Postcopulatory Fitness Benefits 

2a) Clutch size: The total number of eggs laid by females varied from 17 to 100 

(mean±s.e = 56.61±18.24). One single-mated female never laid eggs. Male virginity 

status significantly influenced the total of number of eggs laid (LM: F = 7.14, d.f. = 

45, p = 0.01), with non-virgin males siring more spiderlings than virgin males.  

Considering only the subset of virgin males (n = 34), female and male size did 

not affect the number of eggs laid after each mating (LM cephalothorax width: F  = 

0.61, d.f. = 29, p = 0.61, female cw: p = 0.22, male cw: p = 0.24, female cw * male 

cw = 0.22; LM femur length: F  = 0.43, d.f. = 29, p = 0.74, female fl: p = 0.49, male 

fl: p = 0.53, female fl * male fl = 0.48). 

Out of the 49 single-mated females, only four failed to lay a successful clutch: 

one female never laid eggs, two females laid egg sacs that never hatched, and one 

female laid an egg sac containing only four live spiderlings. All of these females were 

smaller than average, and were mated to smaller than average males. Male virginity 

status had no effect on the probability of laying a successful clutch (GLM: p = 0.57, 

d.f. = 48, deviance = 0.31). Female cephalothorax width, male cephalothorax width 

and their interaction affected positively the probability of having a successful clutch 

(GLM: d.f. = 48, residual deviance = 25.07, female cw: estimate = 112.19, p = 0.02, 

male cw: estimate = 164.70, p = 0.02, female cw * male cw: estimate: -73.17, p = 

0.02). Female femur length, male femur length and their interaction did not affect the 

probability of laying a successful clutch (GLM: d.f. = 48, residual deviance = 27.48, 

female fl: p = 0.11, male fl: p = 0.097, female fl * male fl = 0.12).  
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Spiderling number ranged from 25 to 99 (median±s.e. = 58.73±2.62). One 

female laid two egg sacs within a month (in this case spiderling number was counted 

as the sum of both egg sacs). Male virginity status significantly influenced the number 

of spiderlings (LM: F = 11.954, d.f. = 43, p = 0.001), with non-virgin males siring 

more spiderlings than virgin males (Fig. 1). Considering only the subset of virgin 

males (n = 34), female and male size did not affect the number of spiderlings resulting 

from each mating (Fig. 2; LM cephalothorax width: F  = 1.336, d.f. = 30, p = 0.2813, 

female cw: p = 0.0925, male cw: p = 0.0920, female cw * male cw = 0.1012; LM 

femur length: F  = 0.9562, d.f. = 30, p = 0.4261, female fl: p = 0.128, male fl: p = 

0.131, female fl * male fl = 0.138).  

 

 

Figure 1: The relation between Mecaphesa celer males’ virginity status and the 

number of spiderlings sired.   
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Figure 2: Number of spiderlings (represented by the diameter of the circles) in 

relation to female and male size. Dashed lines indicate the average size of females 

(vertical line) and males (horizontal lines). The bottom left and top right quadrant 

therefore indicate both types of assortive matings, and the bottom right and top left 

indicate dissortive matings.  

 

2c) Spiderlings survival: All spiderlings died before reaching the 25th day of 

observation, with most losses occurring after the 9th day (average clutch survival = 15 

days, min = 7, max = 23). Most clutches lost more than 50% of their spiderlings 

between days 9 and 13 (Fig. 3). Male virginity did not affect spiderling survival 

(Mixed Effects Cox Model: p = 0.5858, d.f. = 4, male virginity: p = 0.81). Male and 

female size did not affect spiderling survival either (Mixed Effects Cox Model 

cephalothorax width: p = 0.43, d.f = 3, female cephalothorax width: p = 0.79, male 

cephalothorax width: p = 0.88, female cephalothorax width * male cephalothorax 
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width: p = 0.84; Mixed Effects Cox Model femur length: p = 0.09, d.f = 4, female 

femur: p = 0.36, male femur: p = 0.06, female femur * male femur = 0.06).  

 

 

Figure 3: Survival analysis of M. celer spiderlings for two categories of female and 

male size. Solid lines represent survival of offspring from assortative matings by size; 

dashed lines represent survival of offspring from dissortative matings by size. 

 

Discussion 

 

 Sexually dimorphic traits are often expected to be associated with pre- or 

postcopulatory fitness benefits. By testing the effect of M. celer’s female and male 

size on initial mate choice, remating behavior, clutch size and offspring survival, we 

found that the SSD of this species does not appear to be driven by any of our putative 
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no effect on the probability of mating, the probability of remating, the number of 

spiderlings resulting from a copulation or on the survivorship of such spiderlings.  

 All of our initial mating trials resulted in a copulation. Not only did we not 

find any evidence that size is relevant for mate choice, we found that virgin female M. 

celer are apparently receptive to any male, suggesting an absence of virgin female 

mate choice in this species. Other flower dwelling crab spiders similarly seem to lack 

any type of mate choice (Dodson & Beck 1993, Morse 2007), but in at least one of 

these species (Misumenoides formosipes - Dodson & Schwaab 2001), males are 

known to engage in combat over the guard of sub-adult females. We never observed 

any agonistic encounter between M. celer males, in the laboratory or in the field, and 

therefore do not have any evidence that male-male competition could be the selecting 

mechanism leading to female-biased sexual size dimorphism in this species. 

 The seeming absence of virgin female mate choice in M. celer might be 

explained by their natural distribution and remating behavior. Mate choice is known 

to be influenced by the probability of encountering a suitable mate (Willis, Ryan & 

Rosenthal 2011). In populations with a low female-male encounter rate, females may 

benefit from securing fertilization success regardless of the quality of the first male 

encountered (e.g. Schafer & Uhl 2004). These females may then perform sequential 

mate choice, becoming more selective in future encounters, mating only with males 

bearing preferred traits, and cryptically selecting their sperm to fertilize their eggs, or 

at least benefiting from the increased genetic variability of their offspring (Schneider 

& Elgar 1998, Jennions & Petrie 2000, Fox & Rauter 2003). The chances of 

encounter for male and female M. celer are likely to be extremely variable in the wild, 

given that population density can vary from less than 1 spider/20 m2 to more than 5 

spiders/ 1 m2 (MCChelini, unpublished data). 
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Only 15% of our females accepted a second mate, with 30% of the remaining 

mated females reacting aggressively to the males approach. Our data suggest that M. 

celer females become more aggressive and perhaps choosier after an initial mating. 

Our observed pattern of no choice for virgin females followed by relatively few 

second matings might suggest, as proposed earlier, that these females are securing a 

first copulation and then performing cryptic female choice if a better second male is 

encountered. The very low percentage of female that did accept a 2nd copulation, 

however, suggests that this is not a widespread strategy in M. celer. Moreover, we 

found no evidence that absolute or relative female and male size are related to 

remating probability, reinforcing the idea that mate choice, even in second matings, is 

not the selecting mechanisms leading to M. celer’s female biased SSD.  

Mate-choice may be a costly mechanism, evolving only in systems where the 

benefits associated with selective mating exceed its costs (Kokko et al. 2003; Kotiaho 

& Puurtinen 2007). In species with relatively low encounter rates, such as M. celer, 

the simple risk of not finding a mate represents a high cost for mate choice. In the 

absence of pre- or postcopulatory benefits, and with mate-choice being costly, we 

might predict an absence of mate-choice. The lack of mate choice of M. celer is 

therefore quite parsimonious, given that we found no evidence that large female size 

and small male size are associated with higher postcopulatory benefits.  

Female and male sizes were not related to the number of eggs laid, to the 

number of spiderlings, or to the survival of spiderlings. The probability of success of 

a clutch, however, was affected to the body size of males and females, as well as by 

their interaction, but not by leg length. Morse (2013) found that small Misumena vatia 

(Thomisidae) females often failed to lay clutches in the field even when mated, 

probably because their poor condition hindered their fecundity. When supplied with 
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food, these females readily laid fertilized clutches. It is possible that very small 

M.celer are unable to produce clutches, however, size had no effect on the total 

number of eggs laid, indicating that failing to lay a successful clutch isn’t related to 

small females being unable to produce, or lay eggs, but on the interaction between 

female egg production and male fertilization success. Small males have been shown 

to fertilize more eggs in other extreme sexually dimorphic spider species (Schneider 

et al. 2000; Elgar, Schneider & Herberstein 2000), but our results suggest that any 

relationship between male size and fertilization success is likely species-specific. 

Although this result points to an interesting interaction between female and male 

effects, we would like to acknowledge that our very low number of failed clutches (n 

= 4) and the relatively high number of parameters in our model (k = 3) may be 

resulting in model overfitting and Type II error. Nonetheless, these are interesting 

results that should be further explored in future studies with larger sample sizes.  

Surprisingly, however, we found a positive relationship between male mating 

status and clutch size, with non-virgin males having larger clutches than virgin males. 

Assuming that this is a male-driven pattern, we can only speculate that given the 

potentially high costs of mate search, and the spatially uneven distribution of females 

in the wild, virgin males could be retaining sperm in their first copulation in order to 

be able to remate if a second female is found in a short period of time. Indeed, male 

crab spiders typically require a period of a few hours to a day to recharge their 

pedipalps with sperm before being able to remate (Morse 2007b). Interestingly, the 

total number of eggs laid was also affected by male virginity status, suggesting that 

this pattern may be at least partially female-driven. It is possible that females lay more 

eggs when mated to a non-virgin, more successful male. Future work is required to 

test these hypotheses. 
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The lack of relationship between female size and number of spiderlings is our 

most surprising result. The fecundity hypothesis for large female size (Head 1995) 

posits that large females should always have more offspring than small females (e.g. 

Beck & Connor 1992; Skow & Jakob 2003), a pattern so common that is has been 

considered the main driver of female biased SSD in spiders (Prenter, Elwood, & 

Montgomery 1999). In his classic paper challenging the fecundity advantage model, 

Shine (1988) proposed that the fecundity advantage model may hold only in scenarios 

where females are not limited energetically, and points out that a larger number of 

eggs in one clutch is not the same as a higher lifetime reproductive success. Although 

M. celer has only one reproductive season, females may lay up to four egg sacs 

following a single copulation (MCC unpublished data). The fact that only one female 

laid a second egg sac in our experiment could suggest that our feeding regimen was 

too strict for these females to achieve their maximum reproductive potential; a 

possibility that should be followed up on in future studies.  

Other exceptions to the fecundity advantage model occur when females trade 

quantity for quality in their clutches, investing more in each egg instead of increasing 

egg numbers. If large M. celer females were trading egg quantity with egg quality, we 

would expect to find an effect of female size on spiderling survival. Our results, 

however, show that female size, male size, and their interaction have no effect on 

spiderling survival, contradicting the last of our predictions. One possibility is that 

spiderling survival to starvation is not a good proxy of postcopulatory fitness benefits 

in M. celer. Alternatively, female and male size may indeed not be the determinants 

of spiderling survival. Offspring survival has been related to factors as disparate as 

female age (e.g. fishes: Berkeley et al. 2004, lizards: Olsson & Madsen 2001), past 

maternal condition (butterflies: Bonduriansky & Head 2007) and polyandry (crickets: 
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Ivy & Sakaluk 2005). As such, female and male M. celer may still have an effect on 

offspring survival, even if their influence is not relative to their size. 

Altogether, our results suggest that M. celer’s large female size and small 

male size must have been selected by factors other than mate choice and 

postcopulatory benefits. In a species where virgin females mate indiscriminately and 

polyandry is relatively rare, a shortened development time is likely to benefit small 

males (Blanckenhorn 2000). As such, adaptive protandry is likely to be the 

mechanism selecting for M. celer’s female biased sexual size dimorphism. In depth 

studies on the synchrony of development of this species in the wild, as well as on the 

potential for sperm competition in polyandrous females are currently underway and 

should shed light into the evolution of this intriguing study system. 

In summary, dimorphic traits are often assumed to be associated to 

reproductive benefits. Examples of dimorphic traits providing direct benefits are 

abundant, as are models associating traits that do not confer direct benefits to indirect 

benefits (see Jones & Ratterman 2009 and references therein). Here we present a 

study species that contradicts several predictions drawn from the evolutionary theory 

of sexual size dimorphism. In highly conserved clades, and in the absence of clear 

costs or benefits associated with a dimorphic trait, species may be dimorphic simply 

by effect of non-directional evolution (Brownian motion evolutionary model: 

Felsenstein 1973), as has been recently described by Cheng & Kuntner (2014) with 

regards to the sexual size dimorphism of the Argiopinae family of orb-weaving 

spiders. As such, given that SSD is common in the clade of flower dwelling crab 

spiders, M. celer’s extreme SSD may not be associated with any current pre- or 

postcopulatory benefit, and may simply be a consequence of relaxed selection on an 

ancestral character. Unfortunately, given that SSD is yet to be mapped on a family-, 
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or even genus-wide phylogeny, we can currently only speculate on the direction and 

strength of selection acting upon M. celer’s SSD. We can also use M. celer as a 

precautionary tale against our inner bias towards studying species where the most 

eye-catching trait is associated to evident benefits. Our understanding of SSD 

evolution, and of any dimorphic trait, depends on the study and publication not only 

of eye-catching exceptions (see Huber 2005), but also of theory defying-cases such as 

this present study.  
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CHAPTER 2 

 

Polyandry in the absence of fitness benefits in a species with female biased sexual 

size dimorphism   

 

Most studies exploring the evolution of female mating systems focus on species 

in which females are either monandric (mate with a single male) or highly polyandric 

(mate with multiple males), but less is understood about variation in mating decisions 

within a species. How and why do females of a single species decide whether or not 

to copulate with additional mates? In this study we attempt to answer this question in 

the highly dimorphic crab spider, Mecaphesa celer, whose females may be either 

monandric or polyandric. We tested three hypotheses: (1) a female’s decision to 

remate is based on sequential mate choice; (2) a female’s decision to remate has 

fitness consequences, with polyandry providing increased benefits; and (3) mating 

order predicts male paternity, following a pattern of first male sperm precedence. We 

conducted double-mating trials between females and males of varied sizes and age, 

quantified six putative fitness benefits obtained by monandric and polyandric females, 

and tested sperm precedence patterns using the sterile male technique. We found no 

evidence that female M. celer are performing sequential mate choice. Moreover, we 

found no difference in fitness between monandric and polyandric females. Finally, we 

found that paternity in polyandric females follows a pattern of sperm mixing. 

Mecaphesa celer females’ decisions regarding mating with multiple males do not 

appear to be influenced by comparisons of male attributes or by future fitness 

benefits. We recommend future studies examining male ejaculate components that 

might influence female mating decisions.  
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Introduction 

 

Female mating strategies select for traits that extend far beyond the conspicuous 

secondary sexual characteristics typically associated with sexual selection (Kvarnemo 

& Simmons 2013; Parker & Birkhead 2013; Pizzari & Wedell 2013; Boulton & 

Shuker 2015; Bocedi & Reid 2016; Yasui & Garcia-Gonzalez 2016). The number of 

mates a female accepts is expected to depend on the costs and benefits of each 

additional copulation (Emlen & Oring 1977; Hubbell & Johnson 1987; Pizzari & 

Wedell 2013). These costs and benefits are often mediated by the males’ mating 

strategies (Parker & Birkhead 2013), which in turn are affected by the females’ 

decision to mate multiply, leading to complex evolutionary feedbacks between the 

sexes (Wade & Arnold 1980; Kvarnemo & Simmons 2013). To understand the 

evolution of female mating strategies we must thus explore not only the costs and 

benefits females obtain from copulations, but also how their mating decisions 

mediate, and are mediated by, the mating strategy of the males.  

 For females, the costs of copulating with multiple partners (i.e. polyandry) 

include reduced reproductive success, infanticide (e.g. Schneider & Lubin 1997; 

Maklakov et al. 2005), physical harm (e.g. Blanckenhorn et al. 2002) and decreased 

female longevity (Arnqvist & Nilsson 2000), among others. Given that monandrous 

females (i.e. females mated to a single male) receive sperm from only one male, 

monandrous species are often characterized by high levels of precopulatory mate-

choice and/or male-male competition (Emlen & Oring 1977; Kvarnemo & Simmons 

2013). Benefits of polyandry are also varied (see reviews by Arnqvist & Nilsson 

2000; Kvarnemo & Simmons 2013), and include increased female longevity and 

reproductive success (Wagner et al. 2001; Worthington & Kelly 2016), increased 
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genetic variability of the brood (Zeh & Zeh 2001), larger and faster growing offspring 

(Watson 1998), and/or sequential mate-choice through acquisition of sperm from 

more attractive and/or genetically more compatible males (trading-up strategies: 

Watson 1991; Schneider & Elgar 1998; Jennions & Petrie 2000). Benefits of 

polyandry are likely to be influenced by sperm precedence patterns (Elgar 1998; 

Simmons 2005), and may lead to cryptic female choice, or strategic mating decisions 

in terms of order of mating partners (Simmons & Beveridge 2010; Kvarnemo & 

Simmons 2013).  

Male mating strategies may evolve in response to the intensity of 

postcopulatory competition and to the species’ sperm-precedence pattern (Wade & 

Arnold 1980; Simmons & Beveridge 2010 and references therein). Males from 

species with first male sperm precedence, for instance, may develop faster and 

compete over the access for virgin females (Singer 1982; Dodson & Beck 1993; 

Zonneveld 1996; Huber 2005; Kasumovic & Andrade 2009). This earlier male 

development (protandry) often results in a male-biased operational sex-ratio and 

female-biased sexual size dimorphism (Vollrath & Parker 1992; Vollrath 1998; 

Danielson-François et al. 2012, but see Wiklund, Nylin & Forsberg 1991; Legrand & 

Morse 2000). In species with some degree of sperm mixing, however, polyandry may 

hinder the benefits obtained by early-matured males (Birkhead & Møller 1998). 

Much theoretical and empirical research has been conducted on species where 

females are predominantly monandric or polyandric, but less attention has been paid 

to variation in mating decisions within a species (but see Boulton & Shuker 2015). 

How do females of a single species decide whether or not to copulate with additional 

mates? Why do some females in a population exhibit monandry while others exhibit 

polyandry?  
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Females of the flower-dwelling crab spider Mecaphesa celer (family 

Thomisidae) appear to be both monandrous and polyandrous: some females accept 

only one partner over their life, but others remate with a second male (Chelini & 

Hebets 2016). The temporal window of receptivity to additional copulations is small 

in this species, and females become increasingly aggressive towards males following 

their initial copulation. While approximately 85% of females are willing to remate 

immediately after their first copulation (Chelini, pers. obs – N = 40.), only 15% of the 

females are willing to remate after two days, and approximately 5% of the females 

still remate after four days (Chelini & Hebets 2016). In contrast to what we might 

expect in a monandrous mating system, M. celer females do not exhibit any form of 

mate choice while virgin (Chelini & Hebets 2016, see also Morse 2010), and, unlike 

other closely related crab spiders (Dodson & Schwaab 2001), males do not appear to 

enter in direct contests (Chelini, pers. obs). Additionally, M. celer males are known to 

mate with multiple females if given the opportunity (Muniappan & Chada 1970; 

Chelini & Hebets 2016). 

Mecaphesa celer crab spiders are also sexually dimorphic, with females 

approximately twice the body size of males (Dondale & Redner 1978) and often 

weighing more than 10 times the average male mass (Chelini, unpublished data) . The 

female-biased sexual size dimorphism observed in M. celer appears to be at least 

partly driven by early male maturation (Muniappan & Chada 1970;  see also 

Maklakov, Bilde, & Lubin 2004; Danielson-François et al. 2012). It has been 

demonstrated that female and male body sizes do not influence the likelihood of first 

copulations, as all virgin females mate with the male to which they are first presented 

(Chelini & Hebets 2016).  
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 In this study we ask three explicit questions: (1) What factors influence M. 

celer females’ decision to copulate with a second mate?; (2) Do females receive 

fitness benefits from copulating with a second male?; and (3) What is the pattern of 

sperm precedence in this species? Given the lack of female choice in first copulations 

(Chelini & Hebets 2016), we hypothesize that a female’s decision to remate is based 

on sequential mate choice (i.e. trading-up hypothesis: Schneider & Elgar 1998; 

Jennions & Petrie 2000), and as such depends on the comparison between the first and 

second male they encounter (Hypothesis 1). We also hypothesize that polyandry 

provides fitness benefits to females (Hypothesis 2). Finally, given the observed early 

male maturation (Muniappan & Chada 1970), we hypothesize that male paternity is 

dependent on mating order (Hypothesis 3) and predict a pattern of first male sperm 

precedence.  

 

Methods 

 

Animal collection and maintenance 

We collected male and female Mecaphesa celer as juveniles and sub-adults (5th 

– 7th instar) at Holmes Lake Park, Lincoln - NE, USA in June 2014. In the laboratory, 

we housed spiders in individual 4 x 4 x 6 cm acrylic cages with the internal walls 

covered in plastic netting, allowing spiders to climb and perch. All spiders were in a 

room held at 26° C and 60% relative humidity, under a 14:10 light:dark cycle, with ad 

libitum water. We fed all individuals two juvenile crickets (Acheta domesticus, 1 mm, 

Ghann’s Cricket Farms – GA, USA) twice a week and recorded the date of all molts 

including the date of maturity. No ethical approval was required for the study. 
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Hypothesis 1- Female decision to remate is based on sequential mate choice 

Predictions 

We tested three predictions of hypothesis 1:  

- Prediction 1a) A female’s decision to remate is based on the first and second 

males’ body size. If female M. celer remate only if the second male is somehow 

superior to the first male, we predict that females mated with males of similar size 

would not remate, while females paired with males of very different sizes would. In 

the closely related Misumena vatia, and Misumenoides formosipes, larger males tend 

to win more male-male contests (Dodson & Schwaab 2001; Legrand & Morse 2000), 

and are faster and more agile than small males (Morse 2013b), an advantage likely to 

be important in a system with sedentary females and intense male mate search. As 

such, we predict that the highest remating rates will occur when the second male has a 

larger cephalothorax width (our chosen measure of body size) than the first male. 

- Prediction 1b) A female’s decision to remate is based on the first and second 

males’ leg length. Despite being extremely sexually dimorphic in body size, female 

and male M. celer have similarly long legs. Prior to copulation, M. celer males 

typically touch the female’s abdomen from afar with their first and second pairs of 

legs. Females respond to this first contact either passively, folding their legs close to 

their body, or with an attack (Chelini & Hebets 2016). Longer legs may therefore 

confer an advantage to males by allowing them to touch the female from further 

away, minimizing the exposure of their vital body parts to a potentially aggressive 

female. As such, while both cephalothorax width and femur length are measures of 

size, they may potentially convey different information to the female. 

- Prediction 1c) A female’s decision to remate is based on the first and second 

males’ age (in days post maturation). Age is known to affect female receptivity in 
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many species (e.g. Moore & Moore 2001; Mack, Priest & Promislow 2003; Wilgers 

& Hebets 2012). In addition, male age may be inversely related to the amount and 

quality of their sperm (Radwan 2003; Jones & Elgar 2004). In the closely related 

Misumena vatia, older males are more often rejected and cannibalized than younger 

males (Morse & Hu 2004). As such, we expect older M. celer females to be less 

receptive to second males than young females, and we expect females to be 

polyandric when the first male presented to them is older than the second one.  

 

Mating trials and data collection 

We conducted a total of 77 double mating trials between July 8th and July 29th 

2014, from 10:00 to 17:00. We measured all spiders with a caliper immediately post-

maturation (at least 3 days prior to a trial). We then paired our spiders in a manner 

such that females over the entire size range were paired with all possible 

combinations of first and second males’ sizes. Given the small size of these animals 

and the difficulty of accurately measuring them while alive, we conducted our 

statistical analyses using measurements taken under the microscope after all spiders 

were sacrificed (see Female and male size quantification, below). There was no 

difference in the average size of first and second males (t test: t = -0.61, d.f. = 127.56, 

p = 0.54).  

Trial arenas were cylindrical 12 x 7 cm (diameter x height) acrylic tubes. We 

placed an artificial plant composed of a ramified plastic stem with two flowers set 3 

cm apart in the center of the arenas prior to each trial, fixing them in a 1 cm3 piece of 

plasticine.  To observe behaviour happening on the underside of the flowers without 

disturbing the focal individuals, we placed each arena on top of a small square mirror 

set on top of a rotating platform (20 cm dia.).  
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We transferred females gently from their cages to the top of the artificial flower 

using a soft paintbrush, and allowed them to acclimate for 20 min before introducing 

males. All females were virgin, and had matured in the three to 25 days prior to being 

tested. We transferred males in the same manner, and placed them at the base of the 

artificial flower, at least 5 cm away from the females. Males typically climbed on the 

flower stem immediately, quickly reaching the female.  

As with the females, all males matured in the laboratory and were virgin. M. 

celer males mature much earlier than females (Muniappan & Chada 1970), so mating 

trials were run 15-50 days after male maturation. Our trials ran for 30 min, or until 

copulation ended for trials in which matings occurred. We cleaned arenas and mirrors 

with 70% ethanol and used new pieces of plasticine for each trial to eliminate 

potential chemical cues. 

Immediately following the end of each initial trial (i.e. after 30 min when no 

copulation happened or after female and male stopped copulating and distanced 

themselves), we left females alone in the arenas for 2 h, and then introduced a second 

virgin male using a soft paintbrush. The pair was then allowed to interact for 30 min 

or until copulation ended. For each initial and second mating trial, we recorded the 

occurrence of copulation and aggressiveness of females towards males (e.g. attacking, 

biting, killing).  

 

Female and male size quantification 

Female mass in spiders may vary rapidly according to their feeding schedule, 

but measurements of structural size, such as cephalothorax width or leg length, are 

fixed at maturity. As such, cephalothorax width is the most commonly used proxy for 

size in studies with sexually size dimorphic spiders (Foellmer & Moya-Laraño 2007). 
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After sacrificing all adult individuals by freezing (the most ethical method of 

sacrificing spiders), and transferring them to 75% ethanol we photographed them 

using a Spot Flex digital camera (Model 15.2 64 MP, Diagnostic Instruments, Inc.) 

mounted on a Leica DM 4000 B Microscope. Cephalothorax width and femur length 

of all adults were then measured on the photographs using the software ImageJ 

(Rasband 1997-2012).  

 

Statistical analyses 

- Prediction 1a) A female’s decision to remate is based on the first and second 

males’ body size. To test this prediction we used a binomial generalized linear model 

(GLM) with logit-link function to account for the binomial dependent variable 

(remated/non-remated). We used female, first and second male cephalothorax width, 

and the interaction between these three variables as independent variables, and 

conducted a step-wise regression to select the simplest and best fit model possible. In 

order to minimize the number of parameters involved in the model, we repeated this 

analysis using multiple indexes of similarity between first and second males’ sizes: 

!!"

!!"
 ; 1!" − 2!", and indexes adapted from two indexes of sexual size dimorphism 

(Lovich & Gibbons 1992; Smith 1999). All yielded results similar to the GLM 

described above (data not shown), and thus we report only the GLM including female, 

first male and second male cephalothorax width.  

- Prediction 1b) A female’s decision to remate is based on the first and second 

males’ leg length. We tested for the effect of male leg length with an approach 

identical to that of 1a), but replacing female, first male and second male 

cephalothorax width by femur length. 
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- Prediction 1c) A female’s decision to remate is based on the first and second 

males’ age (in days post maturation). We tested the effect of female, first and second 

male age using the same approach described in 1a), replacing female, 1st male and 2nd 

male cephalothorax width with days post-maturation.  

As our trials occurred over three weeks, we had a strong correlation between 

female and male age and the days elapsed along M. celer’s reproductive season 

(which in Nebraska falls between early June and early August – pers. obs.). To test 

for any effect of the timing of trials within the reproductive season, we ran another 

binomial GLM using trial delay (i.e. number of days elapsed between June 14th, when 

the first mature female was found, and the trial date) as the only independent variable.  

Due to the large window of time during which females were tested, we repeated 

all analyses included in this manuscript using age as a covariate, but our results 

remained unchanged (data not shown). We ran the analyses of predictions 1a) – 1c) 

using the software R (R Development Core Team 2009) and the function glm.  

 

Hypothesis 2) Polyandry provides fitness benefits to females 

Predictions and fitness proxies 

In order to test the hypothesis that females accrue reproductive benefits from 

being polyandric, we collected data on six different proxies of fitness benefits that 

females could obtain from the time period immediately following copulation until 

after offspring dispersal.  

- Prediction 2a) Polyandric females lay eggs faster than monandric females. 

Polyandry may benefit females through the transference of nutritious seminal 

products and/or hormones that accelerate oviposition rate (Perry, Sirot & Wigby 
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2013, see review by Arnqvist & Nilsson 2000). As such, our first fitness proxy was 

the number of days between copulation and egg sac laying. 

- Prediction 2b) Polyandric females’ eggs hatched faster than monandric 

females’ eggs. Following the argument presented above, double-mated females may 

also benefit from faster-developing embryos, minimizing the time spent caring for 

each egg sac and optimizing the female’s chances of laying multiple egg sacs in a 

single season. The number of days between egg sac laying and egg sac hatching was 

therefore our second fitness proxy.  

- Prediction 2c) Polyandric females have higher lifelong reproductive success 

than monandric females. Increased reproductive success is one of the most common 

benefits of polyandry (e.g. Newcomer et al. 1999; Arnqvist & Nilsson 2000; Wagner 

et al. 2001; Fedorka & Mousseau 2002; McNamara et al. 2007) . The total number of 

spiderlings produced by a female over her lifetime and across all of her egg sacs was 

our third fitness proxy. 

- Prediction 2d) Polyandric females have higher numbers of spiderlings in their 

first egg sac only. Not all females lay multiple egg sacs and food availability is known 

to influence the number of egg sacs laid by M. celer (see Chelini & Hebets 2016). In 

the field, food availability is likely to decrease abruptly towards the end of the season 

(i.e. late summer/early fall) so females may invest more heavily in their first clutch 

than in subsequent ones. As such, the putative benefits of polyandry may be 

quantifiable only in M. celer females’ first egg sac, making this our fourth fitness 

proxy.  

- Prediction 2e) Polyandric females will have a higher fertilization success than 

monandric females. If mating with more than one male allows females to minimize 

risks of genetic incompatibility (e.g. Yasui & Garcia-Gonzalez 2016), we expect 
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double-mated females to have a higher clutch success (i.e. the percentage of eggs 

fertilized in each clutch) than single-mated females.  

- Prediction 2f) Polyandric females will have spiderlings more resistant to 

starvation than monandric females. Mating with multiple males may allow females to 

have larger and longer-lived offspring (e.g. Watson 1998). As M. celer spiderlings are 

extremely small, we were unable to obtain accurate measurements of their mass at 

birth. Mass at birth, is extremely correlated with spiderling survival to starvation 

(Walker, Rypstra & Marshall 2003), being highly dependent on the amount of yolk 

allocated to each egg by the female. Thus, the number of days spiderlings survived to 

starvation was our last fitness proxy. 

 

Data collection 

To obtain data regarding a) the time to lay egg sacs and b) the egg hatching 

time, we fed and monitored all females three times per week following copulations to 

record egg sac deposition and hatching dates. To determine c) the number of 

spiderlings each female had over their lifetime and d) in their first egg sac, we 

separated and counted the spiderlings once they had hatched and dispersed from the 

egg sac (approximately 3-5 days after eclosion, Chelini & Hebets 2016; Muniappan & 

Chada 1970). To acquire data on e) fertilization success, we preserved the remainder 

of each egg sac in 70% ethanol and later counted all undeveloped eggs under a Leica 

DM 4000 B Microscope in order to calculate the percentage of eggs fertilized in each 

clutch. Finally, to determine f) number of days spiderlings could survive starvation 

conditions, we separated out ten spiderlings from each female’s first clutch and 

housed them individually in 3 cm tall x 1 cm diameter cages, with ad libitum water. 

We monitored these spiderlings approximately every two days, recording the date of 
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all deaths. We sacrificed all remaining spiderlings by freezing them, and later 

preserved them in 70% ethanol.  

 

Statistical analyses 

- Prediction 2a) Polyandric females lay eggs faster than monandric females. We 

ran a Quasipoisson GLM with the number of successful copulations as the 

independent variables and the number of days between copulation and egg sac laying 

as the dependent variable.  

- Prediction 2b) Polyandric females’ eggs hatched faster than monandric 

females’ eggs. We tested this prediction by repeating the analysis described in 2a), but 

replacing the number of days between copulation and egg sac laying by the number of 

days between copulation and egg sac hatching as the dependent variable. 

- Prediction 2c) Polyandric females have higher lifelong reproductive success 

than monandric females. We tested this prediction with a linear model (LM), using 

the total number of spiderlings of each female as the dependent variable and the 

number of successful copulations (single-mated/remated) as the independent variable.  

- Prediction 2d) Polyandric females have higher numbers of spiderlings in their 

first egg sac only. We repeated the analysis described in 2c), but focusing only on the 

number of spiderlings hatching from the first egg sac laid by each female. 

- Prediction 2e) Polyandric females will have a higher fertilization success than 

monandric females. We ran a Quasibinomial GLM with the ratio of total number of 

spiderlings/total number of eggs laid by each female (from here on referred to as 

“clutch success”) as the dependent variable and the number of successful copulations 

as the independent variable. We tested predictions 2a) – 2e) using the software R (R 

Development Core Team 2009) and the function glm. 
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-  Prediction 2f) Polyandric females will have spiderlings more resistant to 

starvation than monandric females. We ran a Mixed Effects Cox model with the 

functions Surv, survfit and coxme, of the R software library package survival. We 

used each clutch (i.e. each female) as a random variable, and the female’s mating 

status (single vs double-mated) as the independent variable.  

 

Hypothesis 3) Male paternity is dependent on mating order  

Male sterilization and mating trials  

We used the sterile male technique to determine sperm priority patterns (Parker 

1970; Boorman & Parker 1976; Schneider & Lesmono 2009; Magris, Wignall & 

Herberstein 2015). We collected penultimate males and juvenile females in late June 

2015 and housed them in conditions identical to those described above (see Animal 

collection and maintenance). Once all females had matured, we sterilized 60 males 

through exposure to 1500 rads of X-ray irradiation, using a RADSOURCE RS2000 

irradiator® (12.5 min at 120 rads/min). Two days after irradiating these males, we 

conducted a new round of double-mating trials following the methods described 

above (see Mating trials), but reducing the interval between males from 2 hs to 20 

min, in order to maximize our chances of obtaining double-mated females. Females 

were sorted into four treatments: irradiated male followed by normal male (n = 25); 

normal male followed by irradiated males (n = 25); two irradiated males (n= 10) and 

two normal males (n = 10). After all mating trials had been conducted we sacrificed 

all males and allowed females to lay egg sacs until their natural death We estimated 

male paternity share through egg development and differences in spiderling numbers 

(Boorman & Parker 1976; Schneider & Lesmono 2009). We obtained spiderling 



42	

	

numbers following the same methods described above (Hypothesis 2  - Data 

collection).  

Statistical analyses 

 To test our prediction of first male sperm precedence (i.e. that first males 

would fertilize the majority of the eggs), we ran two analyses. First, we ran a GLM 

with a Quasipoisson distribution using the total number of spiderlings as the 

dependent variable and the male order as the independent variable, followed by a 

Tukey contrasts test for multiple comparisons of means. Second, to test for 

differences in the percentage of fertilized eggs laid in the female’s first egg sac only, 

we repeated the same analysis using the number of spiderlings from the first egg sac 

only as the dependent variable.  

 

Results 

 

1) Female decision to remate 

Males always attempted to copulate, regardless of the females’ mating status 

(virgin versus previously mated), showing no evidence of male mate-choice. 

Similarly, all females mated with the first male presented to them, indicating a lack of 

virgin female mate choice. One female attacked the first male, subsequently accepted 

his approach, but killed him post-copulation. Out of the 74 trials included here, 46 

females accepted a second copulation (65% - Fig. 1). Although mated females 

showed more aggressive behaviours than virgins, few females attempted to 

cannibalize their mates: 10 females attacked the second male prior to copulation, and 

two females remated and later killed the second male post-copulation. 
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The model best fit to explain the effect of cephalothorax width on the females’ 

decision to mate multiply was the full model containing the triple interaction between 

female, first and second male cephalothorax width. However, even in this best fit 

model we found no effect of female cephalothorax width, first male cephalothorax 

width, second male cephalothorax width or their interaction on the females’ decision 

to remate (Table 1). None of the indexes of similarity between males had an effect on 

the probability of remating (data not shown). Female and male femur length also had 

no effect on the probability of females mating multiply (Table 2), and neither did 

female and male age (Table 3). Finally, the days elapsed along the season did not 

influence the female’s decision to mate multiply (z = 0.018, d.f. = 2, p = 0.985, 

deviance = 0.00032).  

 

 

Figure 1: Female Mecaphesa celer that did or did not accept a second copulation, 

according to the size of the first and second male presented to them. All females 
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mated with the first male. The vertical dashed line represents the average 

cephalothorax width of first males and the horizontal line the average cephalothorax 

width of second males.    

 
Table 1: Binomial GLM on females’ decision to remate based on female, 1st male and 

2nd male cephalothorax width (n = 72, Chi-square goodness of fit test: Deviance = 

14.92, d.f. = 7, p = 0.04). 
Parameter Estimate s.e. z value P value 

Intercept 1046.20 685.10 1.53 0.13 
Female ceph. width -451.80 315.20 -1.43 0.15 
1st Male ceph. width -729.40 452.10 -1.61 0.11 
2nd Male ceph. width -625.40 422.10 -1.48 0.14 
Female * 1st male ceph. width 320.00 208.60 1.53 0.12 
Female * 2nd male ceph. width 269.60 194.00 1.39 0.16 
1st male * 2nd male ceph. Width 438.20 278.20 1.57 0.11 
Female * 1st male * 2nd male ceph. width -191.90 128.20 -1.50 0.13 

 
 
Table 2: Binomial GLM on females’ decision to remate based on female, 1st male and 

2nd male femur lengths (n = 72, Deviance = 6.69, d.f. = 7, p = 0.46). 
Parameter Estimate s.e. z value P value 
Intercept -93.43 400.81 -0.23 0.82 
Female femur length 52.22 137.70 0.38 0.70 
1st Male femur length 29.27 122.44 0.24 0.81 
2nd Male femur length 28.16 126.04 0.22 0.82 
Female * 1st male femur length -16.02 42.10 -0.38 0.70 
Female * 2nd male femur length -15.99 43.26 -0.37 0.71 
1st male * 2nd male femur length -8.72 38.51 -0.23 0.82 
Female * 1st male * 2nd male femur length 4.88 13.23 0.37 0.71 

 
 
Table 3: Binomial GLM on females’ decision to remate based on female, 1st male and 

2nd male ages (n = 69, Deviance = 4.85, d.f. = 7, p = 0.74). 

Parameter Estimate s.e. z value P value 
Intercept 16.26 16.44 0.99 0.32 
Female age -1.30 0.92 -1.49 0.16 
1st Male age -0.46 0.49 -0.94 0.35 
2nd Male age -0.42 0.41 -1.00 0.32 
Female * 1st male ages 0.04 0.03 1.42 0.16 
Female * 2nd male ages 0.03 0.02 1.43 0.15 
1st Male * 2nd ale ages 0.01 0.01 1.02 0.31 
Female * 1st male * 2nd male ages -0.01 0.00 -1.45 0.15 
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2) Female fitness consequences of polyandry 

2a) Time to lay eggs: Females took between 9 and 75 days to lay their first egg 

sac (mean = 20.32, s.d. = 10.33). Polyandry did not affect the number of days elapsed 

between copulation and egg sac laying (t = 1.27, d.f. = 1, p = 0.21, s.e. = 0.13, 

Deviance = 8.13, estimate = 0.17). 

2b) Time for egg sacs to hatch: Once laid, egg sacs took between four and 21 

days to hatch (mean = 14.34, s.d. = 2.98). Polyandry also had no influence on the 

number of days necessary for the first egg sac to hatch (t = -0.191, d.f. = 1, p = 0.849, 

s.e. = 0.054, Deviance = 0.33, estimate = -0.01).   

2c) Lifelong reproductive success: Females laid between 25 and 154 eggs over 

their lifetime (mean = 80, s.d.= 33.71), spread across an average of 1.9 egg sacs (min 

= 1 – max = 3). Seven females never laid a successful clutch. Polyandry did not affect 

the life-long reproductive success of M. celer females (F = 1.77, d.f. = 63, p = 0.19, 

estimate = -11.578, Fig. 2).  
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Figure 2: Life-long reproductive success of monandric and polyandric female 

Mecaphesa celer. Boxes correspond to 1st quartile, median and 3rd quartile, whiskers 

correspond to the range.  

 

2d) Spiderlings in first clutch:  An average of 51.38 spiderlings hatched from M. 

celer females’ first egg sac (min = 18 – max = 95, sd = 20.07). Polyandry did not 

influence the number of spiderlings hatching from M. celer females’ first egg sac (F = 

1.047, d.f. = 63, p = 0.31, estimate = -5.33).  

2e) Lifelong clutch success: The overall clutch success varied from 64% to 

100% (mean = 97%, s.d. = 0.06). This proportion was not affected by the number of 

mates each female had (t = 0.41, d.f. = 63, p = 0.68, s.e. = 0.49. Deviance = -2.25, 

estimate = 0.20).    

2f) Spiderling survival: Polyandry did not significantly influence the survival of 

M. celer’s spiderlings (Coxme survival model: z = 1.51, p = 0.13, coefficient = 0.43, 

hazard (exp(coef)) = 1.54, s.e. = 1.28, Fig. 3).  
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Figure 3: Average survival curves of spiderlings hatched from clutches produced by 

monandric and polyandric Mecaphesa celer females. Polyandry does not affect M. 

celer’s spiderling survival. 

 
 
3) Male paternity and sperm precedence patterns 

 Remating rates in all treatments ranged from 75% to 85%. None of the 

females that mated only with irradiated males produced live spiderlings, indicating 

that our sterilization treatment was successful. Females in the normal-irradiated 

treatment produced significantly fewer spiderlings than females in the normal-normal 
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than those in the irradiated-normal treatment (Fig. 4, Table 4). We found no 
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not influenced by the males’ irradiation treatment (Fig. 5 - Quasipoisson GLM: F = 

1.94, Deviance = 116.1, d.f. 42, p = 0.15).  

 

Table 4: Quasipoisson GLM followed by Tukey post-hoc comparison test on the 

number of spiderlings hatching from the first egg sac of females mated to males 

sterilized by irradiation and normal males in all possible combinations (n = 45, F = 

3.42, d.f. = 2, p = 0.04, Deviance = 281.51). 

Parameter Estimate s.e. z value P value 
normal-irradiated - irradiated-normal -0.86 0.41 - 2.11 0.08 
normal-normal - irradiated-normal 0.19 0.36 0.54 0.85 
normal-normal - normal-irradiated 1.05 0.46 2.28 0.05 

 
  



49	

	

 
 
Figure 4: Total number of spiderlings resulting from matings between Mecaphesa 

celer females and two males, some sterilized though X-ray irradiation, and some 

normal, in all possible combinations. Different letters represent statistically significant 

differences. Females mated to normal males first and irradiated males second 

produced fewer spiderlings than females mated to two normal males (p = 0.05). 

Females mated to an irradiated male first and normal male second tended to produce 

more spiderlings than those in the normal-irradiated treatment (p = 0.08).    

 
  

  

irradiated-irradiated irradiated-normal normal-irradiated normal-normal
0

50

100

150

Treatment

To
ta

l n
um

be
r o

f s
pi

de
rli

ng
s

a

b , d

b , c

d



50	

	

 
 

Fig. 5: Number of spiderlings hatching from each Mecaphesa celer egg sac, color 

codded by male irradiation treatment. Females mated to two irradiated males never 

had any spiderling hatching from their clutches. Only one female mated to a normal 

male followed by an irradiated male laid more than a single successful clutch, while 

females mated to irradiated males followed by normal males laid up to four successful 

clutches.  

 

Discussion 

 

Despite the fact that some female M. celer crab spiders make the decision to 

copulate with a second male (approximately 65% are polyandric within a 2 hour 

window), we did not find any evidence that these decisions were based on either male 

physical attributes or on female fitness outcomes. We were unable to identify any 

factors that influence M. celer females’ decision to copulate with a second mate, as 

female remating was independent of female and/or male size, age and time along the 

season. Our results also show that male M. celer do not discriminate between virgin 

and previously mated females. We were also unable to identify any fitness benefits 
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females might receive from copulating with a second male. In terms of the pattern of 

sperm precedence in M. celer, our irradiation results suggest a pattern of sperm 

mixing in first egg sacs, and a potential for last male sperm priority in subsequent egg 

sacs. This last finding reinforces the growing body of evidence indicating that the 

relationships between morphology, behaviour and sperm precedence patterns are 

complex and require direct testing (Elgar 1998; Huber 2005; Herberstein et al. 2011).  

Polyandry in M. celer does not fit a “trading-up” strategy, with females 

remating only if the second male encountered is somehow superior to the first (e.g. 

Schneider & Elgar 1998). The decision to remate also seems independent of the 

female’s physical attributes or age. Similarly, virgin M. celer exhibit no obvious mate 

choice, passively accepting copulation from their first mate (Chelini & Hebets 2016). 

Together, results from virgin female matings (Chelini & Hebets 2016) and now 

second matings (present study) suggest that neither female nor male size (either 

cephalothorax width or leg length), or their interaction, are good predictors of 

copulation success. As such, the sexual size dimorphism observed in M. celer is 

unlikely to have been driven by mate-choice.  

 The apparent lack of benefits of polyandry could explain why we were unable 

to identify any decision criteria that females might be using to accept or reject a 

second mating. Our previous study focusing only on virgin females and their first 

mating similarly found no evidence of fitness benefits associated with male body size, 

leg length, or the degree of sexual size dimorphism between a female and her mate 

(Chelini & Hebets 2016). Variation in the benefits provided by males is often tied to 

the evolution of female mate choice (Hubbell & Johnson 1987; Kokko et al. 2003). 

As such, if fitness benefits were associated with M. celer’s male phenotype, we would 

expect it to be reflected in female mate choice decisions. The absence of mate choice 
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could also indicate that polyandrous female M. celer are not trading-up, but rather bet-

hedging, i.e., maximizing the genetic diversity of their offspring and minimizing the 

risk of infertility or low fitness (Watson 1991; Jennions & Petrie 2000; Fox & Rauter 

2003). Benefits due to bet-hedging could be difficult or impossible to identify in a 

short term experiment (Holman 2015), which could explain the apparent lack of 

benefits of M. celer’s polyandry. Long-term field studies would be required to test the 

hypothesis that M. celer is bet-hedging and that the benefits of polyandry are not tied 

to the males’ characteristics. 

Protandric species such as M. celer are typically expected to have first male 

sperm priority, with the first male to mate with a virgin female fertilizing most of her 

eggs (Wiklund & Forsberg 1991; Zonneveld 1996; Kvarnemo & Simmons 2013). In 

spiders, the morphology of female reproductive tract is also hypothesized to influence 

the pattern of fertilization (Austad 1982). Specifically, entelegyne spiders such as M. 

celer have a “conduit” reproductive tract, where the first sperm entering the 

spermatheca is considered the most likely to be used in egg fertilizations (Elgar 

1998). Nonetheless, many exceptions to this pattern have been described, and the 

most common sperm-precedence pattern in spiders seems to be sperm-mixing (see 

(Elgar 1998; Herberstein et al. 2011). Given that M. celer show both early male 

maturation and a “conduit” reproductive tract, we predicted a priori that this species 

presented first male sperm priority. Contradicting our prediction, our results suggest a 

strong degree of sperm mixing in first egg sacs of M. celer females. 

 Surprisingly, second males tended to fertilize most of the subsequent egg sacs, 

showing a putative advantage for males to mate with a previously mated female. The 

likelihood that a female M. celer may lay more than one egg sac in the field is likely 

highly dependent on the season‘s length and on the date of her first copulation, 
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making it difficult to estimate the magnitude of this advantage under natural 

conditions. We do know, however, that female aggression increases following her 

first copulation, increasing the risk of sexual cannibalism (see results from Chelini & 

Hebets 2016 and present study). Thus, from a males’ standpoint, the most 

advantageous strategy might be to benefit from the ready acceptance of virgin females 

to copulate, and guard these females after copulation until their short window of 

receptivity is closed. Although a few males have been observed guarding their mates 

in the laboratory and in the wild (Chelini & Hebets 2016, Chelini, pers. obs.), 

postcopulatory mate guarding does not seem to be a widespread strategy in this 

species. 

 With or without postcopulatory mate-guarding, the decision of M. celer 

females to remate may still be partly under male control. Some male spiders, and 

many insects, may influence a female’s receptivity to subsequent matings through 

their seminal fluids (Ringo 1996; Aisenberg 2009; Wigby et al. 2009; Sirot, Wolfner 

& Wigby 2011). Substances incorporated into the seminal fluid may allow males to 

benefit from the access to virgin females gained through early maturation while 

minimizing the risks of decreased paternity by reducing females’ likelihood to remate 

(Elgar & Bathgate, 1996; Elgar, 1998; Rice, 1996) As the number of mating partners 

does not seem to influence M. celer females’ reproductive success (present study), a 

strategy of male-driven female monandry would not impose costs on females, while 

potentially conferring great benefits to males under scenarios of male-biased sex ratio 

and high male-male competition. The seminal fluid composition of M. celer and the 

relationship between seminal fluid transmission and female mating decisions are yet 

to be explored in depth. 
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Though mating strategies of females and males are hypothesized to be driven by 

their respective costs and benefits, these are often tested (perhaps simply for logistical 

reasons) in species where these costs and benefits are fairly evident (Huber 2005; 

Kvarnemo & Simmons 2013; Boulton & Shuker 2015). In this study, we present a 

species that defies many predictions regarding traditional mating systems. Species 

such as M. celer, provide an important challenge to our understanding of the 

coevolutionary dynamics of male and female mating strategies and the often assumed 

role played by pre and postcopulatory sexual selection on the evolution of sexual size 

dimorphism (Vollrath & Parker 1992).  
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CHAPTER	3	

	

Proximate mechanisms of sexual size dimorphism: integrating growth 

trajectories and metabolic rates 

 

Sexual size dimorphism (SSD) is common in animals, but little is known about its 

underlying mechanisms. Organisms can only grow when the energy they ingest 

surpasses their energetic needs for maintenance and activity, and the time span of an 

organism’s ontogeny should correlate with its adult size. In the crab-spider 

Mecaphesa celer (family: Thomisidae) females are approximately 1.5 times larger 

than males. We hypothesized that 1) females will grow faster than males; 2) females 

will have a lower mass-specific metabolic rate than males throughout their ontogeny 

and 3) female growth is more susceptible to the influence of diet and temperature than 

male growth. We show that M. celer’s SSD results from faster female growth over a 

longer period of time. Female and male metabolic rates did not differ, scaling with 

mass with a slope of 0.58. Diet by itself had no influence on male size but affected 

female size through an interactive effect with temperature: only females raised under 

a high diet with cool temperatures reached significantly larger sizes than females in 

the other treatments. We demonstrated that growth rate, and not simply number of 

instars, are the proximate determinants of the degree of SSD. Females may achieve a 

higher growth rate not by having lower maintenance metabolism than males, but 

through a combination of high food ingestion and low activity levels. Our results 

highlight the need for theoretical models linking the energetics of ontogenetic growth 

to variation in the fitness benefits of differing male and female sizes and behavior.  
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Introduction 

 

 Body size is one of the most important attributes of any organism, as it 

influences processes ranging from intracellular reactions to community stability (e.g. 

Gillooly et al. 2001; Savage et al. 2004; DeLong et al., 2015). In species with sexual 

size dimorphism (SSD), body size and its associated processes vary widely between 

the sexes. Differences in the balance between selection for survival and selection for 

reproduction lead to differences in female and male sizes, and the fitness benefits 

associated to different body sizes have been studied in depth in a wide range of taxa 

(Blanckenhorn 2000; Blanckenhorn 2005; Cox & Calsbeek 2009; Preziosi & 

Fairbairn 2000). Understanding the evolution of SSD, however, depends not only on 

the identifying ultimate mechanisms generating fitness benefits for differences in size, 

but also how these organisms reach drastically different sizes at adulthood despite 

sharing a similar physiology and a majority of genes (Fairbairn 1997; Badyaev 2002a; 

Teder 2013; Chou et al. 2016).  

 SSD is typically underlined by differences in growth trajectories: sexes may 

be born with different sizes, one sex may grow for longer than the other, or one sex 

may grow faster than the other (Badyaev 2002b; Blanckenhorn et al. 2007; Stillwell 

et al. 2010; Teder 2013). Differences in egg size or size at birth are extremely rare in 

arthropods (Stillwell et al. 2010; Teder 2013; but see Budriene et al. 2013 for an 

example), but not in birds (see review by Weatherhead & Teather 1994) and 

mammals (e.g. sea lions: Ono & Boness 1996 and primates: Smith & Leigh 1998). 

The difference in size at birth is, however, seldom proportional, or even congruent, 

with the degree of SSD reached at adulthood (Badyaev 2002, Weatherhead & Teather 

1994). Differences in growth length, growth rate, and a combination of both have 
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been described in mammals (Leigh & Shea 1996; Badyaev 2002b and references 

therein, Garel et al., 2006), reptiles (Shine 1994) and a vast number of arthropods (see 

reviews in Blanckenhorn et al. 2007, Stillwell & Davidowitz 2010 and Teder 2013).  

Differences in growth rates between the sexes may decouple the relationship 

between development length and size at maturity, as both sexes may reach very 

different sizes in a similar time frame (Dmitriew 2011). Growth and development also 

may be influenced by environmental factors such as diet and temperature, such that 

differences in seasonal timing or geographic location of ontogeny between the sexes 

could lead to variation in each sex’ growth and, consequently, in a species’ degree of 

SSD (Badyaev 2002a; Stillwell & Davidowitz 2010). As such, in order to understand 

the expression of SSD in a given species, we must not only determine the 

developmental trajectories of females and males, but also understand the effects of the 

environment on these trajectories.  

Understanding how growth trajectories underlie SSD raises an additional 

fundamental question: how does the larger sex fuel its faster growth? The energy 

assigned to growth depends on an individual’s energy intake (foraging) and on the 

energy spent maintaining its existing tissues (i.e. its standard metabolic rate) and 

through activity (Hou et al. 2008; Dmitriew 2011). In species with SSD, we might 

therefore predict that the two sexes will reach different adult sizes by differing in their 

metabolic expenses (i.e., energy allocated to maintenance), or in the amount of energy 

they acquire from the environment. In other words, the larger sex should have a lower 

mass specific metabolic rate than the smaller sex (e.g. Ono & Boness 1996) or a 

higher food intake (see review by Shine 1989).  

Spiders offer an ideal system in which to study the mechanisms underlying 

SSD as extreme degrees of SSD, mostly female-biased, have evolved multiple times 
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within the group (Scharff & Coddington 1997; Hormiga et al. 2000; Legrand & 

Morse 2000). In addition, spiders are easy to raise, maintain and manipulate in the 

laboratory. Despite the abundance of studies focusing on the evolution of SSD in 

spiders (see references in Chapter 1), the proximate mechanisms underlying SSD are 

still mostly unknown. Here, we aim to understand the proximate mechanisms of SSD 

in the crab spider Mecaphesa celer.  

Female M. celer are 1.3 to 2 times the body size of males, but often weigh 

more than 10 times the average male. Several crab-spiders species, including M. 

celer, are protandric (i.e., males mature earlier than females along the season – 

Muniappan & Chada 1970, Dodson & Beck 1993, Morse 2013a), so differences in 

development length may be least partially responsible for the SSD in this species. In 

previous studies of laboratory raised M. celer, differences in male and female 

developmental length correspond to two additional instars: males mature after six to 

seven molts, while females typically need 8 or 9 molts to reach maturity (Muniappan 

& Chada 1970). The degree of SSD reached at adulthood is not, however, 

proportional to the observed differences in growth length – females double in size in 

their last thee instars, but mature only a few weeks after males (Chelini, pers. obs). 

Our goals in this study are to: (1) determine the growth trajectories of female and 

male M. celer, testing the hypothesis that females grow faster than males; (2) 

determine how females and males differ in the energetics of their growth by testing 

the hypothesis that females fuel their faster and/or longer growth by having a lower 

standard metabolic rate than males; and finally, (3) determine the effect of diet and 

temperature on the growth of each sex.  
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Methods 

 

Growth trajectories 

To test the hypothesis that differences in growth trajectories underlie SSD in 

M. celer, we followed the growth of 250 M. celer spiderlings beginning at their 

second-instar (first-instar spiderlings are extremely small and fragile, and remain 

aggregated around the egg sac until their first molt). These spiderlings were born in 

the laboratory between September and October 2014. They were the offspring of 48 

females that were collected in Lincoln, NE, USA in May 2014 and mated in the 

laboratory in August 2014. We randomly selected 5-10 spiderlings from each clutch 

and housed them in individual 4 x 4 x 6 cm acrylic cages, with ad libitum water, and 

small pieces of netting for perching, in a room at 26° C and 60% relative humidity, 

under a 14:10 light:dark cycle. We checked all spiderlings for molts three times a 

week. After each molt, we photographed each spiderling with a Spot Flex® digital 

camera (Model 15.2 64 MP, Diagnostic Instruments, Inc.) mounted on a Leica® DM 

4000 B Microscope. We fed all individuals twice a week with flightless Drosophila 

melanogaster in quantities corresponding to each spiderling’s age: third instar 

spiderlings were fed three D. melanogaster, fourth instar spiderlings were fed four D. 

melanogaster, etc., We selected a subset of 30 female and 30 male spiderlings that 

successfully reached adulthood for size and growth quantifications. As spiderling sex 

can only be identified at their fifth instar, our sample size was limited by the high 

mortality rates of early instars spiderlings, whose sex was unknown. We used only 

one male and one female spiderling per family to prevent confounding genetic effects.  

We measured the cephalothorax of each spiderling at each of their 

developmental instars from the photographs taken after their molts with ImageJ 
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(Rasband 1997-2012). We calculated the age of the spiderlings in days after birth and 

kept track of the date (+/- 2 days) and number of their molts, which allowed us to 

determine the average length, in days and in instars, of each sex’s growth.  

We tested for differences in female and male growth trajectories using two 

Gamma Generalized Linear Mixed Models (GLMMs) with a log link. In one model, 

we used the size of each spiderling at each instar as the response variable, instar and 

sex as predictor variables, and the spiderling ID as a random effect. In a second 

model, we replaced the instar by their age in days. We ran these analyses using the 

function glmer in R from the package lme4 (R Development Core Team 2009, Bates 

et al. 2015). 

  

Energetics of growth: Metabolic rate measurements 

To test the hypothesis that males have a lower mass-specific metabolic rate than 

females throughout their ontogeny, we measured oxygen consumption rate of 146 

spiderlings described above using an OXY-10 micro fluorescent oxygen sensor 

(PreSens, Regensburg, Germany). To ensure that oxygen consumption measurements 

were for resting spiders, we placed each spiderling at the bottom of a 0.5 ml 

Eppendorf® microcentrifuge tube and held them in place by a circular 2.5 mm 

diameter piece of netting (allowing oxygen flow but reducing spiderling movement). 

We then placed these microcentrifuge tubes in a thermocycler at 26° C, where 

spiderlings acclimated for 30 minutes before we started recording their oxygen 

consumption. We calculated the metabolic rate of each spiderling as the slope of the 

linear regression between mass of oxygen inside the Eppendorf® tubes against time 

(mg O2/min). We used only the shallowest segment of each spiderling’s oxygen 

consumption slope for our estimate of standard metabolic rate to avoid including 
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periods of spiderling stress and for consistency across measurement. To avoid 

quantifying metabolic costs of digestion and molting, we controlled the timing of our 

measurements: we measured metabolic rates two days after a feeding day and 

between one to three weeks following their previous molt (instars vary in length from 

five to 80 days - Muniappan & Chada 1970). We randomly selected 10-20 individuals 

of each sex to be tested at each instar, with no repeated measures.  

We weighed each spiderling to the nearest 0.1 mg immediately after 

measuring their metabolic rates using an Ohaus® precision scale. Data on oxygen 

consumption rate and mass were log transformed to linearize the relationship between 

metabolic rates and size/mass. We used a linear mixed model (LMM) to determine 

the relationship between standard energetic demands and sexual size dimorphism, 

using the natural log of the metabolic rate as our response variable, sex, natural log of 

mass and their interaction as predictor variables, and spiderling family as a random 

effect. We then conducted a likelihood ratio test between this full model, a model 

with log of mass as the sole predictor variable, and a null model. We ran these 

analyses using the function lmer from R’s package lme4 and the function anova (R 

Development Core Team 2009, Bates et al. 2015). 

 

Environmental effects on SSD: Diet and temperature manipulation 

 To determine the effects of diet and temperature on the degree of SSD of M. 

celer, we subjected 1000 spiderlings to four treatments in a 2 x 2 factorial design 

involving two diet treatments (High diet versus Low diet) and two temperature 

treatments (Warm versus Cold) (Table 1). All spiderlings were born in the laboratory, 

resulting from the same mating trials described in Growth trajectories (above). 

Siblings were equally distributed among all treatments. The Warm treatment was 
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identical to the environmental conditions described above (see Growth trajectories). 

Cold treatment spiderlings were reared under temperatures that simulated mild 

seasons of the year, decreasing progressively from 26° C (September - October) to 

18° C (November - December) and to 13° C (January - April), then increasing again 

to 16° C (May - June), 18° C (July - August) and finally 20° C, with mild fluctuations 

in temperature (+/- 5° C) occurring during each of the “seasons” and lasting from one 

to three days. We used a 14:10 light:dark cycle for all treatments. High-diet 

spiderlings were fed with flightless D. melanogaster according to the schedule 

described in Growth trajectories: in quantities corresponding to each spiderling age, 

twice a week. Low-diet spiderlings were fed the same diet, but only once a week. The 

spiderlings used in our analyses of Growth trajectories and Energetics of growth were 

the same as those of our High diet – Warm treatment. Mature spiders were then 

photographed and measured following the same methods used for spiderlings (see 

Growth trajectories for details).  

 

Table 1: Summary of the diet and temperature treatments used to test the  
effects of the environment on the sexual size dimorphism of Mecaphesa celer.    
 

High diet Warm (HW) 
26° C, D. melanogaster 2x per week 

n = 250 

Low diet Warm (LW) 
26° C, D. melanogaster 1x per week 

 n = 250 
High diet Cold (HC) 

13° C to 21° C, D. melanogaster 2x per 
week 

n = 250 

Low diet Cold (LC) 
13° C to 21° C, D. melanogaster 1x per 

week 
n = 250 

  

 

We tested for an effect of diet and temperature on the degree of SSD in M. 

celer using separate linear models (LM) for females and males. We used diet 

treatment, temperature, and their interaction as predictor variables of the size of each 



63	

	

sex at adulthood. Upon finding significant effects of one or two of the predictor 

variables, we ran Tukey post-hoc tests to identify differences between the treatments. 

We ran these analyses using the function lme from R’s package lme4 (R Development 

Core Team 2009, Bates et al. 2015) and the function glht from the package multcomp 

(Torsten et al. 2008). 

 

Results 
 

Growth trajectories 

Female and male M. celer showed different growth trajectories (Fig 1). 

Females matured in 9 to 11 instars, while males matured in 6 or 7 instars. Females on 

a High diet and on constant Warm temperatures (HW) reached maturity in an average 

of 273.7 days (min = 102, max = 394), while males took on average 204 days (min = 

109, max = 345). Females and males differed significantly in the size achieved in 

each instar (Table 1), as well as in the relationship between size and age in days 

(Table 2). 

 

Table 1: Gamma GLMM testing the relation between Mecaphesa celer size at each 

developmental instar and sex. N = 304, Deviance = -520.7, 𝜒2 = 844.9, d.f = 3, p < 

0.001. 

 Estimate St. Error t P 
Intercept -0.57 0.03 -22.04 <0.001 

Instar 0.16 0.03 61.28 <0.01 
Sex 0.10 0.04 2.59 0.009 

Instar * Sex -0.03 0.005 -6.01 <0.001 
 

 

 



64	

	

 

Table 2: Gamma GLMM testing the relation between Mecaphesa celer size, age in 

days and sex. N = 304, Deviance = -216.19, 𝜒2 = 540.34, d.f = 3, p < 0.001.  

 Estimate St. Error t P 
Intercept 0.45 0.05 -9.16 <0.001 

Age (days) 0.005 0.0001 35.63 <0.001 
Sex 0.13 0.07 1.84 0.07 

Age * Sex 0.002 0.0002 -6.45 <0.001 
 

 

 

Fig. 1: Growth trajectories of female and male Mecaphesa celer. Females have up to 

five developmental instars more than males, but also grow faster.   
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Energetic demand quantification: Metabolic rate measurements 

M. celer’s metabolic rate scaled with mass with a slope of 0.58. This slope did 

not differ between females and males (Likelihood ratio test of models with and 

without the variable “sex”: 𝜒2 = 1.33, p = 0.51, Table 3, Fig. 2).  

 

Table 3: LMM testing the effect of log of mass (mg), sex and their interaction on the 

metabolic rate (mg O2 consumed/min) of Mecaphesa celer spiders along their 

ontogeny. Spiderling families were used as random effect.𝜒2 = 43.24, d.f. = 3, p = 

2.19e-09. 

 Estimate St. Error t 
Intercept -13.63 0.22 -62.74 

Sex -0.05 0.46 -0.12 
Log Mass 0.49 0.09 5.36 

Sex * Log Mass -0.07 0.28 -0.24 
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Figure 3: Metabolic rate scaling with mass of both female and male Mecaphesa celer 

at different points of their ontogeny.  

 

Environmental effects on SSD: Diet and temperature manipulation 

 Diet, temperature and their interaction affected M. celer females’ size (Table 

4). Females in the High-diet – Cold treatment were the only ones significantly 

different from those of all the other treatments (Table 5, Figure 4). Male size was not 

affected by diet, temperature or their interaction. (Table 6, Fig. 4).  

 

 

Fig. 4: Cephalotorax width of adult female and male Mecaphesa celer in two diet and 

temperature treatments. Boxes correspond to 1st quartile, median and 3rd quartile, 

whiskers correspond to the range. Within a sex, boxes with different letters are 

significantly different from each other. 
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Table 4: Linear model testing the effect of diet, temperature and their interaction on 

the size (cephalotorax width) of adult female Mecaphesa celer spiders. Multiple R-

squared:  0.2066, R-squared:  0.185, F = 9.55, d.f = 110, p < 0.001 

 Estimate St. Error t P 
Intercept 2.71 0.05 52.21 <0.001 

Diet 0.24 0.07 -3.65 0.0004 
Temperature -0.31 0.06 -5.04 <0.001 

Diet * Temperature 0.24 0.08 2.88 0.005 
 
 

 

 

Table 5: Tukey post-hoc comparisons between the size (cephalotorax width) of adult 

female Mecaphesa celer spiders in different combinations of diet and temperature. 

Treatments Estimate St. Error t P 

High Warm – High Cold -0.31 0.06 -5.04 < 0.0001 
Low Cold – High Cold -0.24 0.06 -3.65 0.002 
Low Warm - High Cold 0.31 0.06 -4.73 < 0.0001 
Low Cold - High Warm 0.07 0.05 1.32 0.55 
Low Warm- High Warm 0.001 0.05 -0.03 0.99 
Low Warm - Low Cold 0.07 0.06 -1.23 0.61 

 
 
 
Table 6: Linear model testing the effect of diet, temperature and their interaction on 

the size (cephalotorax width) of adult male Mecaphesa celer spiders. Multiple R-

squared: 0.07, Adjusted R-squared:  0.04, F = 2.74, d.f. = 116, p = 0.046 

 Estimate St. 
Error t P 

Intercept 1.46 0.02 65.46 <0.001 
Diet -0.01 0.03 -0.46 0.65 

Temperature -0.03 0.03 -0.96 0.34 
Diet * Temperature -0.03 0.04 -0.80 0.43 

 

Discussion 

 

 Our results indicate that SSD in M. celer results from a combination of 

additional instars and faster female growth. Surprisingly, this longer and faster growth 

does not seem to be fueled by lower resting metabolism, which would allow females 
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to allocate more energy to growth and less to body maintenance. On the contrary, 

female and male metabolic rates scaled with mass according to the same slope of 

0.58. Also surprisingly, diet had little to no influence on the size obtained by females 

and males at adulthood. Only females raised under a High diet with Cold 

temperatures following a seasonal pattern reached significantly larger sizes than 

females raised in the same temperature treatment but with a Low diet, or those raised 

in a constantly Warm environment. This interactive effect between diet and 

temperature on female size suggests that seasonality may play an important role in the 

magnitude of SSD. Such an effect may contribute to intraspecific variation in degree 

of SSD observed in many animal species that experience strong seasonality.  

 Our results indicate faster growth rates for females versus males, but it is still 

unclear how this faster growth rate is fueled. Although differing in many aspects, 

most models of ontogenetic growth predict a relationship between growth rate, the 

amount of energy ingested, and the cost of maintaining an organism’s existing tissues 

(e.g. West et al. 2001; Ricklefs 2003; Moses et al. 2008;  DeLong 2012). Our 

observed differences in growth rate could then be due to two main mechanisms: (i) 

different energetic supply (i.e. energy ingestion) and/or (ii) differences in energetic 

demand (i.e. in the amount of energy spent by each sex) (Dmitriew 2011). We did not 

find any evidence that differences in resting metabolism underlie SSD in M. celer. 

Resting metabolic rate represents, however, only a fraction of the energy spent by an 

organism: males and females may also differ in metabolic costs other than the 

maintenance of their existing tissues, or may differ in the energy spent through their 

activities. 

Sex-specific growth rates in M. celer could be related to differences in each 

sex’ active metabolic rate (i.e., metabolic rates reached during activity) rather than 
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standard metabolic rate (e.g.  Downs et al. 2016). Differences in the metabolism 

during exercise have been reported for sexually dimorphic arthropods (e.g. Rogowitz 

& Chappell 2000; Gäde 2002), but so far such differences have not been observed in 

spiders (Shillington & Peterson 2002). It is worth mentioning that very few studies on 

spiders have measured metabolic rates of both sexes while controlling for foraging 

state and reproductive status (two factors known to greatly influence standard 

metabolic rate – Burton et al. 2011). Those studies found contrasting results, with 

females or males exhibiting higher metabolic rates, or with no difference being found 

between the sexes (Kotiaho 1998; Walker & Irwin 2006).  

Even if metabolic rates during activity are the same for both sexes, females 

and males may also differ in their energetic expenditure simply through differences in 

behavior. In multiple sexually size dimorphic species females and males differ in their 

activity levels and overall life-history (Vollrath & Parker 1992; Vollrath 1998; Beck 

et al. 2007). The best known examples of extreme SSD are spiders whose females are 

highly specialized sit-and-wait predators, while males typically spend their adult 

instar roaming in search of females (Walker & Rypstra 2001, 2002; Foellmer & 

Moya-Laraño 2007; Dodson et al. 2015). An analysis of female and male activity 

levels throughout their ontogeny would be required to test this hypothesis in M. celer.  

 Alternatively, or in addition to differences in activity levels, SSD may be 

proximately caused by differences in the energetic supply for each sex. The energy 

spent searching for prey or foraging patches, as well as capturing each prey item, 

increases with body size following a cubic slope (Tenhumberg et al. 2000). 

Regardless of how much food is available to them in the wild, small sized organisms 

may benefit by minimizing the foraging effort necessary to reach satiation, allowing 

more time and energy to be spent in reproductive activities (Blanckenhorn et al. 1995; 
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Blanckenhorn & Viele 1999; Blanckenhorn 2005). In species where there are no 

benefits associated with being large (such as previously suggested for M. celer, see 

Chelini & Hebets 2016a, Chelini & Hebets 2016b), optimal male size would therefore 

be selected for by the time and energy benefits of being small, and would remain 

relatively fixed regardless of the foraging conditions under which males grow (Shine 

1989; Blanckenhorn 2000). Females, on the other hand, are likely to be under 

selection for larger sizes and increased food consumption due to the fecundity 

benefits associated with size (Shine 1988; Honek 1993; Preziosi et al. 1996). We can 

therefore hypothesize that female biased SSD in sit-and-wait predators such as crab 

spiders or orb-weavers is proximately caused by a combination of female higher food 

intake and lower energetic demands due to lower activity. According to this 

hypothesis, in our experiment, diet did indeed have an effect on female size, but not 

on male size.  

Only females in the High diet – Cold treatment reached significantly larger 

sizes than those in the other treatments. The interaction between diet and temperature 

on female M. celer body size is in accordance with the temperature-size rule, which 

predicts that ectotherms will develop for longer and reach larger sizes at lower 

temperatures (Atkinson 1994). As metabolic rates decrease with temperature 

(Gillooly et al. 2001; see Schmalhofer 2011 for an empirical example with crab-

spiders), females from the Cold treatment could invest more of their energetic supply 

towards growth than those of Warm treatments. However, growth is known to be 

plastic in many arthropods, varying according to temperature, diet, days between 

feeding events, photoperiod, among others (see review by Stillwell et al. 2010; 

Dmitriew 2011, but see Hirst et al., 2015). As such, the lack of difference between 

High diet – Warm, Low diet – Warm and Low diet – Cold females is likely due to a 
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complex interactive effect of energetic supply and temperature on standard metabolic 

rates and growth.  

 Our results add to the significant body of evidence indicating that SSD is 

proximately caused by differences in both the growth length and the growth rates of 

females and males (Badyaev 2002a; Esperk et al. 2007). As in many other arthropod 

species, female M. celer achieve a body size of nearly twice the size of males by 

undergoing additional molts, but we demonstrated here that growth rate, and not 

simply number of instars, are the determinants of the degree of SSD. Differences in 

standard metabolism do not underlie SSD in this species, suggesting that females 

achieve a higher growth rate through a combination of high food ingestion and low 

activity levels. Moreover, our results highlight the need for theoretical models of 

ontogenetic growth that incorporate intraspecific variation when predicting the 

relations between energetic supply, standard metabolic rates and growth. As we gain a 

better understanding of the growth trajectories leading to SSD, we must take into 

account ontogenetic differences between the sexes and develop new theoretical 

models predicting the relation between metabolism and growth in order to fully 

understand the evolution of SSD. 
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CHAPTER 4 

Field evidence challenges the relationship between early male maturation and 

female-biased sexual size dimorphism 

 

In many species in which females are larger than males (female biased sexual 

size dimorphism -SSD) males mature prior to females (i.e. protandry). Protandry may 

benefit males because it facilitates access to virgin females, particularly in 

monogamous species, and early maturation may indirectly lead to SSD due to a 

reduction of males’ development time. In contrast, selection may act directly on SSD 

through selection for large female size or small male size, with protandry as an 

indirect consequence. We use field data collected along the entire reproductive season 

of a crab spider, Mecaphesa celer, to test three predictions of the mating opportunity 

hypothesis: 1) males mature prior to females in the field; 2) the proportion of virgin 

females decreases rapidly along the season, so early-matured males have an 

advantage over late-matured males; and 3) early-matured males will be smaller than 

late-matured males, indicating a relationship between early male maturation and 

female biased SSD. Maturation times of males and females collected throughout the 

season show a clear pattern of protandry. The proportion of virgin females decreased 

rapidly in the first weeks of the season, then increased towards the end of the season. 

Size measurements indicate a pattern in which both sexes’ size peak before the middle 

of the reproductive season, and then decrease. Our results provide partial support for 

the mating opportunity hypothesis. SSD seems to be a consequence of protandry in 

this species, but the high plasticity in female and male growth rates challenges the 

assumption that SSD in spiders is only a consequence of selection for early male 

maturation. 
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Introduction 

 

Notable differences in size between females and males of a species, or sexual size 

dimorphism (SSD), are typically attributed to selection for survival and reproduction 

balancing out differently for each sex (SSD equilibrium model: Blackenhorn 2000; 

Blackenhorn 2005). The evolution of male-biased SSD, i.e. males being larger on 

average than females, is common in species with intense direct male-male 

competition (see Fairbairn 1997 and references therein), while female-biased SSD, 

where females are larger on average than males, is expected to evolve due to the 

fecundity benefits of large female size (Shine 1988, 1989; Preziosi et al. 1996).   

Across taxa, female-biased sexual size dimorphism is often associated with 

protandry, or males reaching sexual maturity before females (Blanckenhorn 2000). In 

protandric species, early maturation should facilitate male access to virgin females 

and is particularly important in monogamous species or species with first male sperm 

priority (Wiklund & Fagerström 1977; Fagerström & Wiklund 1982; Blanckenhorn et 

al. 2007). Protandry may, however, also lead to intense competition for mates: 

strongly male-biased operational sex ratios early in the reproductive season lead to 

high levels of male-male competition that should slowly decrease as more females 

mature and the sex ratio becomes more equitable or even female biased (Vollrath & 

Parker 1992; Legrand & Morse 2000). The benefits of protandry therefore vary 

greatly with the synchrony of female maturation: if all females mature in a short 

window of time, males benefit by maturing earlier. If female maturation is spread 

along the season, males may find virgin females at any moment, decreasing the 

benefits of early male maturation. As such, the male fitness benefits of protandry 

depend on the timing of their own maturation relative to the females’ and relative to 
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the maturation of other males (Holzapfel & Bradshaw 2002; Kasumovic & Andrade 

2009).  

A strong relationship between protandry and female-biased sexual size 

dimorphism has often been predicted theoretically, (e.g. Wiklund & Fagerström 1977; 

Abrams et al. 1996; Alcock 1997; Morbey 2013) and observed empirically (e.g. 

Alcock 1997; Stillwell et al. 2010; Smith & Brockmann 2014). Multiple hypotheses 

have also been proposed to explain the evolution of protandry (see review by Morbey 

& Ydenberg 2001), and two of these relate directly to the evolutionary relationship 

between protandry and SSD. First, the constraint hypothesis predicts that protandry is 

a by-product of selection for another trait, such as large female size (e.g. Matsuura 

2006). According to this hypothesis, SSD and protandry would only evolve together if 

females’ and males’ growth rates are fixed, i.e., not plastic. Selection for large female 

body size (and/or small male body size) would therefore require longer female 

growth. Second, the mating opportunity hypothesis suggests that early male 

maturation is directly selected for, and female-biased SSD evolves as a by-product of 

such selection. Comparing these two hypotheses, female-biased SSD may be 

considered either a cause or a consequence of protandry.    

Spiders are renowned for their frequent female-biased SSD (Prenter, Elwood & 

Montgomery 1998; Wilder, Rypstra & Elgar 2009), with some of the most extreme 

examples being found in orb-weaver (Araneidae) (Hormiga et al. 2000) and crab 

spiders (Thomisidae) (e.g. Chelini & Hebets 2016). As many species of crab spiders 

have low remating rates and exhibit no mate choice (Morse 2007a; Chelini & Hebets 

2016), selection for a shorter development and scramble competition for virgin 

females are assumed to drive SSD in this family  (Dodson & Beck 1993; Legrand & 

Morse 2000; Morse 2013a). In other words, the mating opportunity hypothesis is 
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commonly invoked to explain the female biased SSD in crab spiders, as SSD is 

presumed to be a consequence of selection for early male maturation. In this study we 

use detailed field observations through the season to explore the relationship between 

protandry and SSD in a flower-dwelling species of crab spider, Mecaphesa celer.  

Previous results from laboratory rearing and behavioral experiments provide 

mixed support for the mating opportunity hypothesis in M. celer. Females of this 

species are 1.5 to 2 times the size of males and may weigh up to 10 times the males’ 

mass. In the laboratory, female M. celer have two to four developmental instars more 

than males, corresponding to an average difference of 70 days between male 

maturation and female maturation (Chelini et al. Chapter 3). Prior studies have found 

that female M. celer are only receptive to remating during a short window of time, 

with remating rates decreasing from 85 % to 15 % over two days after their first 

copulation (Chelini & Hebets 2016 in press). As the benefits of protandry are tightly 

associated with female monogamy, such results support the hypothesis that protandry 

is directly selected for in this species. The same study, however, also found that when 

females do mate with multiple males, second males may have a slight advantage in 

terms of sperm priority (Chelini & Hebets 2016 in press), which contradicts the 

mating opportunity hypothesis. Nothing is currently known about the degree of 

protandry or on the intensity of male-male competition in the field. 

In this study, we use field data collected along an entire reproductive season to 

test three prediction of the mating opportunity hypothesis in M. celer. If SSD in M. 

celer is a consequence of selection for adaptive protandry (i.e. mating opportunity 

hypothesis), then we predict: 1) males mature prior to females in the field; 2) the 

proportion of virgin females decreases rapidly along the season, so late-matured 

males have fewer mating opportunities than early-matures males; and 3) early 
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maturation leads to a reduction in male size, so early-matured males should be smaller 

than late-matured males. 

 

Methods 

 

Field observations 

We followed a population of Mecaphesa celer from a 20 000 m2 tall grass 

prairie patch at Holmes Lake park, Lincoln – NE, USA in 20 bi-weekly surveys 

between May 13th and July 31th 2015. Female and male M. celer are typically found 

on top of flowers during the warmest hours of the day. During each field survey we 

sampled all plants bearing flowers with beat sheets and sweeping nets, starting at 

12:30 h. We aimed to collect at least 80 spiders per survey, or as many as we could 

get in four hours of collecting effort. For all M. celer individuals we found, we 

recorded their approximate age (based on their size), developmental status 

(mature/not mature), and sex (female, male or unknown, as sexual dimorphism 

becomes apparent only after the fifth instar). To obtain accurate measurements of 

size, we placed each individual in flat 2 x 2 cm sealable plastic bags and 

photographed them against millimeter graph paper. At the end of each survey trip we 

released all spiders in the general area and on the flower type of their original 

collection.  

To estimate the likelihood of encountering a virgin female along the season, 

on the last survey of each week we randomly selected five to eight adult females to 

bring to the laboratory and be allowed to lay egg sacs. We calculated the proportion 

of females collected each week that laid fertilized egg sacs in the laboratory, and used 
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it as a proxy for the proportion of females that were already mated in the field each 

week. In the laboratory, we housed these females individually in 4 x 4 x 6 cm acrylic 

cages in a room at 26° C and 60% relative humidity, under a 14:10 light:dark cycle. 

We provided them with ad libitum water and small pieces of netting for perching. We 

fed field collected females twice a week with two juvenile crickets  (Acheta 

domesticus, 1 mm, Ghann’s Cricket Farms – GA, USA), and monitored them every 

two days to check for egg sacs. Once females laid their egg sacs we stopped feeding 

them until the spiderlings had hatched and dispersed (females guarding egg sacs will 

not eat, and crickets may prey upon eggs – Chelini pers. obs.). Upon spiderling 

dispersion (3-5 days after egg sac hatching) we separated them from the mother, 

counted them, and sacrificed them by freezing. We returned the mothers to their cages 

and to their normal feeding schedule until they laid another egg sac, or until their 

natural death. We sacrificed all remaining females by freezing on the 18th of 

December 2015, after temperatures in the field had dropped below freezing.    

To determine the relationship between timing of male maturation and degree 

of SSD we measured all adult individuals found during each survey. We measured 

each female’s and male’s cephalothorax width (the most appropriate measure of body 

size in spiders with SSD - Foellmer & Moya-Laraño 2007) on the photographs taken 

in the field using the software Image J (Rasband 1997-2012). 

Statistical analyses 

Prediction 1 - Males mature prior to females in the field 

We tested whether males do indeed mature earlier than females in the field, 

with a binomial Generalized Linear Model (GLM), using the proportion of adult 

individuals as a response variable and the individuals’ sex, the Julian date of each 
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survey, and their interaction as predictor variables.  

 

Prediction 2 – The proportion of virgin females decreases rapidly along the season 

We tested whether the proportion of virgin females decreases along the 

reproductive season with a binomial GLM with the proportion of females brought to 

the laboratory that laid an egg sac as the response variable and the Julian date as the 

predictor variable. To combine these laboratory results with our field observations, we 

multiplied the proportion of pregnant females in the laboratory by the number of 

females found in the field, obtaining a rough estimation of how many females could 

already be mated at any given time in the field. The analyses of Predictions 1 and 2 

were conducted with the functions glm from R’s package lme4 (R Development Core 

Team 2009, Bates et al. 2015). 

 

Prediction 3 - Early matured males are smaller than late-matured males  

We tested the relationship between male size and timing of maturation in M. 

celer with two Generalized Additive Models (GAMs), one for females and one for 

males, using the adult individuals’ size as a response variable and a smooth function 

of the Julian date as a predictor variable. If SSD is a by-product of protandry, we 

expect male size to increase along the season (with early matured males being smaller 

than late matured males). These analyses were conducted with the function gam from 

R’s package mgcv (R Development Core Team 2009, Wood 2011). 
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Results 

 

Prediction 1 - Males mature prior to females in the field 

 We sampled a total of 1340 juvenile and adult M. celer throughout the season. 

In each field survey we collected between 96 and 37 individuals, with numbers 

declining abruptly from mid to late July (late season). Male M. celer mature 

significantly earlier than females in the wild (Table 1, Fig. 1, Fig. 2.). The operational 

sex ratio was male-biased throughout most of the season, with the exception of two 

weeks in which females were the most abundant sex (Fig. 1B). 

 

Figure 1: (A) Proportion of mature Mecaphesa celer individuals of each sex found 

along the reproductive season (May 13th to July 31st 2015). (B) Number of adult 

females and males per sex along the season. The grey area corresponds to the 

estimated number of mated females, based on the proportion of pregnant females 

collected in each field trip. 
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Table 1: Binomial GLM model on the probability of being mature according to sex 

and time along the season. Residual deviance = 1355.31, d.f. =  3, Deviance = -

449.81, p < 2.2e-16. 

 
Estimate St. Error z p 

(Intercept) -18.70 1.58 -11.82 <2.00E-16 

Sex 6.35 2.12 2.99 0.002 

Julian date 0.10 0.01 11.35 <2.00E-16 

Sex * Julian date -0.03 0.01 -2.40 0.02 

 

 

Fig. 2: Probability of finding mature female and male Mecaphesa celer in the wild 

along the reproductive season. Lines indicate the probability slope predicted by a 

binomial GLM and the shaded areas correspond to the 95% confidence intervals. 

 

Prediction 2 - The proportion of virgin females decreases rapidly along the season 
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(i.e., virgin females) was very low early in the season, indicating that females do 

become rapidly mated, and increased significantly until late July (Table 2, Fig. 3). 

The highest proportion of virgin females in the field (i.e., lowest proportion of 

pregnant females) corresponds to the end of the reproductive season (Fig. 3).  

 

Table 2: Binomial GLM model on the proportion of virgin females along the season. 

The proportion of virgin females increases with time. Residual deviance = 69.46, d.f. 

=  1, Deviance = 6.38, p < 0.01. 

 Estimate St. error z P 
(Intercept) 12.9669 5.13515 2.525 0.011 
Julian date -0.0626 0.02627 -2.383 0.017 

 

 

Fig. 3: Probability of females being pregnant along the reproductive season. The solid 

line represents the probability as predicted by the binomial GLM, and the grey area 

represents the 95% confidence interval.   
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Prediction 3 – Early-matured males are smaller than late-matured males  

 Across the 338 adult female and male M. celer individuals that we measured 

throughout the season, female and male size peaked in mid to late June, then 

decreased from late June to late August (Males GAM:  F = 14.76, p = 3.06e-09, 

deviance explained = 21.7%; Females GAM: F = 8.25, p = 7.07e-05, deviance 

explained = 15.4%). The degree of SSD (average female/average male size ratio) 

remained similar throughout the season, varying from 1.48 in mid June to 1.66 in late 

August. (Fig. 4) 

 

Fig. 4: Female and male Mecaphesa celer size throughout the season. Lines represent 

the values predicted by a GAM. Purple and green shaded areas represent female and 

male 95% confidence intervals, respectively.  
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Discussion 

 

Field data collected throughout the season on a population of the female-

biased SSD crab spiders Mecaphesa celer demonstrate that this species is clearly 

protandric, as males mature significantly earlier than females. Nearly all females 

became immediately pregnant after maturation in the first weeks of the season, 

indicating an advantage of early-male maturation. Surprisingly, however, close to half 

of the available females remain unmated in the last weeks of the season. As such, the 

proportion of virgin females decreased abruptly in the first weeks of the season, then 

increased towards the end of the season. Size measurements indicate a pattern in 

which the largest individuals of both sexes mature in mid to late June (mid season), 

after which females and males mature at progressively smaller sizes until the end of 

the season.  

The difference in maturation times between females and males is much shorter 

in the field that what had previously been reported in laboratory experiments (Chelini 

et al. Chapter 3). Nonetheless, males matured earlier than females, with close to 90% 

of males being mature one week prior to the peak of female maturation, supporting 

our first prediction. Our seasonal size and development data provide no support for 

the constraint hypothesis, which poses that selection for large female size selects 

indirectly for early male maturation due to fixed growth rates of females and male. 

Indeed, the discrepancy between degree of protandry previously reported in the 

laboratory (Chelini et. al, Chapter 3) and the degree of protandry seen in the field 

indicates that female and male growth trajectories are not fixed, but rather very 

plastic. 
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 Our field data demonstrate that the majority of females become mated very 

rapidly after their maturation. These results match our second prediction, indicating 

higher competition for virgin females early in the season, and thus support the mating 

opportunity hypothesis for the evolution of protandry (Fagerström & Wiklund 1982; 

Morbey & Ydenberg 2001). Females seem however to mature throughout the season, 

so late-matured males could still access virgin females. Early-matured males are 

therefore likely to face higher levels of male-male competition than do males that 

mature later in the season. In closely related species of crab spiders with similar life-

histories, late-matured females tend to remain unmated as the number of males 

drastically decreases towards the end of the season (Morse 2013a). In M. celer, 

however, the operational sex-ratio remains male-biased during the entire season. Such 

male-biased sex-ratio suggests that the intensity of male-male competition is 

constantly high, and does not decrease significantly towards the end of the season. If 

females mature asynchronously throughout the season, and access to virgin females is 

the only benefit in play, males may present a mixed strategy, with some males 

maturing early and securing copulations with virgin females at the beginning of the 

season, and some males maturing later and benefiting from the higher proportion of 

virgin females found in the last weeks of the season. Late-matured males, however, 

likely face other costs in addition to competition for virgin mates. First, mate-

searching costs are likely higher in the end of the season, as the total number of 

females available in the population decreases drastically (Fig. 1B), increasing the 

difficulty of locating females on isolated flowers among dense prairie vegetation. 

Second, offspring from early-matured males are likely to hatch sooner and have a 

longer period of time to forage before entering winter diapause. Early-matured males 

may therefore benefit from greater offspring survival than late-maturd males, simply 
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due to the timing of their offspring’s birth. Finally, male life-span also influences the 

benefits obtained through protandry as it determines the length of the males’ 

reproductive season (Wiklund & Fagerström 1977; Morbey & Ydenberg 2001). As 

sexual cannibalism is relatively infrequent in M. celer, males may mate multiply 

(Chelini & Hebets 2016) and, in laboratory conditions, can live for more than two 

months (MC Chelini pers. obs.). Early-maturation thus may grant males access to a 

larger number of virgin females throughout the season, and not simply in the days 

following maturation of the first females. Nonetheless, these results raise an 

interesting and seldom tested aspect of protandry - whether the benefits obtained by 

maturing early in the season could be offset by the intense competition for mates 

(Holzapfel & Bradshaw 2002; Kasumovic & Andrade 2009). 

The variation in female and male M. celer size throughout the season is further 

evidence that protandry is not an indirect product of selection for SSD in this species 

(i.e. refuting the constraint hypothesis). M. celer spiderlings may be born from three 

weeks to three months after copulation occurs, depending on the female’s food intake 

and on the number of egg sacs that a female lays (Chelini, pers. obs.). As such, in 

order to mature between early June and late July, spiderlings may have different 

amounts of time to develop depending on when were they born. In arthropod species 

with winter diapause, such as M. celer, late-born individuals are likely to be 

constrained to shorten and/or speed up their development to mature prior to the end of 

the reproductive season, and late-matured tend to be smaller than early-matured ones 

(Goulson 1993). Our results follow this pattern, with both males and females 

exhibiting smaller sizes at the end of the season. If both females and males regulate 

the timing of their development based upon the progression of season, they could also 

regulate their development in order to mature simultaneously. As such, it is unlikely 
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that protandry evolved as a by-product of selection for SSD.  

Interestingly, the variation of female and male growth trajectories also calls 

into question the mechanism(s) underlying the relationship between the mating 

advantage hypothesis and SSD: if females are able to accelerate their growth and 

reach 1.5 to 2 times the males’ body size in approximately two weeks, males could 

likely reach larger sizes and still mature prior to females in the field (see theoretical 

predictions of Nylin et al. 1993). Small male size may therefore in itself be selected 

for through differences in survival (De Mas et al. 2009; Vollrath & Parker 1992), 

increased agility (Corcobado et al. 2010), or simply smaller foraging requirements 

(Blanckenhorn et al. 1995). Future research should explore these potential additional 

benefits of small male size. Ultimately, our maturation time and size data highlight 

the benefits of protandry in a species with female-biased SSD, but challenge the 

assumption that SSD in spiders is simply a consequence of selection for early male 

maturation (e.g. (Elgar & Bathgate 1996; Maklakov et al. 2004; Danielson-François 

et al. 2012).  

 Spiders are an ideal study systems to explore the relationships between 

female-biased SSD and protandry due to their frequently observed co-occurrence 

across diverse spider taxa, as well as the variety of mating systems and life histories 

in which these two traits are found. Our results with M. celer add further support to 

the notion that protandry is not a by-product of selection for large females size, but 

rather the main driver of female-biased SSD evolution in spiders (Kasumovic and 

Andrade 2009; Elgar & Bathgate 1996; Legrand & Morse 2000; Danielson-François 

et al. 2012; Neumann & Schneider 2015, but see Maklakov et al. 2004). Nonetheless, 

the hypothesized relationship between SSD and degree of protandry has been 

theoretically (Nylin et al. 1993) and empirically shown to be weak in a variety of 
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arthropods species, including spiders (Cueva del Castillo & Nunez-Farfan 1999, our 

own results, see review by Blanckenhorn et al. 2007). We suggest that adaptive 

protandry is likely not the only factor leading to female-biased SSD, but small male 

size itself may provide fitness advantages. Integrative studies focusing on multiple 

sources of natural and sexual selection across a diverse set of taxa are required to 

clarify the relationship between protandry and female-biased SSD. 
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