Gloadl 456
alall)y Mad) el 5058
3y daala

Ul p gl Al

ol AL g0 ol Bl |yl b ol Jal cilie 3l s

3 gaal) 3aaata

A (2 A e o jlu

Vol dras / Clidl o glall IS /0buialy) asle a5 IS

Saky Arala-Ciliall o glall 440S s)

Glaaby)l agle & Hiualall saled cildhaia (e e > (o8

sl sl

cihaa jpaia a2 ?\

VEvE[sl

ua.\a'a.ml\

Q2 pleg Al &l Ll u?‘*‘wbﬁ lwb.d %L‘ 303#5/\ 032 (3

38 gl e b LS ydyp cVsles @

338 G 319 ol Adad) ALK Lydgp ¥olae @

(dnaflly Ao cdiadane)sgad sonmme ol Al Jlps (e e ey

e rellldl ddlal 5,0 J0Y b

L S¥olae Aot 7 W1 sl e AT el ¥slas LSS

g lall psy base Lklao @ U3 sayy G g5l e LS

3N 8 ygny 380y Bl e Heed) o) s & s Je 5,V

S s ¢ NS 52 38 e il 45 a8,y 2 o Sl ‘%ﬁu
oy lall odg) o)l

o SU(MATLAB\ R12, 2012)isk el lly Slo | 41874 ’\f;\j

el oy Lall

Chapter one: Preliminary Concepts and Analytic Methods

1.1Introduction:

Integral Equation s occur in natural way in the course of obtaining
mathematical solution to mixed boundary value problems of mathematical
physics .of the many possible approaches to the reduction of a given mixed

boundary problem to an integral equation[24].

This chapter is organized as follows: In section (1.2), we study the
classification of integral equations, and some basic concepts are given. In
section (1.3), the mathematical theory of the existence and uniqueness
theorem for linear VIE's will be considered. In section (1.4), some
analytical methods are considered to find the solution of linear VIE's of the
second kind and VIE's with weakly singular kernel .In section (1.5), a
discussion about using analytical method are given. In section (1.6), we
give the aim of this thesis and finally in section (1.7) some test examples

are given,
1.2 Classification of Integral Equations

We will mention some basic definitions for integral equations,
Definition (1.1): [44]

An integral equation is that equation in which the unknown function
u(x) appears inside an integral sign .The most standard type of integral

equation in u(x) is of the form:

b(x)
h()u(x) = f(x) + A j k(x,t)u(t)dt ,x € [a,b] (1.1)
a(x)

where a(x) and b(x)are the limits of integration, A is a constant parameter,

Chapter one: Preliminary Concepts and Analytic Methods

and k(x,t)is a known function of two the variables x and t, called the
kernel of the integral equation. The functions f (x) and k(x, t) are given in
advance. It is to be noted that the limits of integration determined as a(x)

and b(x) and may be both variables, constants, or mixed.

Definition (1.2): [18]
An integral equation (1.1) is called non-linear integral equation,
if the kernel k(x, t) is given in the form k(x, t, u(t)).
Definition (1.3): [9]
The linear integral equation (1.1) is called homogenous, if f(x) = 0,
otherwise it is called non- homogenous.
Definition (1.4): [24]

The equation (1.1) is called linear integral equation of the first kind,
if h(x) = 0,whileif h(x) = 1,it called linear integral equation of the

second kind, otherwise it is called of the third kind .
Definition (1.5): [34]
The integral equation is called Volterra integral equation, when a(x)

= a and b(x) = x, where a is costant,that is:

X

h(x)u(x) = f(x) + Af k(x,t)u(t)dt ,x € [a,b] (1.2)

a

Chapter one: Preliminary Concepts and Analytic Methods

Definition (1.6): [9]

The integral equation is called Fredholm integral equation, when
a(x) =a ,and b(x) = b, where a and b are constants ,which has a

form:

b
h(x)u(x) = f(x) + 7\[k(x,t)u(t)dt ,x € [a,b] (1.3)

Definition (1.7): [18]
If the kernel in integral equation (1.1) depends on the difference (x — t),

then it called difference kernel and the equation is called integral equation

of convolution type .i.e, k(x,t) = k(x — t)
Here we can apply laplace transform to get the exact solution.
Definition (1.8): [18]

The kernel is called degenerate or (sparable) kernel, when the kernel

May be decompose as follows:

n

k(o t) =) ax (b

k=1
Definition (1.9): [44]
An integro differential equation is an equation involving derivative

and integral togather with unknown function u(x) which is of the form:

-1 b(x)
wio® + Zk POW) = £ + f . kCx) u(t)dt (14)
J= a(x
dlu

h ©)) =
where uY’(x) Tl

Chapter one: Preliminary Concepts and Analytic Methods

Definition (1.10): [34]

The integral f:f(x) dx is called improper if.

(i) a=o0 or b=w0 or both
(i) f(x) is unbounded at one or more points of a <x <b (there points are
called singular points)Moreover, it is called singular if the kernel k(x, t)
becomes unbounded at one or more points in the interval of integration.
*Integral corresponds to (i) and (ii) are called improper integrals of the 1°
and 2" kind respectively

* Integral with both (i) and (ii) are called improper integrals of the 3 kind.

Definition (1.11): [34]

H(x,t)
(x—&)%

If the kernel k(x, t) is in the form k(x,t) =

Where H is bounded in D :a < x < band a <t < b with H(x,t) # 0and
ais constant s.t 0 < a < 1then the integral equation is called weakly

singular. The equations of the form:

flx) = jox (xu_(tt))a dt 0<ac<l. (1.5)

or of the second kind

u(t)
(x —)

X
u(x) = f(x) +f dt 0<ac<l. (1.6)

0
are called generalized Abel’s integral equation and weakly singular

integral equations respectively. For o = 1/2

fo = [O g

0 (x —t)2

Chapter one: Preliminary Concepts and Analytic Methods

is called the Abel’s singular integral equation .We will focus our concern

on equation of the form:

t

th1
u(x) —f po u(t)dt = f(x), x€][0,T]
0

which is Volterra integral equations of the second kind with weakly
singular kernel. Where u(t) is unknown function and f is known function.
Where 0< p<l .However, there is a singularity at t=0 and s=0 for any

positive value of t.

In this thesis we will consider the two following problems:

= Linear Volterra integral equation of the Second kind (VIE's) with A

=1,0f the form:

ulx) = f(x) + j k(x, t)u(t)dt (1.7)

= Linear Volterra integral equations of the Second kind with weakly

singular kernel, of the form:

xt#_1
u(x) —] pon u(t)dt = f(x), x€][0,T] (1.8)
0

1.3 Existence and Uniqueness:

In this section, we will try to impose a certain conditions in order to
prove the existence and unigeness theorem for integral equation to be
applied to linear VIE's of the second kind. Before we prove existence and
unigueness, we present some definitions; background and review which we

will need to prove the main results of this section.

Chapter one: Preliminary Concepts and Analytic Methods

Definition (1.12): [8]

Let{f,,(t)} be a sequence of functions from an interval [a,b] to real

numbers, then:

e {f,(t)} isuniformly bounded on [a,b] if there exists M such that
n a positive integer and t € [a, b] IMply|f,,(t)] < M.

e {f,(t)} is equicontinuous if for any € > 0 there exists
& > 0,such that :

[n is a positive integer,t;, t, € [a,bland|t; — t,| < 8] imply
[fa(t1) — fa(t2)] <€

Theorem (1.1): [8]

Let (t,,x,) € R™! and suppose there are positive constants a,b and
M, such that D={(t,x):|t —ty,| < b},G:D - R™ is continuous, and
|G(t,x).| < M,if (t,x) € D Then there is at least one solution x(t)of:

x'=G(t x),x(ty) = xg (1.9)
and x(t) is define for |t — t,| < T with T=min{a, b, M}
Definition (1.13): [27]

Let U ¢ R™1and G: U - R™1 we say that G satisfies a local lipscitz
condition with respect to x, if for each compact subset M of U there is a

constant k such that (t, x;)and (t, x,) in M implies:

1G(t,x1) = G(t, x2)|< K|x1-X,] (1.10)

Chapter one: Preliminary Concepts and Analytic Methods

Theorem (1.2): [8]

Let the conditions of theorem (1.1) hold and suppose that there is a

constant L such that for all (¢, x,), (t, x,) € D implies:
|G(t,x1) — G(t,x3)|< L|x;_%x5|

Then (1.9) has only one solution.

Definition (1.14): [27]

A pair (£, P) is a metric space if £ is a non-empty set and p: £ x £

— [0, o) such that when y, z and u are in £, then:
a) P(y,z) = 0and P(y,y) = 0.

b) P(y,z) = P(z,y).

¢) P(y,z) < P(y,u) + P(u, 2).

Definition (1.15): [8]

Let (8, P) be a metric space and A: £— £ the operator A is a

contraction operator if there is an a € (0,1) such that:
x € Landy € L imply P[A(x),A(y)] < aP(x,y)
Theorem (1.3): (contractive mapping principle) [8]

Let (2 p) be a complete metric space and A: £ —» £ a contraction

operator. Then there isa unique @ € 2with A () =0 .
Theorem (1.4): [8]
Leta,b and L be positive number, and for some fixed a € (0,1),define

¢ = ab. Suppose:

Chapter one: Preliminary Concepts and Analytic Methods

a) f is continuous on [0, a], also intgrable and bonded and satisfy
Lipshitz condition.
b) kiscontinuous on U={(t, s, x) : 0< s,t < aand [x — f(t)| < b}
c) k satisfies Lipshitz condition with respect to x on U
|k(t,s,x) = k(t,s,y)| < L|x —y|
if (t,s, %), (t,s,y) € U. If M =*** |k(t, s, x)],
then there is a unique solution of:

u()= £ +J; k(t,s,u(s))ds

on [0,T],where T=min{a,%, c}.

1.4Analytical Methods for Solving VIE's:

In this section, some methods which have been used for solving linear

VIE's of second kind and VIE'S with weakly singular kernel have been

studied and illustrated by examples.
1.4.1 Solution of Linear VIE's of the Second Kind:[44]

We will first define Volterra integral equations of the second kind

given by:

ulx) = f(x) + ka(x, u(t)dt a<x<bh

The unknown function u(x), that will be determined, occurs inside and
outside the integral sign. The kernel k(x, t) and the function f(x) are given
continues functions.

1.4.1.1Adomain Decomposition Method:[44]

The Adomian decomposition method (ADM) was introduced and
developed by George Adomian.The Adomian decomposition method

consists of decomposing the unknown function u(x) of any equation into a

Chapter one: Preliminary Concepts and Analytic Methods

sum of an infinite number of components defined by the decomposition

series:

[00]

u(x) = Z u, (x) (1.11)

n=0

or equivalently

u(x) = up(X) + ug (X) + up(x) +- - -
where the components u,,(x),n = 0 are to be determined in a recursive
manner. The decomposition method concerns itself with finding the
components individually; we substitute (1.11) into the Volterra integral

equation to obtain

(00]

D@ = f@ + [k@0 O un @t (1.12)
a n=0

n=0
The zeroth component u,(x) is identified by all terms that are not included
under the integral sign. Consequently, the components u;(x), j=1 of the
unknown function u(x) is completely determined by setting the recurrence

relation:

ug(x) = f (x),

Up1(x) = j k(x,t) u,(t) dt ,n=0 (1.13)

a
Example (1.1):[44]
To Solve the following Volterra integral equation:

u(x) =1- jx u(t) dt (1.14)

0
where f (x) = land k(x,t) = —1,

Substituting decomposition series (1.11) in to both side of VIE (1.14)

gives,

Chapter one: Preliminary Concepts and Analytic Methods

iun(x) =1- J:Zun (t)dt

n=0

We identify the zeroth component by all terms that are not included under

the integral sign. Therefore, we obtain the following recurrence relation:
u’O(x) = 1!

X

>

Upan () = _J u(t) dt k>0
0

so that

uy(x) =1,

u1(x):—fx uo(t) dt =f01dt =—x ,
0

x X X
0

x x t2 x3
Uz (x) = — u,(t) dt =—j o dt =——,
3(x) jo T 31
x x t3 x4
u,(x) = — U3(t) dt =—j - = dt =—,
4(%) jo T 41
And so on. Gives the series solution
x2 x3 x* X At .
u(x)=1—-x+ STt =e Which is the exact solution

for equation (1.14).
1.4.1.2 The Successive Approximations Method:[9,44]

The successive approximations method, also called the Picard iteration
method .This method solves any problem by finding successive

approximations to the solution by starting with an initial guess, called the

10

Chapter one: Preliminary Concepts and Analytic Methods

zeroth approximation. As will be seen, the zeroth approximation is any
selective real-valued function that will be used in a recurrence relation to
determine the other approximations. The successive approximations

method introduces the recurrence relation

u,(x) = f(x) + fx k(x,t) u,_,(t) dt ,n=1 (1.15)

where the zeroth approximation u,(x)can be any selective real valued
function. We always start with an initial guess for u,(x),mostly we select
0, 1, x for uy(x), and by using (1.15), several successive approximations

uy (x), k = 1 will be determined as:

u(x) = f(x)+ Jxk(x, t) uy(t) dt
() = fO) + j TG D) w () de

us(x) = f(x)+ Jxk(x, t) u,(t) dt

un(x) = f(x) + j xk(x, t) Uy (t) dt

The successive approximations method or the Picard iteration method will
be illustrated by the following example.
Example (1.2): [44]

To solve the following Volterra integral equation by using the
successive approximations method,

1

1 X
_ 2
ulx)= -1+e*+ 5 e* — Ejo tu(t) dt (1.16)

For the zeroth approximation u, (x), we select
11

Chapter one: Preliminary Concepts and Analytic Methods

uy(x) =0,

We next use the iteration formula

1 1r*
Up(x) = =1+ e* +§x2ex _Ef tu,(t)(t) dt ,n=0 (1.17)
0

Substituting u,(x) in equation (1.17), we obtain

1
u(x) = —1+e*+ Exzex

1o, x 5 , 1,
u,(x) = —3+Zx +e <3—2x+1x 7%)

x? x3 x*
u3(x)=x(1—x+i—§+z+---),

Une1 () = x(1 —x+’;—7—’;—7+’;—‘:+ -+) = xe~*. Which is the exact

solution for equation (1.16).

1.4.1.3 The Laplace Transformation Method: [9,18,44]

The Laplace transformation method can be used for solving integral
equation, It was stated that if the kernel depends on the difference (x — t)

.Then by taking Laplace transform for both sides of VIE's we find:

U(s) =F(s)+ K(s)U(s) (1.18)
Where U(s) = L{u(x)}, K(s) = L{k(x)}, F(s) = L{f (x)}

The solution of u(x) is obtained by taking the invers of Laplace

transform of

12

Chapter one: Preliminary Concepts and Analytic Methods

F(s)
U(S)zl——l((S) ,K(S):/:O
Then we find
F
) = 1 gy

This method will be illustrated by example (1.3).
Example (1.3):[44]
To solve the following Volterra integral equation:

u(x)=1- fx(x —t)u(t) dt (1.19)
0

Where f (x) = 1land k(x,t) = (x — t), Taking Laplace transforms of both
side of equation (1.19) gives:

L{u(x)} = L(1) — L{(x) L)},
So that
UEs) = - UG

S
1+S2

U(s) =

By taking the invers of Laplace transform, of U(s), we obtain that

u(x) = cosx,which is the exact solution for equation (1.19).

1.4.2 Solution of Linear VIE's of the Second kind with weakly
singular kernel[10,11,20]

We consider the second kind VIE's with weakly singular kernel

13

Chapter one: Preliminary Concepts and Analytic Methods

t (-1
u(x) — i u(t)dt =f(x), x€][0,T]

0
where 0< p<1 and f is known function. However, there is a singularity at

t=0 and s=0 for any positive value of t.
1.4.2.1 Analytic Method

In [10] the author gives suggestion for the analytic solution to solve

linear VIE's of the second kind with weakly singular kernel.

Lemmal.l: [10]

(@ If0<u<1andf e C0,] (with f (0) =0 if u =1) then VIE's of the
second kind with weakly singular kernel (1.8), has a family of

solution u € C [0, t]

t

u(t) = ot * + f(t) +y + t17 f sF2(f(s) = f(0))ds, (1.20)

0

where

1 .
(7 @ i<t w2

0 if u=1,
and c, is an arbitrary constant. Out of family of solutions there is one
particular solutionu € C[0,t].Sucha solution is unique and can be
obtained from (1.20) by taking ¢, = 0.

(b)ifu > 1and f € C™ [0,t],m = 0,then the wunique solution u €
c™[0,t] is:
t
u(t) = f(t) + tl_“fs”‘zf(s)ds (1.22)

0

14

Chapter one: Preliminary Concepts and Analytic Methods

We note that (1.22) can be obtained from (1.20) with ¢, = 0. Indeed, from
it follow (1.20) that

co = lim t* Tu(t),
0 t—-0+ ()

and this limit is zero when u >1. In principle, if we know the value of ¢,

we may use (1.20) to obtain the numerical approximations of the solution.
1.5 Discussion

In this chapter a simple review of VIE's, especially in section three.
After that we adopt analytic method for solving linear VIE's including
Adomain decomposition method, the successive approximations method
and the Laplace transform method. Also solve VIE's with weakly singular
kernel. There are other kinds of methods may be used to solve VIE's, which

also numerical method.
There are many reasons that prove the necessity of numerical method:
1. Many problems cannot be solved using analytical methods.

2. Digital computers are not designed to solve problems when analytic

methods are used.
3. When a function is given in tabular form.
4. New method is always needed to solve integral equations because no

single method work well for all such equations.

1.6 The Aim of this Thesis:

The main purpose of this thesis is to introduce new numerical method
for a first time using non-polynomial spline functions for solving of the
second kind linear VIE's and VIE's with weakly singular kernel, also ,we

try to solve VIE's of the first kind with k(x,x) # 0.Finally, writing
15

Chapter one: Preliminary Concepts and Analytic Methods

successful programs for the given numerical methods by using MATLAB\

R12,2012 .

1.7 Test Examples
In this thesis, the following test examples will be considered

Test Example 1: Consider the VIE of the second kind [36]:

B(x) = x + j(t _ 00 dt
0

With exact solution@(x) = sinx.

Test Example 2: Consider VIE of the second kind [43]:

X

y(x) =1+ f(t —x)y(t)dt

0

With exact solution y(x) = cosx.

Test Example 3: Consider the VIE of the second kind:

X
u(x) =2x +5—3e* + j e* tu(t)dt

0

With exact solution u(x) = x + 2.

Test Example 4: Consider the VIE of the second kind [36]:

X

u(x) = x3* + f 3* tu(t)dt
0

With exact solution u(x) = 3*(1 — e™).

Test Example 5: Consider the VIE of the second kind [37]:
16

Chapter one: Preliminary Concepts and Analytic Methods

2 X
u(x)=1—x+x7+J(t—x)u(t)dt
0

With exact solution u(x) = (1 — sin(x)).

Test Example 6: Consider the VIE of the second kind:

1 X
u(x) = x +e* +x?— Ex‘*—xzex + J x2u(t) dt
0

The exact solution is u(x) = x + e*.

Test Example 7: Consider the VIE of the first kind [22]:

X

j cos(x — t)y(t)dt = sinx
0

With exact solution, y(x) = 1.

Test Example 8: Consider the VIE of the first kind [22]:

X
j cos(x —t)y(t)dt =1 — cosx

0

With exact solution, y(x) = x.

Test Example 9: Consider the VIE of the second kind with weakly

singular kernel [15]:

xt“_l
u(x) —f o u(t)dt =f(x), x€][0,T]
0

Where f (x) =x+1, the exact solution is u(x) = “%1 + ”T“ X

17

Chapter one: Preliminary Concepts and Analytic Methods

Test Example 10: Consider the VIE of the second kind with weakly

singular kernel:[10]

xt/"_l
u(x) —j po u(t)dt = f(x), x€]0,T]
0

Where f (x) =x2+ x +1,the exact solution is u(x) = M% + MTH X+ Z_:i x?.

Test Example 11: Consider the VIE of the second kind with weakly

singular kernel:

xt“_l
u(x) —j o u(t)dt =f(x), x€][0,T]
0

Where f (x) =0.71428571*x3, and exact solution is u(x) = x3.

Test Example 12: Consider the VIE of the second kind with Weakly

Singular Kernel:

xtﬂ_l
u(x) —j o u(t)dt =f(x), x€][0,T]
0

Wheref = 0.71428571428571428571428571428571 * x3 —

0.600*x2, ;and exact solution is u(x) = x3-x2.
Test Examplel3: Consider test example (10), with u = 0.4.

Test Examplel4: Consider test example (9), with u = 0.6.

18

Chapter two: spline functions

2.1 Introduction

A polynomial is a mathematical expression involving a sum of powers
in one or more variables multiplied by a coefficient [50]. Polynomials have
long been the function most widely used to approximate other functions
mainly ,because of their simple mathematical properties. However, it is
well known that polynomial of high degree tend to oscillate strongly and in

many cases they are liable to produce very poor approximation.

Spline functions are piecewise polynomials of degree n joined
togather at the break points with n-1 continuous derivatives. The break
points of splines are called knot [33].With spline functions, we combine
low degree and hence weakly oscillating polynomial in such a way to
obtain a function which is as smooth as possible in the sense that it has
maximal continuity intervals without being globally a polynomial. Spline
functions can be integrated and differentiated due to being piecewise
polynomials and can be easily stored and implemented on digital

computers [17].

A piecewise non-polynomial spline function is a blend of
trigonometric, as well as, polynomial basis functions, which form a
complete extended Chebyshev space. This approach ensures enhanced
accuracy and general form to the existing spline function. A parameter is
introduced in the trigonometric part of the spline function. The C* —
differentiability of the trigonometric part of non-polynomial splines
compensates for the loss of soomthes inherited by spline function. It is well
known that the Bezier basis is a basis for the degree n algebraic

polynomials.
s, = span{l,x,x?,..,x"} (2.1)

A new basis, called the c-Bezier basis, is constructed in [13], for the space

19

Chapter two: spline functions

[(n) = span{1,x,x?, ...,x™?, cosx, sinx} (2.2)

in which x™~1 and x™ in (2.1) replaced by cosx and sinx .There is a wide
use to non-polynomial spline functions, see[4,12,16,32,38,46] . This
chapter is organized as follows: In section (2.2), we define some types of
musty used polynomial spline functions, first the classic polynomial spline
function involving the linear, quadratic, cubic, and second we define the B-
spline function. In section (2.3), we offer non-polynomial spline functions,
then we derive linear and quadratic non-polynomial spline functions which

Is rudiment to this work.
2.2 Some types of polynomial spline functions:

Before we mention some type of polynomial spline function, we recall

some basic definitions:
Definition (2.1): [13]
A function S is called a spline of degree K if:

1. The domain of S is an interval [a, b],
2.SeC* 1[a,b].

3. There are t; (the knots of S) s.ta = x, < x; < x, ... <X, = b and such

that S is polynomial of degree at most k on each subinterval [x;, x;,4].
Definition (2.2): [7]

A spline function is called natural spline if it satisfies the following

another condition:

Sk (x0) = " () = 0

Definition (2.3):[2]

20

Chapter two: spline functions

A spline function is called clamped spline if it satisfies the additional

condition:

S0 (xp) = ul™D (xp)
and

SV () = ul™ D (xy)

There are many other type of polynomial spline functions, for example
M —spline, L-spline, G-spline, P-spline ...,etc[50].

In this section, we define two type of spline functions which are the classic

spline function and B-spline function.
2.2.1 Classic spline function:

In this section, we define the most usely spline function. The classic
spline functions consist of three simple spline kinds for approximation and

interpolation of data.
2.2.1.1 Linear classic spline function:
Definition (2.4): [48]

A function L is called linear spline if it satisfys:

1. There is a partion of the interval a=x, < --- < x,, = b, such that L is
polynomial of degree 1 on each subinterval[x;, x;,4].

2. L is continuous on [a ,b],i.e,.

Lo(x)) x € [x0, 2]
L(X) — ll(x)) X € [xpxz] (23)
ln—l(x)) X € [xn—lrxn]

21

Chapter two: spline functions

where x,, X, , ... , X, are called knots ,and each piece of L(x) has the
form:
li (X) = a;x + bi (24)

Where a;, b; are the coefficients of liner classic spline function (2.4).
2.2.1.2 Quadratic classic spline

Definition (2.5): [46]
A function Q is called a Quadratic spline if it satisfys:
1. Q, Q'are continuous on [a,b].
2. Q is polynomial of degree at most 2 on each subinterval [x;, x;.4] ,
where
a= xo<x; <-<x,=>b.Quadratic spline has a form:

q; = a; + bi(x — x;) + ¢;(x — x;)? (2.5)

2.2.1.3 Cubic classic spline:
Definition (2.6): [48]
A function S is called a Cubic spline if it satisfys:
1. S, §', 8" are continuous on [a,b].
2. S is polynomial of degree at most 3 on each subinterval [x;,x;,4] ,
where a = x, < x; ... < x,, = b. Cubic spline has a form:
s;=a; +bj(x —x;) +¢c;(x —x)* +d;(x — x;)3 (2.6)
The x; are the knots and assumed to be arranged in ascending order. The
spline function S, which we are constructing, consists of n cubic

polynomial pieces:

SO(x) X € [XOJxl]
S(x) — S1 (x) X E [x1» xz] (2_7)
Sp—1(x) X € [xn_q,xp]

22

Chapter two: spline functions

Here s; denotes the cubic polynomial that will be used on the subinterval

[x;, x;+1]. The interpolation condition is s;(x;) =u;,(0<i <n).
2.2.2 B-Spline function:

Before we introduce the definition of B-spline function .we want to
manifest a concept of Bezer curve which has widely employed in graphical

application.
Definition (2.7):[32]

Let py, p1, -, P € n 4+ 1 points ordered in the plane. The oriented
polygon formed by them is called the characteristic polygon or Bezier

polygon. Let us introduce the Bernstein polynomials over the interval [0,1],
defined as

n

bai(®) =

) th(1 -0 * = St —pnTk

kl(n—k)

forn=0,1,... and k=0,..,n , they may be obtained by the following recursive

formula:
bpo(t) = (1—0)"

bux(@®) =1 —1t) bp_1x@) +thy_1x,-1() k=1,..n te€[0,1]
It is easily seen that b, , € P, fork =0,1,..n,where P, is the space of

all polynomial of degree n

Also, { b, ; k = 0...n} provides a bases for B,. The Bezier curve is defined

as follows:

n
Ba(or P =) Pic bua(DO< LT @7
k=0

23

Chapter two: spline functions

The Bezier curves also is obtained by a pure geometric approach starting
from the characteristic polygon. Indeed for any fixed t € [0,1], we define

pi1(t) = (1 = Op; + tpjy, (¢) fori= 0,1,.n—1

for t fixed , we can repeat the procedure by generating the new
vertices p; ,(t) ,for i=0,1,...,n — 2, and terminating as soon as the polygon

comprises only the vertices p, ,(t)and p;,_1(t). It can be shown that:

Pon(t) = (1 —1t) = pon-1(t) + tpy1-1(t)

That is, pg ,(t) is equal to the value of the of the Bezier curve B, at the

points corresponding to the fixed value of t.
Definition (2.8):[32]

The normalized B-spline B; ., of degree k relative to the distinct

nodes x;, ..., X; 1 x+1 1S defined as:

Bik+1 = X1 — %) G(Xgy ooy Xipgs1) (2.8)

where

= (t— _ (t —x)k ifx<t
g®) = (t-x7% = { 0 otherwise (29)

By Newton form of the interpolating polynomial we have,(see [32]):

o f(x)

=0 W,n+1(xi)

f[%0,Xn] = (2.10)

Where wy .1 = [[o(x — x;)

Subtitling in (2. 8), we get:
24

Chapter two: spline functions

(Xirk—2)%
i,k+1 (z+k+1 [) j=0 H?:ol(xi+j —Xi41)
i#j

The B- spline admits the following recursive formulation [a,b], see figure
(2.6)

B, (x) = {1 if x€ [x;x44]
b 0 other wise
X=X Xitk+1 — X
Big41(x) = —B;(x) + Bit1k(x)
Xi+k — X Xit+k+1 —Xi+1

compared to Bezier curve; a B-spline curve has a few distinct features

(a) The degree of the curve is independent from the total number of the

control point.
(b) It is made out of several curve segments that are joined smoothly.

(c) Itis locally propagates.
2.3Non- Polynomial Spline Function:

Consider the partition A= {t,, t;,t,, ..., t,} Of [a,b]c R . Let S(A)
denote the set of piecewise polynomials on subinterval I; = [t;, t;;,] of
partition A. Let u(t) be the exact solution, this new method provides an
approximation not only for u(t;) at the knots but also u(™(t;) ,n=1,2...., at
every point in the range of integration .Also ,C* the differentiability of the
trigonometric part of non-polynomial splines compensates for loss of
smoothness inherited by polynomial [4,38,39] .The non-polynomial spline
function, obtained by the segment P;(t).Each non- polynomial spline of n
order P; (t) has the form:

P;(t) = a;cosk(t — t;) + b;sink(t — t;) + -+ y;(t — t;)" 1 + z;

25

Chapter two: spline functions

where a;, bj, ..., y;and z; constants and k is the frequency of the
trigonometric functions which will be used to raise the accuracy of the

method.

In this section we introduce different types of non-polynomial spline
functions, linear non-polynomial spline function, the span of linear is x3,
and quadratic non —polynomial spline function, the span of quadratic is x*.
The main advantage of non-polynomial spline function is to obtain method

for solving VIE's with higher accuracy.
2.3.1 Linear Non-Polynomial Spline Function
The form of the linear non-polynomial spline function is:
P;(t) = a;cosk(t —t;) + b;sink (t — ¢t;) + c;(t — t;) + d;
i=0,..,n (2.10)

where a;, b;, ¢;,and d; are constants to be determined . In order to obtain
the value of a;, b;, ¢;, and d; , we differentiate equation (2. 10) three times

with respect to t ,then we get:

p;(t) = —ka;sink(t — t;) + kb;cosk (t — t;) + ¢; B
p{'(t) = —k?a;cosk(t — t;) — k?b;sink (t — t;) —(2.11)
pi"'(t) = K3a;sink(t — t;) — k3b;cosk(t — t;) -

Hence replace t by ¢t; in the relation (2.10) and (2.11) yields:
Pi(t;) = a; + d;

pi(t) = kb; + ¢

pi'(t;) = —Kk?a;

p;" (t) = —k3b;

26

Chapter two: spline functions

From the above equations, the values of a;, b;, c;,and d; are obtained as

follows:

a; = ——=pi'(t:) (2.12)

by = — 5" (%) (2.13)

¢; = p;(t;) + kb; (2.14)

d; = P;(t;) + q; (2.15) fori=0,1,..., n

2.3.2 Quadratic Non —Polynomial Spline Function
The form of the quadratic non-polynomial spline function is:
Q;(t) = a;cosk(t — t;) + b;sink(t — t;) + ¢;(t — t;) + d;(t — t;)? + ¢;
(2.16)

where a;, b;, ¢;, d; and e; are constants to be determined .In order to obtain
the values of a;, b;, ¢;, d; and e; ,we differentiate equation (2.16) four times

with respect to t, and then we get the following equations:
Q;(t) = —ka;sink(t — t;) + kb;cosk (t —t;) + ¢; +2d;(t —t;)]
Q{'(t) = —k%a;cosk(t — t;) — k?b; sink(t — t;) + 2 d; (2.17)
Q" (t) = K3a;sink(t — t;) — k3b;cos k(t — t;)

Qi(4)(t) = k*a;cosk(t — t;) + k*b;sink (t — t;)

Hence replace t by ¢; in the relation (2.16) and (2.17) yields:
Qi(ty) = a; + e
Q; (t;) = kb; +

Q;'(t) = —k?a; + 2d;

27

Chapter two: spline functions

Q;" (t;) = —k3b;
Q™ (ty) = k*q

We obtain the values of a;, b;,c;,d;and e; from the above relations as

follows:

a; =0 () (2.18)
by = — = Q" (t) (2.19)
¢i = Qi (t;) — kb; (2.20)
d; = 1/2[Q;'(t;) + k?a;] (2.21)
e; = Qi(t) — q (2.22)

fori=0,1,...,n.

28

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

3.1 Introduction

Integral equations find special applicability within scientific and
mathematical disciplines. To check the numerical method, it is applied to
solve different test problems with known exact solutions and the numerical
solutions obtained confirm the validity of the numerical method. Many types
of equations do not have an analytical solution. Therefore, these problems
should be solved by using numerical techniques. In numerical methods,
computer codes and more powerful processors are required to achieve

accurate results.

Volterra integral equation arises in many scientific application such as
the population dynamic, spread of epidemics [44]. Also there are many
works concerned about Volterra integral equation, see [5,10,14,22,25,
29,36,37,43].

In this chapter, both linear and quadratic of non-polynomial spline
functions have been applied to find the numerical solution of VIE's .New
algorithms have been proposed for the first time which is essential in this

work. The rest of this chapter is organized as follows:

In section 3.2 linear VIE's of the second kind have been solved using linear
and quadratic non-polynomial spline functions in subsection (3.2.1) and
(3.2.2) respectively . In section 3.3, will be introduced the solution of
linear VIE's of the first kind with k(x, x) # 0.In section 3.4, we used linear
and quadratic non-polynomial spline functions to solve VIE's with weakly
singular kernel in subsection (3.4.1) and (3.4.2) respectively. In section 3.5,
numerical examples are given for illustrations and compassion between the
method has been made and polynomial spline function and other known

methods. And finally, in section 3.6, including a discussion for this

29

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Algorithm developed for solving those equations using MATLAB\
R12,2012 language programming.(see appendix (c)).

3.2 Solution of Linear VIE's of the Second Kind:

In this section, the linear and quadratic non-polynomial spline
functions have been used to find the numerical solution of linear VIE's of

the second kind, which has the form:

u(x) = f(x) +j k(x,t)u(t)dt x € [a,b] (3.1)

where k(x,t)and f(x) are known functions and continuous in C* [a,b] ,
but u(x) is unknown function. To solve the equation (3.1), we need to
differentiate equation (3.1) four times with respect to x , by using Libenze

formula we realize:

x ak(x t)

u'(x) =f'(x)+ [, u(t)dt + k(x,x) u(x) (3.2)

x 92 k(x t) ak(x t)

u’(x) = f"(x) + [, e=x u(x) +

dk(x X)

u(t)dt + (——

u(x) + +k(x, x)u’(x) (3.3)

x a3 k(xt) 92 k(Xt)

w) =)+ [u@dt + (5 57) _ ulo+

d (0k(x,t) 0k(x,t) ’ d?k(x,x)
(o), @+ (50w @+)

4+ 2 dk(x x)

u' (x) + k(x, x)u' (%) (3.4)

30

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

x 0%k (x 23k (x,
u®(x) = f®(x) _|_J %t) (t)dt + <%>) u(x) +

a
%(azgg’t))t . ()+ (azk(xt))t:x u,(x) n

2 () a0 4 £(5) _wo

dx? dx
d (0k(x,t) ’ Ok (x,t) 1"
+ a(ox)t=x () + ()t=x u (x)
_I_d k(xx) ()+3d k(xx) ,()+3dk(xx) ,,(x) n
k(x,x)u'" (x) (3.5)

To complete our procedure for solving VIE's. we substitute x=a in

equations(3.1) - (3.5) , then we get :
uo = u(a) = f(a) (3.6)
up =u'(a) = f'(a) + k(a, a)u(a) (3.7)

uy =u''(a) =

£(@) + ((ak(xt))t:x) u(a) + (ak;zcc,t))xza dk (x,x) u(a)

dx
x=a

+k(a,a)u’'(a) (3.8)

up =uw'@ =@+ (522) u@

xX=a

a5 L] w@ [P v@

x=a =

+ (dzk(x'x))xza u(a) + 2 (dkc(;x))x:a u'(a)

dx?
+k(a,a)u'' (a) (3.9)

ul =u®(@) = @)+ [,] u@)+

x=a
31

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

i (azgg,t))tzx] ()+ (a k(x, t))t:x u,(a) n

L dx r=a
L @ 2[R v@

N ([ak(x,t) t:x) W' (a) + (d3k(x,x))x: w(a) + 3 (d k(x, x))xza w'(@) +

0x x=a dx3
dk(x,x) 17 27
3 (™)x:a u"(a) + k(a,a)u’"’(a) (3.10)

Now, we try to solve equation (3.1) using linear and quadratic non-

polynomial spline functions
3.2.1 Using Linear Non-Polynomial Spline Function:

We approximate the solution of linear VIE's of the second kind (3.1) by
using linear non-polynomial spline function (2.10). We introduce a method
of solution in algorithm (VIE2NPS1):

The Algorithm (VIE2NPS1):

Step 1: Set h = (b-a) /n, t; = t, +ih , i=0,...,n,(where t, =3, t,, =b) and
U = f(a).

Step 2: Evaluate ay, by, ¢, and d, by substituting (3.6)-(3.9) in equations
(2.12) - (2.15).

Step 3: Calculate p, (t)using step2 and equation (2.10).
Step 4: Approximate u; = py(t,)
Step 5: For i=1 to n-1 do the following steps:

Step6: Evaluate a;, b;,,c; and d; by using equations (2.12)-(2.15)
and replacing. u(t;), u'(t;), u” (t;) and u'" (t;) by p;(t;),p;(t),p; (t;)

and p;" (t;).

32

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Step 7: Calculate p; (t) using step 6 and equation (2.10).
Step 8: Approximate u;,; = p;(t;4+1)
3.2.2 Using Quadratic Non-Polynomial Spline Function:
In order to approximate the solution of linear VIE's of second kind

(3.1) by using quadratic non-polynomial spline function (2.16). We present
a method of solution in algorithm (VIE2NPS2):

The Algorithm (VIE2NPS2):
Step 1: Set h = (b-a) /n, t; = t, +ih ,i=0,...,n,(where t, =a , t, =b)
and u, = f(a).

Step 2: Evaluate ay, by, cy, dy and e, by substituting (3.6)- (3.10) in
equations (2.18)- (2.22).

Step 3: Calculate p, (t)using step2 and equation (2.16).
Step 4: Approximate u; = po(t;)
Step 5: For i=1 to n-1 do the following steps:
Step6: Evaluate a;, b;, c;, d; and e; by using equations (2.18)-(2.22)
and replacing u(t;),w' (t;), uw" (t,), u"" (t)and u™®(t;)
by pi(t) . pi (t),, pi' (t),, P} (t;) and p” (t,).
Step 7: Calculate p;(t) using step 6 and equation (2.16).

Step 8: Approximate u;,; = p;(t;+1)

33

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

3.3Solution of VIE's of the FIRST Kind:

In this section, we introduce the solution of VIE's of the first kind

which has a form:

gx) = fxr(x, t)u(t)dt , x € [a,b] (3.11)

where r(x, t)and g(x) are known functions and continuous in C* [a,b], but
u(x) is unknown function. When r(x,x) # 0, we differentiat equations
(3.11) one time with respect to x.Therefore, we get conversion to the

second kind, i.e;

* ar(x,
19/ - [T uyar (3.12)

a

u(x) = r(x,x)

then we use the non-polynomial spline function and algorithms
(VIE2NPS1) and (VIE2NPS2) to solve(3.12).

1 ar(x,t) 1 /
where k(x,t) = ——+*—"= and f(x) = g'(x)

3.4 Linear VIE's of the Second Kind with Weakly Singular kernel:

In this section, the linear and quadratic non-polynomial spline functions
will be used to compute the numerical solution of linear VIE's of second

kind with weakly singular kernel, which is:

xt“_l
u(x) —j po u(t)dt =f(x), x€][0,T] (3.13)

Where 0< p<1 and f is known function. There is a singularity at x=0
and t=0 for any positive value of x. In order to solve (3.13), we multiply
both sides of (3.13) by x* yields to:

34

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

xHu(x) — j t* 1 u(t)dt = f(x) x# (3.14)
0

Hence differentiation (3.14) with respect to x, we get:

xtu' (x) + pxt tu(x) —

U

= pxtH Q) + 1 (x) xH (3.15)
And multiplication both sides of (3.15) by x~* yields,

xu' () + (1 — Dulx) = uf (x) +x f'(x)

) . xth1 u(0) .
Remark 1: Note that lim,._,, fo i u(t)dt = 0 .Therefore, if u(0) #
0

we have u(0) # f(0) , more precisely u, = ﬁf{O)

Hence equation (3.13) may be converted into the following form[15]:

xu'(x) + (u=Dux) = uf(x) + x f'(x) (3.16)
With

up = = (0) (3.17)

Hence differentiate equation (3,16) four times with respect to x, we get:
xu"(x)+pu(x)=Q@p+Df" (x) +xf"(x)

xu"(x)+ (u+ Du'" (x) = (u+2)f"(x) + x "' (x) (3.18)
xu®(x) + (u+ 2)u” (x) = (3" (x) + x f® (x)
xu®) + (u+3)u""(x) = (u+4)f P (%) +x fO (%)

Hence replace x by a in the relation, yields:
35

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

! +1 !

u'y = ”Tf (a) —

124 2 144

uy = Z—jlf () (3.19)
>_

3
ugl — Z_::__Zf,”(a)

(4) _ K+t c(4) —
u #+3f (a)

3. 4.1Using Linear Non-Polynomial Spline Function

In order to approximate the solution of linear VIE's of the second kind
with weakly singular kernel (3.13) by using linear non-polynomial spline
function (2.10).We present a method of solution in algorithm
(VIE2WSKNPS1):

The Algorithm: (VIE2WSKNPS1):
Step 1: Set h=(b-a)/n; t; =ty,+1ih,i=0,1,...,n,(wheret, =a,t, =

b)and u, = ﬁf(a)

Step 2: Evaluate ag, by, cy, and dyby substituting (3.17)and (3.19) in
equations (2.12)- (2.15).

Step 3: Calculate Py (t) using step 2 and equations (2.10).
Step 4: Approximate u; = Py(t;).
Step 5: For i=1 to n-1 do the following steps:

Step 6: Evaluate a;, b, c;,and d;using equations (2.12)- (2.15) and

replacing u(t) and its derivatives by P;(t) and its derivative's

Step 7: Calculate P,(t) using step 6 and equations (2.10).

36

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Step 8: Approximate u;,; = p;(t;+1)
3.4.2Using Quadratic Non-Polynomial Spline Function

We approximate the solutions of linear VIE's of the second kind with
weakly singular kernel by using quadratic non-polynomial spline function
(2.16). In the following algorithm (VIE2ZWSKNPS2):

The Algorithm (VIE2WSKNPS2):
Step 1: Set h=(b-a)/n; t;=t,+1ih,i=0,1,...,n,(wheret, =a,t, =

b) and u, = ﬁf(a)

Step 2: Evaluate ay, by, ¢y, dg and e, by substituting (3.17) and (3.19) in
equations (2.18) - (2.22).

Step 3: Calculate P, (t) using step 2 and equations (2.16).
Step 4: Approximate u; = Py(t;).
Step 5: For i=1 to n-1 do the following steps:

Step 6: Evaluate a;, b;, ¢;, djand e; substituting in equations (2.18) - (2.22).

and replacing u(t) and its derivatives by P;(t) and its derivative's
Step 7: Calculate P;(t) using step 6 and equations (2.16).

Step 8: Approximate u;q1 = Pi(ti4q)

37

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

3.5Numerical Examples

Test Example (1): Consider the VIE of the second kind [36]
B(x) = x + [(t = 0)p(t)dt 0<x<1

With exact solution @(x) = sin x. Table (3.1) presents a comparison
between the exact and numerical solution using linear and quadratic non-
polynomial spline functions, where P;(x) denotes the approximate solution

using non-polynomial spline function, with h=0.1

Table 3.1: Exact and numerical solution of test example (1)

Exact solution P(x)
linear quadratic

0 0 0 0
0.1 0.099833416646828 0.099833416646828 0.099833416646828
0.2 0.198669330795061 0.198669330795061 0.198669330795061
0.3 0.295520206661340 0.295520206661340 0.295520206661340
0.4 0.389418342308651 0.389418342308650 0.389418342308650
0.5 0.479425538604203 0.479425538604203 0.479425538604203
0.6 0.564642473395035 0.564642473395035 0.564642473395035
0.7 0.644217687237691 0.644217687237691 0.644217687237691
0.8 0.717356090899523 0.717356090899523 0.717356090899523
0.9 0.783326909627483 0.783326909627483 0.783326909627483
1 0.841470984807897 0.841470984807896 0.841470984807896

Table (3.2) present a comparison between the error

and other method in [36], where Error =|exact value —numerical value| and

lerr||, = max |Error|.

38

in our methods

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.2: comparison between the error with reference [36]

x Error Error Errorobtain in[36]
In linear In quadratic
0 0 0 0
0.1 0 0 2.0508063e-012
0.2 0 0 8.3558996e-013
0.3 5.5511151231258e-17 5.5511151231258e-17 2.0756558e-013
0.4 1.11022302462516e-16 1.11022302462516e-16 2.4960310e-013
0.5 1.11022302462516e-16 1.11022302462516e-16 3.6565473e-013
0.6 1.11022302462516e-16 1.11022302462516e-16 1.5317015e-013
0.7 1.11022302462516e-16 1.11022302462516e-16 1.1908461e-013
0.8 2.2244604925031e-16 2.2244604925031e-16 2.5211375e-013
0.9 3.33066907387547 e-16 . | 3.33066907387547 e-16 . 2.8431391e-013
1 4.44089209850063e-16 4.44089209850063e-16 8.8095244e-013
llerr||. 4.44089209850063e-16 | 4.44089209850063e-16 2.050806e-012

Table (3.3) present a comparison between error obtain using linear and
quadratic non-polynomial spline functions and polynomial spline function
including (1* order and 2™ order [see Appendix (A): Algorithm (VIE2PS1)
and Algorithm (VIE2PS1)]), with h=0.1.

39

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.3: Comparison between error obtain using polynomial and non-

polynomial spline functions

Non-polynomial spline Polynomial spline
x Error Error Error Error
In linear In quadratic In 1% order In 2" order

0 0 0 0 0
0.1 0 0 0.0001665833531 0.000166583353
0.2 0 0 0.0986693307950 0.098669330795
0.3 5.55111512312e-17 5.55111512312e-17 0.0955202066613 0.095520206661
0.4 1.110223024625e-16 1.110223024625e-16 0.1894183423086 0.189418342308
0.5 1.110223024625e-16 1.110223024625e-16 0.1794255386042 0.179425538604
0.6 1.110223024625e-16 1.110223024625e-16 0.2646424733950 0.264642473395
0.7 1.110223024625e-16 1.110223024625e-16 0.2442176872376 0.244217687237
0.8 2.224460492503e-16 2.224460492503e-16 0.3173560908995 0.317356090899
0.9 330669073875 e-16 3.330669073875 e-16 0.2833269096274 0.283326909627
1 4.440892098500e-16 4.440892098500e-16 0.341470984807 0.341470984807
|lerr|l,, | 4.440892098500e-16 4.440892098500e-16 0.341470984807 0.341470984807

Test Example (2): Consider the VIE of the second kind [43]:

y(x) =1+ [(t = 0)y()dt

0<<x<1

With exact solutiony(x) = cosx. Tables (3.4) present a comparison

between the exact and numerical solution of linear and quadratic non-

polynomial spline functions where P,(x) denote the approximate solution

using non-polynomial spline function, with h=0.1

40

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.4: Exact and numerical solution of test example (2)

Exact solution P(x)
* linear quadratic

0 1.000000000000000 1.000000000000000 | 1.000000000000000

0.1 0.995004165278026 | 0.995004165278026 0.995004165278026
0.2 0.980066577841242 | 0.980066577841242 0.980066577841242
0.3 0.955336489125606 | 0.955336489125606 0.955336489125606
0.4 0.921060994002885 | 0.921060994002885 0.921060994002885
0.5 0.877582561890373 | 0.877582561890373 0.877582561890373
0.6 0.825335614909678 | 0.825335614909678 0.825335614909678
0.7 0.764842187284489 | 0.764842187284488 0.764842187284488
0.8 0.696706709347165 | 0.696706709347165 0.696706709347165
0.9 0.621609968270664 | 0.621609968270664 0.621609968270664
1 0.540302305868140 | 0.540302305868139 0.540302305868139

Table (3.5) present a comparison between the error

and other method in [43], where error =|exact value —numerical value| and

lerr||, = max |Error| .

Table 3.5: comparison between the error with reference [43]

Error Error Error obtain in
x in linear in quadratic [43]

0 0 0 -
0.1 0 0 -
0.2 0.1110223024e-16 | 0.1110223024e-16 0
0.3 0.1110223024e-16 | 0.1110223024e-16 -
0.4 0.2220446049e-16 | 0.2220446049e-16 0
0.5 0.2220446049e-16 | 0.2220446049e-16
0.6 0.2220446049e-16 | 0.2220446049e-16 8.993e-015
0.7 0.3330669073e -16 | 0.3330669073e -16 -
0.8 0.3330669073e -16 | 0.3330669073e -16 5.031e-013
0.9 0.3330669073e -16 | 0.3330669073¢ -16 -
1 444089209850e-16 | 444089209850e-16 1.142e-011

llerr|le 444089209850e-16 | 444089209850e-16 1.142e-011

41

in our methods

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table (3.6) present a comparison between error obtain using linear and

quadratic non-polynomial spline functions and polynomial spline function

including (1% order and 2" order [see Appendix (A)]

(VIE2PS1) and Algorithm (VIE2PS1)]),) with h=0.1.

polynomial spline functions

Algorithm

Table 3.6: Comparison between error obtain using polynomial and non-

Non-polynomial spline Polynomial spline
x Error Error Error Error

in linear in quadratic In 1% order In2"order
0 0 0|0 0
0.1 0 0 | 0.0049958347219 0.00000416527802
0.2 0.1110223024e-16 0.1110223024e-16 | 0.0199334221587 0.00493342215875
0.3 0.1110223024e-16 0.1110223024e-16 | 0.044663510874 0.01466351087439
0.4 0.2220446049e-16 0.2220446049e-16 | 0.078939005997 0.02893900599711
0.5 0.2220446049e-16 0.2220446049e-16 | 0.1224174381096 0.04741743810962
0.6 0.2220446049e-16 0.2220446049e-16 | 0.1746643850903 0.06966438509032
0.7 0.3330669073e -16 0.3330669073e -16 | 0.2351578127155 0.09515781271551
0.8 0.3330669073e -16 0.3330669073e -16 | 0.3032932906528 0.12329329065283
0.9 0.3330669073e -16 0.3330669073e -16 | 0.3783900317293 0.15339003172933
1 444089209850e-16 444089209850e-16 | 0.4596976941318 0.18469769413186
llerr||. 444089209850e-16 444089209850e-16 | 0.4596976941318 0.18469769413186

Test Example (3): Consider the VIE of the second kind :

u(x) =2x+5-—3e* + foxex‘tu(t)dt 0<x<1

With exact solution u(x) = x + 2. Tables (3.7) present a comparison
between the exact and numerical solution of linear and quadratic non-
polynomial spline functions ,where P,(x) denote the approximate solution

using non-polynomial spline function, with h=0.1

42

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.7: Exact and numerical solution of test example (3)

Exact solution

51€3)

linear

quadratic

2.000000000000000

2.000000000000000

2.000000000000000

0.1

2.100000000000000

2.100000000000000

2.100000000000000

0.2

2.200000000000000

2.200000000000000

2.200000000000000

0.3

2.300000000000000

2.300000000000000

2.300000000000000

0.4

2.400000000000000

2.400000000000000

2.400000000000000

0.5

2.500000000000000

2.500000000000000

2.500000000000000

0.6

2.600000000000000

2.600000000000001

2.600000000000000

0.7

2.700000000000000

2.700000000000001

2.700000000000000

0.8

2.800000000000000

2.800000000000001

2.800000000000000

0.9

2.900000000000000

2.900000000000001

2.900000000000000

3.000000000000000

3.000000000000001

3.000000000000000

Table (3.8) present a comparison between the error in our methods

where error =|exact value —numerical value| and ||err||., = max |Error|

Table 3.8: comparison between the error linear and quadratic using Non-

polynomial spline function

x Error Error
linear quadratic

0 0 0
0.1 0 0
0.2 0 0
0.3 4.440892098500630e-16 0
0.4 4.440892098500630e-16 0
0.5 4.440892098500630e-16 0
0.6 4.440892098500630e-16 0
0.7 4.440892098500630e-16 0
0.8 8.881784197001252e-16 0
0.9 8.881784197001252e-16 0
1 8.881784197001252e-16 0

llerr||s 8.881784197001252e-16 0

Table (3.9) present a comparison between error obtain using non-
polynomial spline function including linear and quadratic polynomial

spline function including (1* order and 2™ order [see Appendix

43

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

(A)]: Algorithm (VIE2PS1) and Algorithm (VIE2PS1)]),)) with h=0.1.

Table3.9: Comparison between error obtain using polynomial and non-
polynomial spline functions
Non-polynomial Polynomial spline
spline
X Error Error Error Error
linear quadratic In 1% order In 2"order
0 0 0 0
0.1 0 0 0 0
0.2 0 0 0.10000000000 0.10000000000
0.3 4.4408920985e-16 0 0.10000000000 0.10000000000
0.4 4.4408920985e-16 0 0.20000000000 0.20000000000
0.5 4.4408920985e-16 0 0.20000000000 0.20000000000
0.6 4.4408920985e-16 0 0.30000000000 0.30000000000
0.7 4.4408920985e-16 0 0.30000000000 0.30000000000
0.8 8.8817841970e-16 0 0.39999999999 0.39999999999
0.9 8.8817841970e-16 0 0.39999999999 0.39999999999
1 8.8817841970e-16 0 0.50000000000 0.50000000000
llerr||. 8.8817841970e-16 0 0.50000000000 0.50000000000

Test Example (4): Consider the VIE of the second kind [36]:

u(x) = x3*+ fox —3*tyu(t)dt 0<x <1

With exact solution u(x) = 3*(1 —e~*).Tables (3.10) present a

comparison between the exact and numerical solution using linear and

quadratic

non-polynomial spline functions where P;(x) denote the

approximate solution using non-polynomial spline functions, with h=0.1

44

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.10: Exact and numerical solution of test example (4)

Exact solution

B (x)

linear guadratic
0 0 0 0
0.1 0.106213163030966 | 0.106201860724981 0.106212914772260
0.2 0.225812709291563 | 0.225627932943987 0.225804620934631
0.3 0.360363539107348 | 0.359408023974225 0.360301017594445
0.4 0.511612377368213 | 0.508528520521745 0.511344245618246
0.5 0.681508888598327 | 0.673822533031535 0.680676279903068
0.6 0.872229243985166 | 0.855961571523340 0.870121524139087
0.7 1.086202425097018 | 1.055448836085519 1.081568581971016
0.8 1.326139582081997 | 1.272614189066096 1.316951386694774
0.9 1.595066801044777 | 1.507610859197218 1.578229878035268
1 1.896361676485673 | 1.760413910584314 1.867370419076533

Table (3.11) present a comparison between the error

in our methods

where error =|exact value —numerical value| and ||err||,, = max |Error|

Table 3.11: comparison between the error with reference [36]

Error Error Error obtainin [36]
linear guadratic [36]
0 0 0 | inf-0.0074113
0.1 1.130230598539450e-05 | 2.482587062729857e-07 | 1.1600483e-002
0.2 1.847763475755215e-04 | 8.088356932056673e-06 | 2.8608994e-002
0.3 9.555151331228085e-04 | 6.252151290275787e-05 | 2.2232608e-002
0.4 3.083856846467614e-03 | 2.681317499672042e-04 | 1.0103823e-002
0.5 7.686355566791314e-03 | 8.326086952588074e-04 | 1.7285379e-002
0.6 1.626767246182581e-02 | 2.107719846078826e-03 | 6.5041788e-003
0.7 3.075358901149872e-02 | 4.633843126001569e-03 | 8.3481474e-003
0.8 5.352539301590098e-02 | 9.188195387223042e-03 | 5.7238171e-003
0.9 8.745594184755889e-02 | 1.683692300950868e-02 | 1.1187893e-003
1 1.359477659013595e-01 | 2.899125740913999%e-02 | 1.1830649e-002
llerr||. 1.359477659013595e-01 | 2.899125740913999%e-02 | 2.8608994e-002

Table (3.12) present a comparison between error obtain using non-

polynomial spline function including linear and quadratic polynomial

spline function including (1* order and 2™ order [see Appendix

45

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

(A)]: Algorithm (VIE2PS1) and Algorithm (VIE2PS1)]) with h=0.1.

Table 3.12: Comparison between error obtain using polynomial and non-

polynomial spline functions

Non-polynomial spline

Polynomial spline

x Error Error Error Error
linear quadratic In 1* order In 2"rder
0 0 0 0 0
0.1 1.1302305985394e-05 | 2.4825870627298e-07 0.0062131630309 0.0002270401442
0.2 1.8477634757552e-04 | 8.0883569320566¢e-06 0.1258127092915 0.1078543406315
0.3 9.5551513312280e-04 | 6.2521512902757e-05 0.1603635391073 0.1244468017872
0.4 3.0838568464676e-03 | 2.6813174996720e-04 0.3116123773682 0.2517511485014
0.5 7.6863555667913e-03 | 8.3260869525880e-04 0.3815088885983 0.2917170452981
0.6 1.6267672461825e-02 | 2.1077198460788e-03 0.5722292439851 0.4465206633648
0.7 3.0753589011498e-02 | 4.6338431260015e-03 0.6862024250970 0.5185909842699
0.8 5.3525393015900e-02 | 9.1881953872230e-03 0.9261395820819 0.7106391581614
0.9 8.7455941847558e-02 | 1.6836923009508e-02 1.0950668010447 0.8256912711441
1 1.3594776590135e-01 | 2.8991257409139e-02 1.3963616764856 1.0671249177182
llerr|| e 1.3594776590135e-01 | 2.8991257409139e-02 1.3963616764856 1.0671249177182

Test Example (5): Consider the VIE of the second kind [37]:

X
u(x)=1—x+7+

X
2

0

jt—xu(t)dt 0<x<1

With exact solution u(x) = (1 —sin(x)).Tables (3.13) present a

comparison between the exact and numerical solution using linear and
quadratic non-polynomial spline functions, where P,(x) denote the
approximate solution using non-polynomial spline functions, with h=0.1

46

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.13: Exact and numerical solution of test example (5)

Exact solution P(x)
linear guadratic
0 1.000000000000000 1.000000000000000 1.000000000000000
0.1 0.900166583353172 0.900166583353172 0.900166583353172
0.2 0.801330669204939 0.801330669204939 0.801330669204939
0.3 0.704479793338660 0.704479793338660 0.704479793338660
0.4 0.610581657691349 0.610581657691350 0.610581657691350
0.5 0.520574461395797 0.520574461395797 0.520574461395797
0.6 0.435357526604965 0.435357526604965 0.435357526604965
0.7 0.355782312762309 0.355782312762309 0.355782312762309
08 0.282643909100477 0.2826439091 0043 0.282643909100477
0.9 0.216673090372517 0.216673090372517 0.216673090372517
1 0.158529015192104 0.158529015192104 0.158529015192104

Table (3.14) present a comparison between the error

in our methods

and other method in [37], where error =|exact value —numerical value| and

lerr||, = max |Error| .

Table 3.14: comparison between the error with reference [37]

Error
in linear

Error
in quadratic

Error obtain in
[37]

0.1

0.3

o|jo|Oo|Oo

o|j0o|O|Oo

0.4

2.220446049250310e-16

2.220446049250310e-16

0.5

1.110223024625160e-16

1.110223024625160e-16

0.6

1.110223024625160e-16

1.110223024625160e-16

0.7

1.110223024625160e-16

1.110223024625160e-16

0.8

2.220446049250310e-16

2.220446049250310e-16

0.9

3.330669073875471e-16

3.330669073875471e-16

4.440892098500626e-16

4.440892098500626e-16

llerr|le

4.440892098500626e-16

4.440892098500626e-16

3.6208210e-04

Table (3.15) present a comparison between error obtain using non-

polynomial spline function including linear and quadratic

polynomial

spline function including (1% order and 2™ order [see Appendix(A):
Algorithm (VIE2PS1) and Algorithm (VIE2PS1)]) with h=0.1.

47

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.15: Comparison between error obtain using polynomial and non-

polynomial spline functions

Non-polynomial spline

Polynomial spline

X Error Error Error Error

in linear in quadratic in15t order in2™? order
0 0 0 0 0
0.1 0 0 0.0001665833531 0.0001665833531
0.2 0 0 0.0986693307950 0.0986693307950
0.3 0 0 0.0955202066613 0.0955202066613
0.4 2.2204460492.e-16 2.2204460492.e-16 0.1894183423086 0.1894183423086
0.5 1.1102230246e-16 1.1102230246e-16 0.1794255386042 0.1794255386042
0.6 1.1102230246e-16 1.1102230246e-16 0.2646424733950 0.2646424733950
0.7 1.1102230246e-16 1.1102230246e-16 0.2442176872376 0.2442176872376
0.8 2.22044604925e-16 2.22044604925e-16 0.3173560908995 0.3173560908995
0.9 3.3306690738e-16 3.3306690738e-16 0.2833269096274 0.2833269096274
1 4.4408920985e-16 4.4408920985e-16 0.3414709848078 0.3414709848078
llerr||s 4.4408920985e-16 4.4408920985e-16 0.3414709848078 0.3414709848078

Test Example (6): Consider the VIE of the second kind:

1
u(x) = x + e* + x? —Ex“—xzex +J
0

X

x?u(t) dt

0<x<1

With exact solution u(x) = x + e* .Tables (3.16) present a comparison

between the exact and numerical solution using linear and quadratic non-

polynomial spline functions, where P,(x) denote the approximate solution

using non-polynomial spline functions, with h=0.

Table 3.16: Exact and numerical solution of test example (6)

Exact solution

R(x)

linear guadratic
0 1.000000000000000 1.000000000000000 -
0.1 1.205170918075648 | 1.205162418075146 1.205145756963043
0.2 1.421402758160170 | 1.421264091363697 1.420997779998731
0.3 1.649858807576003 | 1.649143304213054 1.647797347710631
0.4 1.891824697641270 | 1.889520663688464 1.885276687676925
0.5 2.148721270700128 | 2.142991899505424 2.132661651943934
0.6 2.422118800390509 | 2.410021911695286 2.388679452056574
0.7 2.713752707470476 | 2.690940125477821 2.651571376339868
0.8 3.025540928492468 | 2.985937199753312 2.919110362364652
0.9 3.359603111156950 | 3.295063122101852 3.188623249019196
1 3.718281828459046 | 3.618226709323964 3.457017485851407

48

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table (3.17) present a comparison between the error
error =|exact value —numerical value| and ||err||, = max |Error| .

in our methods where

Table 3.17: comparison between the error using Non-polynomial spline functions

Error Error
X
in linear in quadratic
0 0 -
0.1 0.000008500000502 | 0.000025161112605
0.2 0.000138666796473 | 0.000404978161439
0.3 0.000715503362949 | 0.002061459865372
0.4 0.002304033952806 | 0.006548009964346
0.5 0.005729371194704 | 0.016059618756194
0.6 0.012096888695223 | 0.033439348333935
0.7 0.022812581992656 | 0.062181331130608
0.8 0.039603728739156 | 0.106430566127816
0.9 0.064539989055098 | 0.170979862137754
1 0.100055119135082 | 0.261264342607639
llerr||. 0.100055119135082 | 0.261264342607639

Table (3.18) present a comparison between error obtain using linear

and quadratic non-polynomial and polynomial spline function including (1*
order and 2™ order [see Appendix (A)): Algorithm (VIE2PS1) and
Algorithm (VIE2PS1)]) with h=0.1

49

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.18: Comparison between error obtain using polynomial and non-polynomial

spline functions

Non-polynomial spline Polynomial spline
x Error Error Error Error

in liear in quadratic In 1% order In 2"order
0.1 0 - 0.00517091807 0.00017091807
0.2 0.000008500000502 0.000025161112605 0.22140275816 0.20640275816
0.3 0.000138666796473 0.000404978161439 0.24985880757 0.21985880757
0.4 0.000715503362949 0.002061459865372 0.49182469764 0.44182469764
0.5 0.002304033952806 0.006548009964346 0.54872127070 0.47372127070
0.6 0.005729371194704 0.016059618756194 0.82211880039 0.71711880039
0.7 0.012096888695223 0.033439348333935 0.91375270747 0.77375270747
0.8 0.022812581992656 0.062181331130608 1.22554092849 1.04554092849
0.9 0.039603728739156 0.106430566127816 1.35960311115 1.13460311115
1 0.064539989055098 0.170979862137754 1.71828182845 1.44328182845
llerr|le 0.100055119135082 0.261264342607639 1.71828182845 1.44328182845

Test Example (7): Consider the VIE of the first kind [22]:

J‘ox cos(x —t)y(t)dt =sinx 0 <x <1

the equation above one time with respect to x,to obtain :

y(x) = cosx + f sin(x — t)y(t)dt

X

0

And Exact solution, y(x) = 1. To solve this equation we differentiate

Which is second kind VIE's, with f(x) = cosx and k(x,t) = sin(x — t).

Tables (3.19) present a comparison between the exact and numerical
solution using linear and quadratic non-polynomial spline functions, where
P(x) denote the approximate solution using non-polynomial spline

functions, with h=0.1.

50

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.19: Exact and numerical solution of test example (7)

Exact P(x)
X solution linear | quadratic
0 1 1 1
0.1 1 1 1
0.2 1 1 1
0.3 1 1 1
0.4 1 1 1
0.5 1 1 1
0.6 1 1 1
0.7 1 1 1
0.8 1 1 1
0.9 1 1 1
1 1 1 1

Table (3.20) present a comparison between the error in our methods
and other method in [22], where error =|exact value —nhumerical value| and

lerr||, = max |Error| .

Table 3.20: comparison between the error with reference [22]

x Error Error Error obtain in
in linear guadratic [22]

0 0 0
0.1 0 0 1.00166
0.2 0 0
0.3 0 0 1.00166
0.4 0 0
0.5 0 0 1.00166
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1 0 0

llerr||s 0 0

Table (3.21) present a comparison between error obtain using linear
and quadratic non-polynomial and polynomial spline function including (1*
order and 2" order [see Appendix(A): Algorithm (VIE2PS1) and
Algorithm (VIE2PS1)]) with h=0.1.

51

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.21: Comparison between error obtain using polynomial and non-polynomial

spline functions

Non-polynomial spline Polynomial spline

Error Error Error Error
in linear quadratic In 1* order In 2" order

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

OO0 |0O|O|O|O|O|O|O|O|O
OoO|lO|0O|0O|O|O|O|O|O|O|O|O
OoO|lO|O|0O|O|O|O|O|O|O|O|O
O|lO|0O|0O|O|O|O|O|O|O|O|O

llerr|le

Test Example (8): Consider the VIE of the first kind [22]:
fox cos(x—t)y(t)dt =1—cosx 0 <x <1

And Exact solution, y(x) = x. To solve this equation we differentiate
the equation above one time with respect to x,therefore ,we have :

X

y(x) = sinx + j sin(x — t)y(t)dt

0

Which is second kind VIE's, with f(x) = sinx and k(x,t) = sin(x — t)

Tables (3.22) present a comparison between the exact and numerical
solution using linear and quadratic non-polynomial spline functions, where
P(x) denote the approximate solution using non-polynomial spline

functions, with h=0.1.

52

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.22: Exact and numerical solution of test example (8)

Exact solution P(x)
* linear guadratic

0 0 0 0
0.1 0.100000000000000 0.100000000000000 | 0.100000000000000
0.2 0.200000000000000 0.200000000000000 | 0.200000000000000
0.3 0.300000000000000 0.300000000000000 | 0.300000000000000
0.4 0.400000000000000 0.400000000000000 | 0.400000000000000
0.5 0.500000000000000 0.500000000000000 | 0.500000000000000
0.6 0.600000000000000 0.600000000000000 | 0.600000000000000
0.7 0.700000000000000 0.700000000000000 | 0.700000000000000
0.8 0.800000000000000 0.800000000000000 | 0.800000000000000
0.9 0.900000000000000 0.900000000000000 | 0.900000000000000
1 1.000000000000000 | 1.000000000000000 | 1.000000000000000

Table (3.23) present a comparison between the error

and other method in [22]. where error =|exact value —humerical value| and

lerr||, = max |Error| , with h=0.01.

Table 3.23: comparison between the error with reference [22]

in our methods

Error Error Error
x in linear in quadratic in[22]
0.15 0 2.775557561562900e-17 0.15006
0.45 2.442490654175330e-15 0 0.45019
0.75 4.440892098500601e-16 | O 0.75031
llerr||s 6.661338147750939%¢e-16 1.110223024625157e-16

Table (3.24) present a comparison between error obtain using non-

polynomial spline function including linear and quadratic and polynomial

spline function including (1% order and 2" order [see Appendix

(A): Algorithm (VIE2PS1) and Algorithm (VIE2PS1)]) with h=0.1.

53

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.24: Comparison between error obtain using polynomial and non-polynomial spline

functions
Non-polynomial spline Polynomial spline
x Error Error Error Error
in linear in quadratic In 1% order In 2™ order
0 0 0 0 0
0.1 0 0 0 0
0.2 0 0 0.10000000000 0.10000000000
0.3 0 | 5.5510e-17 0.10000000000 0.10000000000
0.4 0 0 0.20000000000 0.20000000000
0.5 0 0 0.20000000000 0.20000000000
0.6 0 0 0.30000000000 0.30000000000
0.7 0 0 0.30000000000 0.30000000000
0.8 1.1100e-16 0 0.40000000000 0.40000000000
0.9 1.1100e-16 0 0.40000000000 0.40000000000
1 1.1100e-16 0 0.50000000000 0.50000000000
llerr|le 1.1100e-16 | 5.5510e-17 0.50000000000 0.50000000000

Test Example (9): Consider the VIE of second kind with Weakly Singular
Kernel [15]:

0<x<1

X

xt”_l
u(x) —j ” u(t)dt = f(x)
0

p+1

Where f (x) =x+1 and = 0.5 , with u(x) = u%l-l_T x . Tables

(3.25) present a comparison between the exact and numerical solution
using linear and quadratic non-polynomial spline functions, where P;(x)
denote the approximate solution non-polynomial spline functions, with
h=0.1

54

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.25: Exact and numerical solution of test example (9)

Exact solution

B (x)

linear

quadratic

-1.000000000000000

-1.000000000000000

-1.000000000000000

-0.700000000000000

-0.700000000000000

-0.700000000000000

0.2

-0.400000000000000

-0.400000000000000

0.40000000000000
0

0.3

-0.100000000000000

-0.100000000000000

-0.100000000000000

0.4

0.200000000000000

0.200000000000000

0.200000000000000

0.5

0.500000000000000

0.500000000000000

0.500000000000000

0.6

0.800000000000000

0.800000000000000

0.800000000000000

0.7

1.100000000000000

1.100000000000000

1.100000000000000

0.8

1.400000000000000

1.400000000000000

1.400000000000000

0.9

1.700000000000000

1.700000000000000

1.700000000000000

2.000000000000000

2.000000000000000

2.000000000000000

Table (3.26 present a comparison between the error

and other method in [15]where error =|exact value —numerical value| and

|lerr||, = max |Error|

Table 3.26: comparison between the error with reference [15]

in our methods

" Error Error Error obtain

in linear quadratic in[15]
0.08 2.220446049250300e-16 2.220446049250300e-16 2.1e-0.4
0.16 4.,440892098500600e-16 4.440892098500600e-16 5.3e-0.4
0.24 5.551115123125801e-16 5.551115123125801e-16 1.3e-0.3
0.48 5.551115123125801e-16 5.551115123125801e-16 1.3e-0.3
0.64 9.992007221626401e-16 9.992007221626401e-16 8.0e-0.4
0.80 1.332267629550190e-15 1.332267629550190e-15 6.1e-0.4
0.96 2.220446049250310e-15 2.220446049250310e-15 5.1e-0.4
1 2.220446049250310e-15 2.220446049250310e-15 4.9e-0.4

llerr|| e 2.220446049250313e-15 2.220446049250313e-15

Table (3.27) present a comparison between error obtain using non-

polynomial spline function including linear and

quadratic polynomial spline function including (1% order and 2" order
[see Appendix(A): Algorithm (VIE2PS1) and Algorithm (VIE2PS1)])
with h=0.1.

55

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.27: Comparison between error obtain using polynomial and non-
polynomial spline functions

Non-polynomial spline Polynomial spline

x Error Error Error Error

in linear in quadratic In 1% order In 2" order
0 0 0 0 0
0.1 0 0 0 0
0.2 0 0 0 0
0.3 0 0 0 0
0.4 0 0 0 0
0.5 0 0 | 2.220044604 0Oe-16 2.220044604 0e-16
0.6 2.220044604 0e-16 2.220044604 0e-16 4.441089209 Oe-16 4.441089209 Oe-16
0.7 4.441089209 Oe-16 4.441089209 Oe-16 6.66133814 0e-16 6.66133814 Oe-16
0.8 6.66133814 0e-16 6.66133814 0e-16 0 0
0.9 0 0 | 2.22044604 0e-16 2.22044604 QOe-16
1 2.22044604 Oe-16 2.22044604 0e-16 4.441089209 Oe-16 4.441089209 Oe-16
llerr|l, | 6.66133814775e-16 6.66133814775e-16 6.66133814 Oe-16 6.66133814 Oe-16

Test Example (10): Consider the VIE of second with Weakly Singular Kernel

[10]:
u(x) —jt

0

u—1

0<x<1

u(t)dt = f(x)

xH

I p+1
o S

Where f (x) =x?+x +1 andu = 0.5 , with u(x) = p

+2 . .
“—1 x2. Tables 3.28 present a comparison between the exact and numerical

solution of non-polynomial spline function including linear and quadratic
, Where P,(x) denote the approximate solution use non-polynomial spline

functions, with h=0.1.

56

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.28: Exact and numerical solution of test example (10)

Exact solution P(x)
X ; :
linear quadratic
0 -1.000000000000000 -1.000000000000000 | -1.000000000000000
0.1 -0.683333333333333 -0.683347217593419 | -0.683333333333333
0.2 -0.333333333333333 -0.333555259470805 | -0.333333333333333
0.3 0.050000000000000 0.048878369581314 | 0.050000000000000
0.4 0.466666666666667 0.463130019990385 | 0.466666666666667
0.5 0.916666666666667 0.908058127032092 | 0.916666666666667
0.6 1.400000000000000 1.382214616967740 | 1.400000000000000
0.7 1.916666666666666 1.883859375718374 | 1.916666666666667
0.8 2.466666666666667 2.410977635509450 | 2.466666666666666
0.9 3.050000000000001 2.961300105764454 | 3.050000000000000
1 3.666666666666667 3.532325647106203 | 3.666666666666667

Table (3.29) present a comparison between the error

in our methods and

other method in [10], where error =|exact value —humerical value| and

llerr|l, = max |Error| ,with h=0.01.

Table 3.29: comparison between the error with reference [10]

x Error Error Error obtain in
in linear in quadratic [10]
lerr 1.2913286860531686-01 5.329070518200751¢e-15 4.03e-1

Table (3.30) present a comparison between error obtain using non-

polynomial spline function including linear and quadratic and polynomial

spline function including (1* order and 2" order [see Appendix

(A): Algorithm (VIE2PS1) and Algorithm (VIE2PS1)]) with h=0.1.

57

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.30: Comparison between error obtain using polynomial and non-
polynomial spline functions

Non-polynomial spline Polynomial spline
x Error Error Error Error

in linear in quadratic In 1 order In2"%rder
0 0 0 0 0
0.1 0 0 1.6666666666666e-02 0
0.2 1.3884260085417e-05 | 5.551115120e-17 6.6666666666666e-02 5.551115120e-17
0.3 2.2192613747207e-04 | 2.2204460490e-16 | 1.5000000000000e-01 2.2204460490e-16
0.4 1.1216304186860e-03 | 5.551115120e-17 2.6666666666666e-01 5.551115120e-17
0.5 3.5366466762822e-03 | O 4.1666666666666e-01 0
0.6 8.6085396345747e-03 | O 5.9999999999999e-01 0
0.7 1.7785383032259e-02 | 4.440892090e-16 8.1666666666666e-01 4.440892090e-16
0.8 3.2807290948292e-02 | 8.881784190e-16 1.0666666666666e+00 | 8.881784190e-16
0.9 5.5689031157217e-02 | 8.881784190e-16 1.3500000000000e+00 | 8.881784190e-16
1 8.8699894235547e-02 | 4.440892090e-16 1.6666666666666e+00 | 4.440892090e-16
llerr||l. | 8.8699894235547e-02 | 8.881784190e-16 | 1.6666666666666e+00 | 8.881784190e-16

Test Example (11): Consider the VIE of second with Weakly Singular Kernel:

u(x)—jxt

0

u—1

0<x<1

u(t)dt = f(x)

xH

Where f (x) =0.71428571*x3 , u = 0.5 ,with exact solution u(x) =
x3. Tables 3.31 present a comparison between the exact and numerical
solution using linear and quadratic non-polynomial spline functions, where
P.(x) denote the approximate solution using non-polynomial spline
functions, with h=0.1.

Table 3.31: Exact and numerical solution of test example (11)

Exact solution P(x)
linear quadratic
0 0 0 0
0.1 0.001000000000000 | 0.000999500113034 0.000999500113034
0.2 0.008000000000000 | 0.007984015181729 0.007984015181729
0.3 0.027000000000000 | 0.026878759870690 0.026878759870690
0.4 0.064000000000000 | 0.063489945767158 0.063489945767158
0.5 0.125000000000000 | 0.123446767634102 0.123446767634102
0.6 0.216000000000000 | 0.212145158356918 0.212145158356918
0.7 0.343000000000000 | 0.334693874565692 0.334693874565692
0.8 0.512000000000000 | 0.495863451627685 0.495863451627685
0.9 0.729000000000000 | 0.700038538034872 0.700038538034872
1 1.000000000000000 | 0.951174085445580 0.951174085445580

58

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.32 present a comparison between the error

in our methods

where error =|exact value —numerical value| and ||err||,, = max |Error|

Table 3.32: comparison between the error using Non-polynomial spline function

x Err:or : Ew_ﬂror _
inlinear in quadratic
0.1 0 0
0.2 4.998869659316330e-07 4.998869659316330e-07
0.3 1.598481827124777e-05 1.598481827124777e-05
0.4 1.212401293096826e-04 1.212401293096826e-04
0.5 5.100542328419638e-04 5.100542328419638e-04
0.6 1.553232365897550e-03 1.553232365897550e-03
0.7 3.854841643081697e-03 3.854841643081697e-03
0.8 8.306125434307476e-03 8.306125434307476e-03
0.9 1.613654837231471e-02 1.613654837231471e-02
1 2.896146196512817e-02 2.896146196512817e-02
llerr||. 2.896146196512817e-02 2.896146196512817e-02

Table (3.33) present a comparison between error obtain using non-

polynomial

spline

function

including

linear

and

quadratic and polynomial spline function including (1% order and 2™

order

[see

Appendix(A):

(VIE2PS1)]) with h=0.1

Algorithm (VIE2PS1)

and Algorithm

Table 3.33: Comparison between error obtain using polynomial and non-
polynomial spline functions

Non-polynomial spline Polynomial spline
x Error Error Error Error
in linear in quadratic In 1% order In2"order
0.1 0 0 0.00100000000 0.00100000000
0.2 4.998869659316330e-07 4.998869659316330e-07 0.00800000000 0.00800000000
0.3 1.598481827124777e-05 1.598481827124777e-05 0.02700000000 0.02700000000
0.4 1.212401293096826e-04 1.212401293096826e-04 0.06400000000 0.06400000000
0.5 5.100542328419638e-04 5.100542328419638e-04 0.12500000000 0.12500000000
0.6 1.553232365897550e-03 1.553232365897550e-03 0.21600000000 0.21600000000
0.7 3.854841643081697e-03 3.854841643081697e-03 0.34300000000 0.34300000000
0.8 8.306125434307476e-03 8.306125434307476e-03 0.51200000000 0.51200000000
0.9 1.613654837231471e-02 1.613654837231471e-02 0.72900000000 0.72900000000
1 2.896146196512817e-02 2.896146196512817e-02 1.00000000000 1.00000000000
llerr|l,, | 2.896146196512817e-02 2.896146196512817e-02 1.00000000000 1.00000000000

59

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Test Example (12): Consider the VIE of second with weakly singular kernel:

X
u—1

u(x) — i u(t)dt = f(x)

0

0<x<1

Wheref= 0.71428571*x3 — 0.6*x? u = 0.5 ,with exact solution
u(x) = x3-x2.Tables 3.34 present a comparison between the exact and
numerical solution using linear and quadratic non-polynomial spline
functions ,where P;(x) denote the approximate solution non-polynomial
spline functions, whit h=0.

Table 3.34: Exact and numerical solution of test example (12)

Exact P(x)

solution linear quadratic
0 00 0
0.1 -0.009000000000000 | -0.008992169330915 -0.009000499886966
0.2 -0.032000000000000 | -0.031882829135788 -0.032015984818271
0.3 -0.063000000000000 | -0.062448261878098 -0.063121240129310
0.4 -0.096000000000000 | -0.094388066227072 -0.096510054232842
0.5 -0.125000000000000 | -0.121388108585153 -0.126553232365898
0.6 -0.144000000000000 | -0.137183611823726 -0.147854841643082
0.7 -0.147000000000000 | -0.135621750865331 -0.155306125434308
0.8 -0.128000000000000 | -0.110723129677985 -0.144136548372315
0.9 -0.081000000000000 | -0.056741525423801 -0.109961461965129
1 0 0.03177869718185 -0.048825914554421

Table 3.35 present a comparison between the error

in our methods

where error =|exact value —numerical value| and ||err||,, = max |Error|

Table 3.35: comparison between the error using Non-polynomial spline function

x : Er_ror : Error .
in linear in quadratic

0.1 0 0
0.2 7.830669085488740e-06 4.998869659322835e-07
0.3 1.171708642117922e-04 1.598481827127379e-05
0.4 5.517381219020817e-04 1.212401293097382e-04
0.5 1.611933772927773e-03 5.100542328420749e-04
0.6 3.611891414847301e-03 1.553232365897550e-03
0.7 6.816388176274280e-03 3.854841643082030e-03
0.8 1.137824913466856e-02 8.306125434307754e-03
0.9 1.727687032201508e-02 1.613654837231515e-02
1 2.425847457619934e-02 2.896146196512861e-02

llerr||e 2.425847457619934e-02 2.896146196512861e-02

60

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table (3.36) present a comparison between error obtain using non-

polynomial spline function including linear and

quadraticand polynomial spline function including (1* order and 2"
[see Appendix(A) Algorithm (VIE2PS1) and Algorithm
(VIE2PS1)]) with h=0.1.

order

Table 3.36: Comparison between error obtain using polynomial and non- polynomial spline

functions
Non-polynomial spline Polynomial spline
x Error Error Error Error

in linear in quadratic In 1* order In2"%rder
0.1 0 0 9.0000000000000e-03 1.0000000000000e-03
0.2 7.8306690854887e-06 4.9988696593228e-07 | 3.2000000000000e-02 8.0000000000000e-03
0.3 1.1717086421179e-04 1.5984818271273e-05 | 6.3000000000000e-02 2.7000000000000e-02
0.4 5.5173812190208e-04 1.2124012930973e-04 | 9.6000000000000e-02 6.4000000000000e-02
0.5 1.6119337729277e-03 5.1005423284207e-04 | 1.2500000000000e-01 1.2500000000000e-01
0.6 3.6118914148473e-03 1.5532323658975e-03 | 1.4400000000000e-01 2.1600000000000e-01
0.7 6.81638817627428e-03 3.8548416430820e-03 | 1.4700000000000e-01 3.4300000000000e-01
0.8 1.1378249134668e-02 8.3061254343077e-03 | 1.2800000000000e-01 5.1200000000000e-01
0.9 1.7276870322015e-02 1.6136548372315e-02 | 8.0999999999999%e-02 7.2900000000000e-01
1 2.4258474576199e-02 2.8961461965128e-02 | O 1.0000000000000e+00
llerr||, | 2.4258474576199e-02 2.8961461965128e-02 | 1.4700000000000e-01 1.0000000000000e+00

x
u—1

Test Example (13): Consider the VIE of second with Weakly Singular
Kernel:

0<x<1

u(t)dt = f(x)

u(x)—ft

0

xH

Where f (x) =x%+x+1 and u = 0.4 , with u(x) =ﬁ+”7+1 X +

+2 . .
h x2. Tables 3.37 present a comparison between the exact and numerical

solution using linear and quadratic non-polynomial spline functions, where
P, (x) denote the approximate solution use non-polynomial spline functions,
with h=0.1.

61

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.37: Exact and numerical solution of test example (13)

Exact solution

B (x)

linear

quadratic

-0.666666666666667

-0.666666666666667

-0.666666666666667

0.1

-0.299523809523809

-0.299538090477041

-0.299523809523810

0.2

0.101904761904762

0.101676495020505

0.101904761904762

0.3

0.537619047619048

0.536465370616971

0.537619047619047

0.4

1.007619047619048

1.003981353894871

1.007619047619047

0.5

1.511904761904762

1.503050263994914

1.511904761904762

0.6

2.050476190476191

2.032182653643010

2.050476190476190

0.7

2.623333333333333

2.589588691215089

2.623333333333333

0.8

3.230476190476191

3.173196044143053

3.230476190476189

0.9

3.871904761904762

3.780670584976770

3.871904761904760

4.547619047619047

4.409439713213997

4.547619047619046

Table 3.35 present a comparison between the error

in our methods

where error =|exact value —numerical value| and ||err||,, = max |Error|

Table 3.38: comparison between the error using Non-polynomial spline function

x . Er.ror : Error .
in linear in quadratic

0 0|0
0.1 1.1102230246251e-16 | 1.1102230246251e-16
0.2 1.4280953231138e-05 | 1.6653345369377e-16
0.3 2.2826688425670e-04 | 2.7755575615628e-16
0.4 1.1536770020773e-03 | 5.5511151231257e-16
0.5 3.6376937241766e-03 | 4.4408920985006e-16
0.6 8.8544979098479e-03 | 2.2204460492503e-16
0.7 1.8293536833180e-02 | 4.4408920985006e-16
0.8 3.3744642118243e-02 | 4.4408920985006e-16
0.9 5.7280146333138e-02 | 1.7763568394002e-15
1 9.1234176927991e-02 | 1.3322676295501e-15

llerr]|. 9.1234176927991e-02 | 1.7763568394002e-15

62

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table (3.39) present a comparison between error obtain using linear and
quadratic non-polynomial spline functions and polynomial spline function
including (1* order and 2™ order [see Appendix(A): Algorithm (VIE2PS1)
and Algorithm (VIE2PS1)]) with h=0.1.

Table 3.39: Comparison between error obtain using polynomial and non-

polynomial spline functions

x Non-polynomial spline Polynomial spline
Error Error Error Error
in linear in quadratic In 1* order In2"%rder

0 0|0 0 0

0.1 1.1102230246251e-16 | 1.1102230246251e-16 1.7142857142857e-02 | 1.6653345369377e-16
0.2 1.4280953231138e-05 | 1.6653345369377e-16 6.8571428571428e-02 | 2.7755575615628e-16
0.3 2.2826688425670e-04 | 2.7755575615628e-16 1.5428571428571e-01 | 5.5511151231257e-16
0.4 1.1536770020773e-03 | 5.5511151231257e-16 2.7428571428571e-01 | 4.4408920985006e-16
0.5 3.6376937241766e-03 | 4.4408920985006e-16 4.2857142857142e-01 | 2.2204460492503e-16
0.6 8.8544979098479e-03 | 2.2204460492503e-16 6.1714285714285e-01 | 4.4408920985006e-16
0.7 1.8293536833180e-02 | 4.4408920985006e-16 8.3999999999999e-01 | 4.4408920985006e-16
0.8 3.3744642118243e-02 | 4.4408920985006e-16 1.0971428571428e+00 | 1.7763568394002e-15
0.9 5.7280146333138e-02 | 1.7763568394002e-15 1.3885714285714e+00 | 1.3322676295501e-15
1 9.1234176927991e-02 | 1.3322676295501e-15 1.7142857142857e+00 | 1.7763568394002e-15
llerr|ls 9.1234176927991e-02 | 1.7763568394002e-15 1.7142857142857e+00 | 1.7763568394002e-15

Test Example (14): Consider the VIE of second with Weakly Singular Kernel:

u(x)—ft

u—1

xH
0

Where f (x) =x+1 and u = 0.6 , whit u(x) = =y

u(t)dt = f(x)

U
-1

0<x<1

+ ”T“ x . Tables

(3.40) present a comparison between the exact and numerical solution

using linear and quadratic non-polynomial spline functions, where P;(x)

denote the approximate solution non-polynomial spline functions, with
h=0.1

63

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.40: Exact and numerical solution of test example (14)

Exact solution P.(x)
linear quadratic
0 -1.500000000000000 -1.500000000000000 | -1.500000000000000
0.1 -1.233333333333333 -1.233333333333333 | -1.233333333333333
0.2 -0.966666666666667 -0.966666666666666 | -0.966666666666666
0.3 -0.700000000000000 -0.700000000000000 | -0.700000000000000
0.4 -0.433333333333333 -0.433333333333333 | -0.433333333333333
0.5 -0.166666666666667 -0.166666666666666 | -0.166666666666666
0.6 0.100000000000000 0.100000000000001 0.100000000000001
0.7 0.366666666666666 0.366666666666667 0.366666666666667
0.8 0.633333333333333 0.633333333333334 0.633333333333334
0.9 0.900000000000000 0.900000000000001 0.900000000000001
1 1.166666666666667 1.166666666666667 1.166666666666667

Table (3.41) present a comparison between the error

in our methods

where error =|exact value —humerical value| and ||err||, = max |Error]|

Table (3.42) present a comparison between error obtain using

Table 3.41:

comparison between the error using Non

polynomial spline function

x _ Error I-_Irror
In linear In quadratic

0 0 0
0.1 2.220446049250313e-16 | 2.220446049250313e-16
0.2 4.440892098500626e-16 | 4.440892098500626e-16
0.3 4.440892098500626e-16 | 4.440892098500626e-16
0.4 3.330669073875470e-16 | 3.330669073875470e-16
0.5 5.551115123125783e-16 | 5.551115123125783e-16
0.6 6.661338147750939¢e-16 | 6.661338147750939%e-16
0.7 7.771561172376096e-16 | 7.771561172376096e-16
0.8 8.881784197001252e-16 | 8.881784197001252e-16
0.9 7.771561172376096e-16 | 7.771561172376096e-16
1 8.881784197001252e-16 | 8.881784197001252e-16

llerr|le 8.881784197001252e-16 | 8.881784197001252e-16

linear

and quadratic non-polynomial spline functions and polynomial spline

function including (1% order and 2™ order [see Appendix(A): Algorithm
(VIE2PS1) and Algorithm (VIE2PS1)]) with h=0.1.

64

Chapter three: Numerical Solution of Linear VIE's using Non-Polynomial Spline Functions

Table 3.42: Comparison between error obtain using polynomial and

non- polynomial spline functions

Non-polynomial spline

Polynomial spline

x Error Error Error Error
in linear in quadratic In 1 order In2"order

0 0 0 0 0

0.1 2.2204460492503e-16 | 2.2204460492503e-16 4.4408920985006e-16 | 4.4408920985006e-16
0.2 4.4408920985006e-16 | 4.4408920985006e-16 4.4408920985006e-16 | 4.4408920985006e-16
0.3 4.4408920985006e-16 | 4.4408920985006e-16 3.3306690738754e-16 | 3.3306690738754e-16
0.4 3.3306690738754e-16 | 3.3306690738754e-16 5.5511151231257e-16 | 5.5511151231257e-16
0.5 5.5511151231257e-16 | 5.5511151231257e-16 6.6613381477509e-16 | 6.6613381477509e-16
0.6 6.6613381477509e-16 | 6.6613381477509¢e-16 7.7715611723760e-16 | 7.7715611723760e-16
0.7 7.7715611723760e-16 7.7715611723760e-16 8.8817841970012e-16 8.8817841970012e-16
0.8 8.8817841970012e-16 8.8817841970012e-16 7.7715611723760e-16 7.7715611723760e-16
09 7.7715611723760e-16 7.7715611723760e-16 8.8817841970012e-16 8.8817841970012e-16
1 8.8817841970012e-16 8.8817841970012e-16 | 8.8817841970012e-16 | 8.8817841970012e-16
llerr|ls 8.8817841970012e-16 8.8817841970012e-16 | 8.8817841970012e-16 | 8.8817841970012e-16

3. 6.Discussion

In this chapter,

we have

introduced numerical

methods for

approximating the solution of three type of integral equations: witch are the
VIE's of the 2" kind, VIE's of the 1 kind and VIE's with weakly singular

kernel using linear and quadratic non-polynomial spline functions.

Also we compared our method with polynomial spline of (1* order and

2" order).We concludes the following remarks:

non-polynomial spline.

The quadratic non-polynomial spline gives better accuracy than linear

The 2™ order polynomial spline gives better accuracy than 1% order

polynomial spline.

The quadratic non-polynomial spline gives better accuracy than 2™

order polynomial spline.

65

Chapter four: Stability and Convergence Analysis

4.1 Introduction

In this chapter, certain conditions in order to prove the stability and
convergence of non-polynomial spline function method will be imposed.
This chapter is organized as follows: In section (4.2), we introduce stability
of non-polynomial spline function method. In section (4.3), convergence of
non-polynomial spline functions are proved, which consist of linear and
quadratic non-polynomial spline functions. And finally, in section 4.4,

conclusion for this chapter is given.

4.2. Stability Analysis:

Before introducing stability of non-polynomial spline function method,
we present Von neumman condition for stability.

Lemma 4.1: The Von Neumman Necessary Condition for

Stability [23]:

Let the eigenvalues of a matrix G beA,,.A,, ..., A, The spectral radius
of Gis

ry = max [A;].

Suppose the A’s ordered such that |A;|=r,and let v(®) be the corresponding

eigenvector .Then

v o [lov @l _
Vi = o) T

||G||=max

or generally the spectral radius is the lower bound for the bound of a
matrix. If G is raised to any power n, each of its eigenvalues gets raised to

the same power, and therefore the spectral radius G" is r; ™. Therefore
IG™|= r, "

This is the Von Neumman necessary condition for stability.

66

Chapter four: Stability and Convergence Analysis

Lemma 4.2: The Von Neumman Sufficient Condition for
Stability [23]:

Define B is the triangular matrix, such that i=j as:

A 0 0 0]

b,y A 0 .. 0

b byy A® 0
B= 31 32 .

by by ... AP

Whose diagonal elements are the eigenvalues such that b;; = Ofor i <.

we assume that :
@) =
max [A™] =y <1,
and call

max([AV],1) = 2.

If 2* is less than or equal 1, then the Von Neumman condition is sufficient

as well as necessary for stability.

Now, we try to prove that non-polynomial spline functions method are
stable.

Using equations (2.12)-(2.15),we get the following matrix:

67

Chapter four: Stability and Convergence Analysis

_ oo K
o~ R O
oro o

And from equations (2.18)-(2.22),we get:

1 0 0 0 0
O 1 0 0 O
0 k 1 0 0
~k%/2 0 0 1 0
1 0 0 0 1

_ OO O

a;
b;
d;

|
)

can T
£ 072

1 24
="k (t;)

_ 1 " -
%z pi' (t)

p;i(ty)

pi(t;)

_ 1 -
Q)
1 1224
%3 Q;"(t)

Qi (ty)
1 124
2 Q' (t;)
Q;(ty)

In general for n is even, we get the following matrix:

1 0 0 ..
0 1 0
0 k 1
1
(n—1)!
(b
n!
1 0

And for n is odd, we get

68

0 0
0 0
0 0

ra; .
. (n+2)
bl k(n+2) Si (tl)
C; .
d| _
e| JACD)
n_li ol si (t;)
| Z.i si(t;)

Chapter four: Stability and Convergence Analysis

1 0 0 .. 0 0 1
0 1 0 0
0 k 1 0 0 Jra; -1 ()
] n+1
b; k(n+1) S (tl)
C; .
d; |
1 0 €; o k(nv)
(n—1)! m; sh(ty)
@) 2] L sl(tl)
n!
1 0 0 1

So the maximum of eigenvalues isl, by the lemma's (4.1) and (4.2) we
achieve the stability of the method.

4.3 Convergence Analysis:

We present some definitions, as a background which will be needed to

prove the convergence analysis of non-polynomial spline function.
Definition (4.1): [21]
The linear k-step methods is define as :

}< 0% Yn+j = h? 0 B Yn+] (4.1)

Where o = 1land ay and 3, do not both vanish
Definition (4.2):[21]

With the linear multistep method (4.1) we associate the linear

difference operator

Lly(x); h] = Eiloley y(x +jh) = h?Bjy" (x + jh)]

Where y(x)is an arbitrary function, continuously twice differentiable on an
interval [a,b]. If we assume that y(x) has as many higher derivatives as we

require, then using the Taylor expanding about the point x, we obtain:

69

Chapter four: Stability and Convergence Analysis

LLy(x); h] = coy(x) + c1hy (x) + -+ + c,hTy D (x) + -
Where

k
CO - Z O(]
j=0
k
J=0

1k 1 K @2
—_- — 'q(x. — Z jla- i ,q = 2,3,
q! i=0] ' (q—-2)! 1'=0] by

Definition (4.3):[21]

Cq

We say that the method has order P if:

Co=C =..=Cp =Cpr1 =0,Cpy #0

Cp+21S the error constant andcp+2h2y(?’+2)(xn) is the principal local

truncation error at the point x,,.

Definition (4.4): [21]

The method is said to be consistent if it has order at least one. If we

define the first and second characteristic polynomials

k . k -
pO=) al, o@=) g
)=)=

it is easily verified that method (4.1) is consistent if and only if

p(1)=p'(1)=0, p" (1) =20(1)

70

Chapter four: Stability and Convergence Analysis

Definition (4.5): [21]

The linear multistep method (4.1) is said to be zero-stable if no root of
the first characteristic polynomial has modulus greater than one, and every

roots of modulus one has multiplicity not greater than two.
Theorem4.1:[21]

The necessary and sufficient conditions for a linear multi-step method

to be convergent is consistent and zero-stable.
4.3.1 The linear Non-Polynomial Spline Function:

Consider a partition A= {t,,ty,t,, ..., t,} of [a,b]c R . Let S(A) denote
the set of piecewise polynomials on the subinterval I; = [t;, ti,1] Of

partition A.
The form of the linear non-polynomial spline is:
P.(x) = ajcosk(x — x;) + bisink (x — x;) + ¢;(x — x;) + d; (4.1)

Where a;, b;, ¢;, and d; are constants to be determined . In order to obtain
the value of a;, b;, ¢;, and d; , we differentiate equation (4.1) two times with

respect to x to get:

P/(x) = —Kka;sink(x — x;) + kbjcosk (x — x;) + ¢;
P/ (x) = —k?ajcosk(x — x;) — k?b;sink (x — x;) (4.2)

By substituting x = x; in (4.2) and (4.1), we obtain the following
equations:
P(x;) = aj +d;

Pi'(xi) = kbl + (o] (43)
P (x;) = —Kk?a;

The following relations are defined as:

71

Chapter four: Stability and Convergence Analysis

ll:i(xi+1) ; Zit1)
 (x:) = 7.
o) =S (4
P"(x;) =S
From equations (4.1)-(4.4) ,we get the following relations:
Z; = a; + d;
Ziy1 = a;cos I+ b; sind + ¢;h + d;
S; = —k?a;
Si+1 = —k?a; cos9 — k?b; sind ,where 9 = kh
We obtain the values of a;, b;, ¢;, and d; from the above realations as

follows:

_ —h?s,

a; = 92 (4.5)
h?(cos9S; — Si41)
1 92sin9 (4.6)
(Ziz1 —Zi) h(Si41—S5)
C = h + 192 (47)
h2

Using continuity conditions for non-polynomial spline ofthe first
derivative to get the following consistency relation:

kb; + ¢; = —ka;_; sind + kb;_;cosd +c;_; (4.9)

Using equations (4.5)-(4.9), we get:

h?k(cos9S;—Si41) (Zi+1—Z) h(Si+1=Si+1) h?k .
Zeing + - + 52 =5 Si_1sin9 +
h?k(cos9S;_1-Sj) (Zi=Zj—1) | h(Si—Si-1)
CoS
92sind 9+ h + 92

After slight rearranging, the last equation reduced to [42]:
Ziy1 — 2Zi + Zi_1 = YSj41 + aS; + ¥S;_4,(4.10)

72

Chapter four: Stability and Convergence Analysis

h?2 h?2 : 2h? cosd N %
-, a — — —_— N
9 sing 92" 92sind | 92

where Y =

Liyy — 2Z; + Zi4
12 1 S N 2COS19+1 S+
B [(8 sin 9 82) i+1 + (92sind 92) i (s sin 9

1
— @)Si—l, (4.11)

Theorem (4.2): The linear non-polynomial spline function is convergent
if it satisfy the following condition:

1-2Y—a=0
Proof: First from (4.11), we get:
P =C-Dr-1)=0r-1?

that is, by definition (4.5) ,the linear non-polynomial spline function is
zero stable,

Second, using definition (4.2),we have:
C0=O,C1 =0 , Co =1—2Y—(X=0

So by definition (4.3), the linear non-polynomial spline function is

consistent.

Therefore ,using theorem (4.1) the method is convergent.
4.3.2 The Quadratic Non-Polynomial Spline Function:

Consider the partition A= {t,,t;,t,,...,t,} Of [a,b]Jc R . Let S(A)
denotes the set of piecewise polynomials on the subintervals [; = [t;, ti;1]

of partition A.
The form of the quadratic non-polynomial spline is:

Qi(x) =a; cosk (x —x;) + b; sin k(x — x;) + ¢;(x — x;)

+dl(x - Xi)z + €; (412)

73

Chapter four: Stability and Convergence Analysis

where a;, b;, ¢;, d;jand e; are constants. In order to obtain the value of these

constants we differentiate equation (4.12) four times with respect to x,

therefore, we get:

Q;(x) = —ka;sink(x — x;) + kb;cosk (x — x;) + ¢; + 2d;(x — x;)
Q{'(x) = —k?a;cosk(x — x;) — k?b;sink(x — x;) + 2d,;

Q" (x) = k3a;sink(x — x;) — k3b;cosk(x — x;)

(4.13)

Qi(4) (x) = k*a;cosk(x — x;) + k*b;sink(x — x;)

From the equations (4.12) and (4.13), we obtain the following

relations :

Qi(xy) = a; + ¢)
Qi (x;) = kb; + ¢
Q' (xi) = —k?a; + 2d,
Q" (x;) = —k°b;
Qi(4)(xi) = k4ai J

-~

The following relations are defined as:
Qi(xixj) = Yiuj

Qi (xi+7) = Dix;

Qi (Xivj) = My,

Qi (xi+j) = Tisj

Q" (xirs) = Sir

From equations (4.12)-(4.14),we
a;, by, ¢;, d; and e; as follow:

tan(g)

k4cos(§) k?

c; = Dy +-4(4.17)

74

(4.14)

get the values of

(4.15)

Chapter four: Stability and Convergence Analysis

di = Mit1/2 n Si+1/2 (4.18)

2 2k?2
1 h? h*M;1/2 hT; hD;
e; = Yiy1\2 — <F+W) Si+(§) — 3 — T — > (419)
Where 9 = kh.

In the same way, as in the linear non-polynomial spline function using
continuity conditions for non-polynomial spline of Q;(x) and it's first,
second, third derivatives to get the following consistency relation:

h h?
i+ Di1) = Yiqyp = Yiap — ;(Miﬂ/z +3M;_1/,)

tan®/2) __h \(p | 1w
+(k3 2k2) (Ti + Tia) + (k4cos(9/2) 8k?2

1 —cos(0) 3h? 1
) Sivrge + (—k4cos<e/z> — 25t) Sie1ye (420)

—Zsin(g) h
D;—D;_, = hMi—% + PR Si—% (4.21)
tan(0/2) -1 1
T(Ti +Ti—1) = Miyqp— Mi_qpp + (m + ﬁ) Si+1/2
cosf 1
+ (k3cos(9/2) - E) Si—1/2 (4.22)
25in(0/2)
T =Ty = %Si—uz (4.23)

Equations (4.20)-(4.22)yield the following equations,

2
hD; = (Yiyr/o — Yieysa) + (k_lz - m — hg) (Miy1/0 —Mi_y/2)

h h h2
+ (2k3sin(9/2) " 2k3tan(6/2) @) (Si+1/2 - Si—l/z) (4.24)

Likewise from Equations. (4.22) and (4.23) it follows that,

_ k 1 1
= 2tan(0/2) (Mi“/z B Mi_l/z) * (Zk tan(0/2) 2k sin(@/Z))

* (Si+l - Si—%) (4.25)

2
75

Chapter four: Stability and Convergence Analysis

Eliminating of T's from Equations,(4.23) and (4.25), D's from equation
(4.21) and (4.24) ,yield:

k 1 1
2tan(6/2) <_Mi+§ T 2Mi_1/2_Mi_3/2> B (Zk tan(6/2) 2k sm(e/z)) (Si—3/2 +
1 1 2 sin(0/2)
Sl+1/2)+(k Sin(@/Z) - B tan(g) - K >Si_1/2 (4‘.26)

h2(1- cos(8/2)) _ . _ T
2k2 Si—1/2 = Yi+1/2 zyi—% T yi—% 2 <k2 B 8(1—cos(§) -

h? 1 h?
—IM 1+ |s5——FF||M 1 + M 4.27) +
) (s@-ws@)() e

When k—0, formula derived becomes special case of equation (4.26) that
IS,

h4
h? (Mi+1/2 - 2Mi—1/2+Mi—3/2) =3 (Si+1/2 + 6512 + Si—3/2) (4.28)

Eliminating S;'s from equation (4.27) and (4.28) we get

Yitz/2+t4Yit1)2 h? 1
(—10 Yi_1/2+4Yi_3/2> = (m - ﬁ) (Mi—5/2 + Mi+3/2)

+Yi_s5/,2

4+3h%k2-2(4+h?%k?) cos(0/2)+4 cos(H)

+ 4k2sin2(0/4) (Mi—3/2 + Mi+1/2)

8—19h%k?+24(-1+h?k?) cos(6/2)+16 cos(8)
+ 8kZ2sin%(6/4) (Mi_l/z) (4'29)

Equation (4.29) in simpler form renders the following equation,

[17]:

a(Mi_s/2+Mii3/2)
Yiis/o +Yiizn + 4(Yi—3/2 + Yi+1/2) —10Y;_,, = h? +B (Mi_3/2+Miy1/2)
+YMi_1\2

(4.30)

that is:

76

Chapter four: Stability and Convergence Analysis

Yirqa +4Yi43 — 10Yj42 +4Yipq + Y = a Mjyy + B Myy3

+y Mit2 + f My + a M

1 1 4+392-2(4+9?) cos(§)+4 cos(9)
wherea = —— =, f = Y
16 sin? (Z) 9 48251n2(z)
and y = 8+19 82+24(—1+822Cos(§)+16cos(19) (=12 .. 7
89%sin (g)

Theorem (4.3): The quadratic non-polynomial spline function is
convergent if it satisfies the following condition:

—-1/2(8—-2a—-28-Y) =0
Proof: First from (4.30), we get:
p(r) = (r—1D*@*+6r+1)

that is, by definition (4.5) ,the quadratic non-polynomial spline function is
zero stable,

Second, using definition (4.2) ,we have:

C0=0,C1=0 ,C2=8—20(—2,8—Y=0,C3
= —1/2(8=2a—28-Y)=0

So by definition (4.3), the quadratic non-polynomial spline function is

consistent.

Therefore, using theorem (4.1) the method is convergent.

77

Chapter four: Stability and Convergence Analysis

4.4Discussion

In this chapter, we discussed the stability and convergent analysis of
linear and quadratic non-polynomial spline functions method. The results

show that:
1. The non-polynomial spline functions are stable method.

2. The linear non-polynomial spline function is a zero-stable and

consistent method.

3. The quadratic non-polynomial spline function is a zero-stable and

consistent method.
4. The linear non-polynomial spline function is convergent.

5. The quadratic non-polynomial spline function is convergent.

78

Chapter five: Conclusion and Recommendations

(5.1) Conclusions:

The numerical treatment of the liner VIE's of the 2" kind and VIE's
with weakly singular kernel using non-polynomial spline functions were
introduced. Moreover, a VIE's of the 1% kind with k(x, x) # 0 are reduced
to VIE's of the 2" kind and solving it using the same algorithms, examples
were solved and good results are achieved.

A comparison is made between these methods depending on the
absolute error, between the numerical and the exact solutions.

Tables (5.1) and (5.2) give the absolute error for solving test examples
(1) and (8), respectively , using linear and quadratic non-polynomial spline
functions and polynomial spline functions including 1% and 2" order and
the result obtain in [36].

Tables (5.1): Absolut error for test example (1)

Using Polynomial spline Using Non- Polynomial spline Result
obtain in
1" order | 2" order linear quadratic
lerr| 139]
© | 0.34147098480 | 0.34147098480 | 4.440892098500e-16 | 4.440892098500e-16 | 2.050806e-012
Table (5.2): Absolut error for test example (8)
Using Polynomial spline Using Non- Polynomial spline
1" order | 2" order linear quadratic
||err||s | 0.50000000000 | 0.50000000000 1.1100e-16 5.5510e-17

Table (5.3) gives the absolute error for solving test example (10) using
linear and quadratic non-polynomial spline functions and polynomial spline
functions including 1% and 2" order and the result obtain in [10].

79

Chapter five: Conclusion and Recommendations

Table (5.3): Absolut error for test example (10)

Using Polynomial spline Using Non- Polynomial spline Result
obtain in
1% order 2" order linear quadratic
[10]
llerr||
1.666666666e+00 | 5.32907051e-15 | 1.29132868605e-01 | 5.32907051820e-15 4.03e-1

The comparison between the solutions obtained by the method of:
linear and quadratic non-polynomial and polynomial spline functions
including 1% and 2™ order [see appendix (B)] shows that the approximate
solutions of our problems by using non-polynomial spline functions are
better in the sense of accuracy and applicability. These have been verified
by the maximum absolute errors (max |err]) given in tables .A new
approach convergence analysis of the presented method is discussed.

Figures (B.1) and (B.2) in appendix (B) show a comparison between
the exact and numerical solution which was presented in test example (1)
using linear and quadratic non-polynomial spline functions and the second
using quadratic non-polynomial and polynomial spline function of 2™
order, respectively .

Figures (B.3) and (B.4) show a comparison between the exact and the
numerical solution which was presented in test example (8) using linear
and quadratic non-polynomial spline functions and the second using
quadratic non-polynomial and polynomial spline function of 2" order,
respectively .

Figures (B.5) and (B.6) show a comparison between the exact and
numerical solution which was presented in test example (10) using linear
and quadratic non-polynomial spline functions and the second using
quadratic non-polynomial and polynomial spline function of 2™ order,
respectively .

From the above results tables and figures, the following conclusions
are drawn:

80

Chapter five: Conclusion and Recommendations

e In general, methods which are used in this thesis, proved their
effectiveness in solving linear VIE's of 2™ kind and VIE's with weakly
singular kernel numerically and finding an accurate results.

e The results that are obtained in our work show that quadratic non-
polynomial spline function gives the best approximation to solve our
problems.

e This new idea based on the use of the VIE and its derivatives. So it is
necessary to mention that this approach can be used when
f(x) and k(x,t) are analytic.

e The proposed scheme is simple and computationally attractive and its
accuracy is high and we can simply execute this method in a computer.

81

Chapter five: Conclusion and Recommendations

(5.2): Numerical Structure of our method:

|

1.2" kind VIE's
2.1 Kind VIE's

3.2" kind VIE's with weakly singular kernel

1.1°" order non- polynomial
spline function Yes

2.2"%order non- polynomial

spline function

No
Reduceto | Yes Yes
2nd kind —
VIE'S
No No
No

l Yes

1.1% order non- polynomial spline function

2.2"%order non- polynomial spline function

82

Chapter five: Conclusion and Recommendations

(5.3)Recommendations:
Our recommendations for future work are

1. Using non-polynomial spline function to solve a system of linear
VIE's.

2. Using non-polynomial spline function to solve non - linear VIE's of
2" kind.

3. Using another order of non-polynomial spline function to solve a
linear VIE's of 2" kind and 1% kind VIE's with weakly singular
kernel.

4. Writing the package: which is a single program including programs
for all cases of methods (non-polynomial spline functions).

5. Also, using the proposed method to find numerical solution for a
linear Fredholm integral equations.

6. Using non-polynomial spline function to solve non - linear Fredholm
integral equations.

7. Using non-polynomial spline function to solve a system of Fredholm
integral equations.

8. Using non-polynomial spline function to solve Abel’s equation.

83

Appendix (B): Figures

Appendix (B): Figures

test example1)
Dg T T T T T T T T T é
nek Exact solution __,-"'/
Linear non-poly spline f_,ﬂ
. Quadratic non —poly spline -
0.7 e
-
0.6 /m/'/
0sf o -
= P
= e
0.4k o
.-'/'
0.3 -4
J/
-~
0.2 P -
.'/'
0.1 __E' -
.-/.
Dﬂ/ 1 1 1 1 1 | | | 1
a 0.1 0.2 0.3 0.4 0.5 0.6 oy 0.8
¥

ng

Fig (B.1): comparison between the exact and the approximate solution using linear and quadratic
non-polynomial spline functions for test example (1)

test example(1)
I:IB T T T T T T T T $
08 Exact soluti -
gk xact solution]
[7 2™ order poly spline A
4 Quadratic non-poly spline &
07 r - -
s
NEF - -
A
nsk _/ =)
- &
= o
04k P | [RRRRE 0 _
_/
03k & O .
-’,-’ .
e -
|:|2 - /$ D D -
VA
01k B o _
a/.
D# 1 1 1 1 1 | 1 1
] 0.1 0.2 0.3 0.4 05 06 07 0.8
¥

0.9

Fig (B.2): comparison between the exact and the approximate solution using 2™ order polynomial
and quadratic non-polynomial spline functions for test example (1)

VI

Appendix (B): Figures

test example(d)

1 T T T T T T T T T /__m
. -
09+ 4 Exact solution = E
o Linear non-poly spline o
gk . Quadratic non —poly spline m .
— /_
07t - .
o
06| -4 1
= -
= 05 ',E 1
d
0.4 N::) 1
03r /m/ -
~
02r P 1
.'/J
01 __E' 1
a/.
Dm/ | 1 1 1 1 1 1 | |
] 0.1 0.2 0.3 0.4 0.5 0B 07 0.8 (IR 1

o

Fig (B.3): comparison between the exact and the approximate solution using linear and quadratic
non-polynomial spline functions for test example (8)

test example(s)

1 T T T T T T T T T /__*
nol ~ Exact solution /* < i
' 7 2™ order poly spline .
nal % Quadratic non-poly splini P . - i
07 o |
e
I
06F /$ i
—_ e
£ 05 A O
A
04ar & o g 4
_/
03t | E g .
-
0.2r ﬁ Lreeeee 3 -
01f B0]
P

Fig (B.4): comparison between the exact and the approximate solution using 2" order polynomial
and quadratic non-polynomial spline functions for test example (8)

Appendix (B):

Figures

test example(10)

'4 T T T T

Exact solution %
35 Linear non-poly spline _/'.’
Quadratic non —poly spline e '
3t Ei
e
25} & -
A
2t 3 1
./_g“
£ 15} ra .
1k "(4
.
_/'
n&F N 4
__./
ot B -
-~
051 __,-"IE _
"
-

_15-’ 1 1 I I 1 I I 1 1

] 01 n? 03 04 08 0B 07 0B 09 1
£

Fig (B.5): comparison between the exact and the approximate solution using linear and quadratic
non-polynomial spline functions for test example (10)

test example(10)

11 T T T T T T T T T
— = -exact solution &
351 el i) el i el ..-/_

/
<18 > Exact solution ,m i
O 2" order poly spline ’
25 - Quadratic non-poly spline B .
2+ —_ .
A
g 15} ' -
"] - 'E_. -
Ed
0sfF " 4
of s]
-
N5k /’E i
")

_15-’ 1 I 1 1 I I I 1 1

0 0.1 0z 03 04 0.5 0.6 0.7 08 09 1

Fig (B.6): comparison between the exact and the approximate solution using 2™ order polynomial
and quadratic non-polynomial spline functions of for test example (10)

Appendix (c): programming

Program 1: linear non-polynomial spline function for solving VIE's of the
second kind:

function [u,err]=volnonpolysplinelst(ker,f.ex,a,b,n)
syms x ts
h=(b-a)/n;
u(1)=subs(f,a);
If isempty(diff(f,1))==1
z1=0;
else
z1=diff(f,1);
end
du(1)=subs(z1,a)+subs(ker,{x,t},{a,a})*u(l);
If isempty(diff(f,2))==1
22=0;
else
z2=diff(f,2);
end
If isempty(diff(subs(ker,{t},{x}),'x"))==1
23=0;
else
z3=diff(subs(ker,{t},{x}),"x");
end
If isempty(diff(ker,"x"))==1
223=0;
else
zz3=diff(ker,"x");
end
d2u(1)=subs(z2,a)+subs(zz3,{x,t},{a,a})*u(1)+subs(z3,a)*u(1)+subs(ker {x,t},{a
a})*du(l);
if isempty(subs(diff(subs(diff(ker,"x"),{t}.{x})).{x}.{a}))==1
z=0
else
z= subs(diff(subs(diff(ker,"x"),{t},{x}).{x}.{a})
end
If isempty(diff(f,3))==1
z4=0;
else
z4=diff(f,3);
end
if isempty(diff(ker,2,'x"))==1
25=0;
else
z5=diff(ker,2,x’);
Xl

Appendix (c): programming

end

If isempty(subs(diff(subs(ker {x,t},{x,x}),2),{x}.{a}))==1
26=0;

else
z6=subs(diff(subs(ker {x,t},{x,x}),2),{x}.{a});

end

If isempty(subs(diff(subs(ker,{x,t},{x,x})).{x}{a}))==1
z7=0;

else
z7=subs(diff(subs(ker {x,t},{x,x})),{x}.{a});

end

d3u(1)=subs(z4,a)+subs(subs(z5,{x,t},{x,x}) {x}.{a})*u(1)+z*u(1)+subs(subs(dif

f(ker, "), {x,t},{x,x}),{x},{a})*du(1)+z6*u(1)+2*z7*du(1)+subs(ker,{x,t},{a,a})*

d2u(l);

a(1)=-d2u(1); b(1)=-d3u(1);

¢(1)= du(1)+d3u(1); d(1)=u(1)+d2u(l);

for i=1:n
u(i+1)=a(i)*cos(h)+b(i)*sin(h)+h*c(i)+d(i);
du(i)=-a(i)*sin(h)+b(i)*cos(h)+c(i);
d2u(i)=-a(i)*cos(h)-b(i)*sin(h);
d3u(i)=a(i)*sin(h)-b(i)*cos(h);
a(i+1)=-d2u(i);b(i+1)=-d3u(i);
c(i+1)=du(i)+d3u(i); d(i+1)=u(i+1)+d2u(i);

end

err=abs(u-subs(ex,0:h:1));

Program 2: quadratic non-polynomial spline function for solving VIE's of
the second kind:

function [u,err]=volnonpolyspline2nd(ker,f,ex,a,b,n)
syms x ts
h=(b-a)/n;
u(1)=subs(f,a);
if isempty(diff(f,1))==1
z1=0;
else
z1=diff(f,1);
end
du(1)=subs(z1,a)+subs(ker,{x,t},{a,a})*u(l);
If isempty(diff(f,2))==1
z22=0;
else
z2=diff(f,2);

Xl

Appendix (c): programming

end
If isempty(diff(subs(ker,{t},{x}),'x"))==1
23=0;
else
z3=diff(subs(ker {t},{x}),'x");
end
If isempty(diff(ker,"x"))==1
223=0;
else
zz3=diff(ker,"x");
end
d2u(1)=subs(z2,a)+subs(zz3,{x,t},{a,a})*u(1)+subs(z3,a)*u(1)+subs(ker {x,t},{a
a})*du(l);
If isempty(subs(diff(subs(diff(ker,"x") {t}.{x})).{x}.{a}))==1
z=0;
else
z= subs(diff(subs(diff(ker,"x"),{t},{x})).{x}.{a});
end
If isempty(diff(f,3))==1
z24=0;
else
z4=diff(f,3);
end
If isempty(diff(ker,2,'x"))==1
25=0;
else
z5=diff(ker,2," x");
end
if isempty(subs(diff(subs(ker {x,t},{x,x}),2).{x}.{a}))==1
26=0;
else
z6=subs(diff(subs(ker {x,t},{x,x}),2),{x}.{a});
end
If isempty(subs(diff(subs(ker,{x,t},{x,x}),{x}.{a}))==1
z7=0;
else
z7=subs(diff(subs(ker,{x,t},{x,x})).{x}.{a});
end
d3u(1)=subs(z4,a)+subs(subs(z5,{x,t},{x,x}) {x}.{a})*u(1)+z*u(1)+subs(subs(dif
f(ker, "), {x,t},{x,x}),{x},{a})*du(1)+z6*u(1)+2*z7*du(1)+subs(ker {x,t},{a,a})*
d2u(l);
if isempty(diff(f,4))==1
28 =0;
else
Xl

Appendix (c): programming

z8=diff(f,4);
end
if isempty(diff(ker,3,'x"))==1
29=0;
else
z9= diff(ker,3,"x");
end
if isempty(subs(diff(ker,2,"x"),{t},{x}))==1
210=0;
else
210=subs(diff(ker,2,"x"),{t}.{x});
end
if isempty (subs(diff(z10),{x},{a}))==1
21010=0;
else
21010=subs(diff(z10),{x},{a});
end
if isempty(diff(ker,2,'x"))==1
z11=0;
else
z11=diff(ker,2," x");
end
if isempty (diff(ker,"x"))==1
z12=0;
else
z12=diff(ker,"x");
end
if isempty(subs(z12,{t},{x}))==1
c=0;
else
c=subs(z12 {t}.{x});
end
if isempty (sym(c))==1
z1212=0;
else
21212=sym(c);
end
if isempty(subs(diff(ker,"x"),{t},{x}))==1

213=0;
else
z13= subs(diff(ker, x"),{t},{x});
end
if isempty (subs(diff(z13),{x},{a}))==1
XIV

Appendix (c): programming

z1313=0;
else
21313=subs(diff(z13),{x}.{a});
end
It isempty(subs(diff(subs(ker,{x,t},{x,x}),3),{x}.{a}))==1
214=0;
else
z14=subs(diff(subs(ker,{x,t},{x,x}),3),{x}.{a});
end
If isempty(subs(diff(subs(ker,{x,t},{x,x}),2),{x},{a}))==1
z15=0;
else
z15=subs(diff(subs(ker {x,t},{x,x}),2),{x}.{a});
end
if isempty(subs(diff(subs(ker {x,t},{x,x})).{x},{a}))==1
216=0;
else
z16=subs(diff(subs(ker,{x,t},{x,x})),{x}.{a});
end

d4u(1)=subs(z8,a)+subs(subs(z9,{x,t},{x,x}),{x},{a})*u(1)+z1010*u(1)+subs(su
bs(z11,{x,t},{x,x}),{x},{a})*du(1)+subs(diff(z1212,'x",2),{x},{a})*u(1)+2*z1313*
du(1)+subs(subs(diff(ker, x"),{x,t},{x,x}).{x},{a})*d2u(1)+z14*u(1)+3*z15*u(1)
+2*z16*d2u(1)+subs(ker,{x,t},{a,a})*d3u(1);
a(l)=d4u(1); b(1)=-d3u(l);
c(1)= du(1)+d3u(1); d(1)=(1/2)*(d2u(1)+d4u(1));
e(1)=u(1)-d4u();
for i=1:n
u(i)=a(i)*cos(h)+b(i)*sin(h)+h*c(i)+d(i)*h"2+e(i);
du(i)=-a(i)*sin(h)+b(i)*cos(h)+c(i)+2*d(i)*h;
d2u(i)=-a(i)*cos(h)-b(i)*sin(h)+2*d(i);
d3u(i)=a(i)*sin(h)-b(i)*cos(h);
d4u(i)=a(i)*cos(h)+b(i)*sin(h);
a(i+1)=d4u(i);b(i+1)=-d3u(i);
c(i+1)=du(i)+d3u(i); d(i+1)=(1/2)*(d2u(i)+d4u(i));
e(i+1)=u(i)-d4u(i);
end
err=abs(u-subs(ex,h:h:1));

XV

Appendix (c): programming

Program 3: first order polynomial spline function for solving VIE's of the
second kind:

function [u,err]=volpoly(ker,f,ex,a,b,n)
syms x ts
h=(b-a)/n;
u(1)=subs(f,a);
If isempty(diff(f,1))==1
z1=0;
else
z1=diff(f,1);
end
du(1)=subs(z1,a)+subs(ker,{x,t},{a,a})*u(1);
a(1)=du(1); b(1)=u(1);
for i=1:n
u(i+1)=a(i)*h+b(i);
du(i)=a(i);
a(i+1)=du(i);b(i+1)=u(i);
end
err=abs(u-subs(ex,0:h:1));

Program 4: second order polynomial spline function for solving VIE's of
the second kind:

function [u,err]=volpoly2(ker,f,ex,a,b,n)
syms x ts
h=(b-a)/n;
u(1)=subs(f,a);
If isempty(diff(f,1))==1
z1=0;
else
z1=diff(f,1);
end
du(1)=subs(z1,a)+subs(ker,{x,t},{a,a})*u(l);
it isempty(diff(f,2))==1
22=0;
else
z2=diff(f,2);
end
if isempty(diff(subs(ker,{t},{x}), x"))==1
23=0;
else
z3=diff(subs(ker {t},{x}),"x");

XVI

Appendix (c): programming

end

If isempty(diff(ker,"x"))==1

223=0;

else

zz3=diff(ker,"x");

end

d2u(1)=subs(z2,a)+subs(zz3,{x,t},{a,a})*u(1l)+subs(z3,a)*u(1)+subs(ker,{x,t},{a

,a})*du(1);

a(1)=(1/2)*d2u(1); b(1)=du(1);

c(1)= u(l);

for i=1:n
u(i+1)=a(i)*(h"2)+b(i)*h+c(i);
du(i)=2*a(i)*h+b(i);
d2u(i)=2*a(i);

a(i+1)=(1/2)*d2u(i);b(i+1)=du(i);

c(i+1)=u(i);

end

err=abs(u-subs(ex,0:h:1));

Program 5: linear non-polynomial spline function for solving VIE's of the
second kind with weakly singular kernel:

unction [u,err]=nonpolyavolteraa(f,ex,a,b,n,m)

syms x ts

h=(b-a)/n;x=a:h:b;

u(1)=(m/(m-1))*subs(f,a);

du(1)=(m+21)/m*subs(diff(f,1),0)

d2u(1)=((m+2)/(m+1))*subs(diff(f,2),0)

d3u(1)=((m+3)/(m+2))*subs(diff(f,3),0)

a(1)=-d2u(1); b(1)=-d3u(1)

c(1)= du(1)+d3u(1); d(1)=u(1)+d2u(1)

for i=1:n
u(i+1)=a(i)*cos(h)+b(i)*sin(h)+h*c(i)+d(i);
du(i)=-a(i)*sin(h)+b(i)*cos(h)+c(i);
d2u(i)=-a(i)*cos(h)-b(i)*sin(h);
d3u(i)=a(i)*sin(h)-b(i)*cos(h);
a(i+1)=-d2u(i);b(i+1)=-d3u(i);
c(i+1)=du(i)+d3u(i); d(i+1)=u(i+1)+d2u(i);

end

for i=1:n

err(i)=abs(u(i)-subs(ex,x(1)));
end

XVII

Appendix (c): programming

Program 6: quadratic non-polynomial spline function for solving VIE's of
the second kind with weakly singular kernel:

function [u,err]=nonpolyavolteraa2(f,ex,a,b,n,m)

syms x ts

h=(b-a)/n;x=a:h:b;

u(1)=(m/(m-1))*subs(f,a);

du0=(m+1)/m*subs(diff(f,1),0);

d2u0=((m+2)/(m+1))*subs(diff(f,2),0);

d3u0=((m+3)/(m+2))*subs(diff(f,3),0);

d4u0=((m+4)/(m+3))*subs(diff(f,4),0);

a(1)=d4u0; b(1)=-d3u0;

¢(1)= du0+d3u0; d(1)=(1/2)*(d2u0+d4u0);

e(1)=u(1)-d4u0;

for i=1:n
u(i+1)=a(i)*cos(h)+b(i)*sin(h)+h*c(i)+d(i)*h"2+e(i);
du(i+1)=-a(i)*sin(h)+b(i)*cos(h)+c(i)+2*d(i)*h;
d2u(i+1)=-a(i)*cos(h)-b(i)*sin(h)+2*d(i);
d3u(i+1)=a(i)*sin(h)-b(i)*cos(h);
d4u(i+1)=a(i)*cos(h)+b(i)*sin(h);

a(i+1)=d4u(i+1);b(i+1)=-d3u(i+1);
c(i+1)=du(i+1)+d3u(i+1); d(i+1)=(1/2)*(d2u(i+1)+d4u(i+1));
e(i+1)=u(i+1)-d4u(i+1);

end

for i=1:n

err(i)=abs(u(i)-subs(ex,x(1)));
end
Program 7: first order polynomial spline function for solving VIE's of the

second kind with weakly singular kernel:

function [u,err,u0]=singular(f,m,b,n,ex)
h=b/n;x=h:h:b;
df=diff(f,1);
u0=(m/(m-1))*subs(f,0);
du0=(m+1)/m*subs(df,0);
a(1)=du0; b(1)=u0;
for i=1:n

u(i)=a(i)*h+b(i);

du(i)=a(i);
a(i+1)=du(i);b(i+1)=u(i);
end
for i=1:n

err(i)=abs(u(i)-subs(ex,x(1)));
end
XVIII

Appendix (c): programming

Program 8: second order polynomial spline function for solving VIE's of
the second kind with weakly singular kernel:

function [u,err,u0]=sigular2(f,m,b,n,ex)
h=b/n;x=h:h:b;
df=diff(f,1);d2f=diff(f,2);
u0=(m/(m-1))*subs(f,0);
duO=(m+1)/m*subs(df,0);
d2u0=((m+2)/(m+1))*subs(d2f,0);
a(1)=(1/2)*d2u0; b(1)=du0;
c(1)=u0;
for i=1:n
u(i)=a(i)*(h"2)+b(i)*h+c(i);
du(i)=2*a(i)*h+b(i);
d2u(i)=2*a(i);
a(i+1)=(1/2)*d2u(i);b(i+1)=du(i);
c(i+1)=u(i);
end
for i=1:n
err(i)=abs(u(i)-subs(ex,x(1)));
end

XIX

Appendix (A): Polynomial Spline Functions

Appendix. (A): Pobynomial Spline Functions

In this appendix, we use polynomial spline functions which contain
first order and second order to approximate a solution of linear VIE's and
VIE's with weakly singular kernel, as follows:

A.1 Polynomial Spline Function:

Consider the partition A= {t,,t;,t;,...,t,} Of [a,b]Jc R . Let S(A)
denote the set of piecewise polynomials on subinterval [; = [t;, t;;1] of
partition A. Let u(t) be the exact solution, Each polynomial spline of n
order P; (t) has the form:

P(t) =a;(t —t) + bt —t)* + - +yt—t;)" ' +z (Al
Where a;, b;, ... and z; constant.
A.1.1First Order Polynomial Spline Function
The form of first order polynomial spline is:
P;(t) = a;(t — t;) + b; i=0,..,n (A.2)

Where a;, and b; are constant. In order to obtain the value of a;and b;, we

differentiate equation (A.2) one time with respect to t ,we get:

pi (1) = a; (A.3)
Hence replace t by ¢; in the realtion(A.2)and (A.3) yields:

P;(t;) = b

pi(t) = a

From the equations above, we obtain the values of a; and b; as follows:

a; = pi (&) (A.4)

Appendix (A): Polynomial Spline Functions

b; = P;(¢;) (A.5)
for i=0,..,n

A.1.2 Second Order Polynomial Spline Function

The form of second order polynomial spline function is:

Pi(t) = ai(t — ti)z + bi(t — ti) + Ci (AG)

where a;, b;andc; are constant of the polynomial functions .We consider
the following relations:

Pi(t;) = ¢ = u(t;)
Pi(t) =b; = u'(ty)
P'i(t;) = 2a; = u'(t;)

We can obtain the values of a;, b; and c; as follows:

a; = ~u'(t) (A7)

b; = u'(t) (A.8)

¢ = u(ty) (A.9)
for i=0,..,n

A.2 Solution of Linear VIE's of the Second Kind:

In this section, we use 15torder and 2™%order polynomial spline
function to find the numerical solution of second kind linear VIE'S, which

has a form:

u(x) = f(x) + jxk(x, tu(t)dt x € [a,b] (A.10)

a

Where k(x,t)and f(x) are known functions and continues in [a,b] , but

u(t) is unknown function. For solving the equation (A.10), we have to

Appendix (A): Polynomial Spline Functions

differentiate the equation (A.10) two times with respect to x , by using

Libenze formula we realize:

Ok(x,t)
ox

u'(x) =f"(x) + fx u(t)dt + k(x,x) ulx) (A.11)

14 144 aZk('t) ak(:t)
u’(x) = 0 + [} 55 w®dt + (5) ulx) +

dk(x,x)
dx

u(x) + +k(Cx, x)u'(x) (A.12)

To complete our ways for solution VIE's. we put x=a in equations(A.10)-
(A.12) , then we get :

up = u(a) = f(a) (A.13)

ug =u'(a) = f'(a) + k(a, a)u(a) (A.14)

w=w'@=f"@+((*)) w@+(*E2) @

x=a dx
+k(a,a)u'(a) (A.15)
A.2.1 Using 15tOrder Polynomial Spline Function:

We approximate the solutions of second kind linear VIE's by using
15¢order polynomial spline .We introduce a method of solution in
algorithm (VIE2PS1):

The Algorithm (VIE2PS1):

Step 1: set h = (b-a) /n, t; = t, +ih , i1=0,...,n,(where t, =a ,t, =b) and
U = f(a).

Step 2: evaluate a, and b, by substituting (A.13)-(A.14) in equations
(A.4)-(A.5).

Step 3: calculate p, (t)using step2 and equation (A.2).

Appendix (A): Polynomial Spline Functions

Step 4: approximant u; = py(t;)
Step 5: for i=1 to n-1 do the following steps:

Step6: evaluate a; b;,c; and d; by using equations (A.4)-
(A.5) and replacing u(t;), u'(t;) byp;(¢;) , p; (t;)

Step 7: calculate p; (t) using step 6, and equation (A.2).
Step 8: approximate u;,; = p;(t;+1)
A.2.2 Using 2™¢ Order Polynomial Spline Function:

In order to, approximate the solution of second kind linear VIE's by
using 2™¢ order polynomial spline function .We present a method of
solution in algorithm (VIE2PS2):

The Algorithm (VIE2PS2):

Step 1: set h = (b-a) /n, t; = t, +ih , i=0,...,n,(where t, =a , t,, =b) and
U = f(a).

Step 2: evaluate a,, byand c, by substituting (A.13)-(A.15) in equations
(A.7)-(A.9).

Step 3: calculate p, (t)using step2 and equation (A.6).

Step 4: approximant u, = py(t;)

Step 5: for i=1 to n-1 do the following steps:

Step6: evaluate a;, b;, c;, d; and e; by using equations (A.7)-(A.9)
and replacing u(t;), w'(t;)andu” (t;) by p;(t),p;(t;)and, p;' ().
Step 7: calculate p; (t) using step 6, and equation (A.6).

Step 8: approximate u;,; = p;(tis1) .

v

Appendix (A): Polynomial Spline Functions

A.3 Solution of VIE' of the Second Kind with Weakly

Singular kernel:

In this section, the 15¢order and 2™¢ order polynomial spline function
will be used to compute the numerical solution of second kind linear VIE'S

with weakly singular kernel, which is:

u(t) — f S s =), te[0T] (A16)

tH
0

Where 0< u<1 and fis known function, a function (16) can be converted

in to the following equation form [13]:
tu' () + (u— Dut) = pf (&) +t f'© (A.17)

g = HTﬂlf(O) (A.18)

Hence with differentiate equation (A.17) two times with respect to t, we
get
tu’ () + pu'(t) = (+HDF'O + ¢ 'O

e + (e D Q) = O + o0 (8.19)

Hence replace t by a in the realtion above (A. 19) yields:

wy = ”THf'(a) (A.20)
r 2 144
uy = Z—;f (a) (A.21)

Appendix (A): Polynomial Spline Functions

A.3.1 First Order Polynomial Spline Function

In order to approximate the solution of second kind linear VIE's with

weakly singular kernel by using 15¢ order polynomial spline function .We

present a method of solution in algorithm (VIE2WSKPS1):

The Algorithm: (VIE2WSKPS1):
Step 1: Set h=(b-a)/n; t; =ty +1ih,i=0,1,..,n,(wherety =a,t, =

b)and u, = ﬁf(a)

Step 2: evaluate a, and b, by substituting (A.18) and (A.20) in equations
(A.4)-(A.5).

Step 3: Calculate P, (t) using step 2 and equations (A.2).
Step 4: Approximateu; = Py(t;).
Step 5: For i=1 to n-1 do the following steps:

Step6:Evaluatea;, b;, c; , and d;using equations(A.4)-(A.5).and replacing

u(t) and his derivatives by P,(t) and his derivative's.
Step 7: Calculate P;(t) using step 6 and equations (A.2).
Step 8: approximate u;,; = p;(ti+1)

3.4.2 Second Order Polynomial Spline Function

We approximate the solution of second kind linear VIE'S with weakly
singular kernel by using 2™@order polynomial spline .In the following
algorithm (VIE2WSKPS2):

\

Appendix (A): Polynomial Spline Functions

The Algorithm (VIE2WSKPS2):
Step 1: Set h=(b-a)/n; t; =ty +1ih,i=0,1,..,n,(wheret, =a,t, =

b) and u, = ﬁf(a)

Step 2: evaluate a,, bgand ¢, by substituting (A.18),(A.20)and (A.21) in
equations (A.7)-(A.9).

Step 3: calculate p, (t)using step2 and equation (A.6).

Step 4: approximant u; = py(t;)

Step 5: for i=1 to n-1 do the following steps:

Step6: evaluate a;, b;, c;, d; and e; by using equations (A.7)-(A.9).
and replacing u(t;), w'(t;)andu” (t;) by p;(t;),p;(t;)and, p;' ().
Step 7: calculate p; (t) using step 6, and equation (A.6).

Step 8: approximate u;,; = p;(t;4+1)-

Vi

References

References

[1]Abdelwahid,F. (2010). Adomain Decomposition Method Appliedto
Non-linearintegral Equation. Alexandria Journal of Mathematics
1(1):11-18.

[2]Abd-AL-Hammeed,F.T (2002).Numerical Solution of Fredholm
Integro-differential Equation Using Spline Functions ;Thesis M.SC,
University of Technology ,Irag.

[3]Babolian ,E.; Biazar ,J. ;and Vahidi, A.R.(2004).0n the decomposition
method for system linear equations and linear system of Volterra
integral equations. Applied Mathematics and Computational.147:
19-27.

[4]1Brunner,H.(1983).Non-Polynomial Spline Collection for Volterra
Equation with Weakly Singular Kernels.SIAM Journal on Numerical
Analysis ,20(6):1106-1119.

[5]Bizar, J.;and Eslami, M.(2011).Homotopy Pertubtion and Taylar series
for VIE's of Second Kind. Middle East Journal of Scientific
Research.7(4):604-609.

[6]Berengure , M.1.; Gamez , D.; Garralda-Guillem ,A.l.; Galan M.R.; and
Perez ,M.C.S.(2009). Analytical Techniques for Numerical Solution
of Linear VIE of second kind. Hinawi Publishing Corporation
Abstract and Applied Analysis :1-11.

[7]Burden,R.L. ; and Faries ,J.D. (2010). Numerical Analysis .Ninth
Edition.Brooks/cole, Cengage Learing.

[8]Burton, T.A (1983).Volterra Integral and Differential Equations,
Acadermic press,Inc.

[9]Collins,P.j. (2006). Differential and Integral equations.Oxford
University Press Inc. New York.

[10]Diogo,T.; Ford, N.j ; Lima, p. ;and Valtchev, S. (2006). Numerical
method for a Volterra Integral Equation with Non-Smooth Solutions.
Journul of Computational And Applied Mathematics:412-423.

84

References

[11]Diogo,T.; and Lima,P.(2008). Superconvergence of Collocation
Methods for a class of weakly singular Volterra integral equations.
Journal of Computational And Applied Mathematics 307-316.

[12]Eldanafof, T.S.;and Abdel Alaal, F .EI. (2009). Non- polynomial Spline
Method for the Solution of the dissipative Wave Equation.
International Journal of Numerical method for heat and Fluid flow
19(8):950-959.

[13]G ,Ch. (2003) .Class of Bezier,Aided Geom, Design 20, 29-39.

[14]Ghoreishi , F.;and Hadizadeh , M. (2009). Numerical Computation of
Tau approximation for the Volterra-Hammerstein integral equations.
Springer Science Business Media 52:541-559.

[15]Geng ,F. ;and Shen ,F. (2010).Solving Integral Equation with Weakly
Singular Kernel in the Reproducing Kernel Space.lslamici Azad
University —Karaj Branch . 4(2):159-170.

[16]Hossinpour , A. (2012). The Solve of Integral Differential Equation by
Non-Polynomial Spline Function and Quadrature Formula.
International Conference on Applied Mathematics and Pharmaceutical
science Jan.7-8:595-597.

[17] Hag ,F. i. (2009).Numerical Solution of Bounded Value Problem and
Initial Value Problems Using Spline Function .ph.D ,thesis ,Ghulam
Ishaq Institute of Engineering Science and Technology ,Pakistan.

[18]Jerri A j. (1985). Introduction to Integral Equation with Application.
Marcel Dekker,INC.

[19] Keffer , D. (1999). Advanced Analytical Techniques for the Solution
of Single and multi-dimensional Integral equations. University of
Tennessee.ChE 505,Augest:1-31.

[20] Lima ,P.;and Diago, T. (1997).An extrapolation method for a Volterra
integral equation with weakly singular kenel. Applied Numerical
Mathematics 131-148.

[21] Lambert, J.D. (1973).Computational Methods in Ordinary Differential
Equations.University of Dundee,Scotland.Jhon Wiely and SonsLtd.

85

References

[22]Linze , P. (1969); Numerical Method for Volterra Integral Equations
of First Kind .Courant Institute of Mathematical Sciences,N.Y.

[23]Lax,P.D.; and Richtmyer, R.D. (1956). Survey of the Stability of
Linear Finite Difference Equations. Communications on Pure And
Applied Mathematics,(1X):267-293.

[24]Mandal, B.N.; and chakrabarti ,A. (2011) . Applied Singular Integral
Equations, science publishers,USA.

[25]Maleknejad ,K.; Hashmizadeh ,E.;and Ezzati , R. (2011).new approach
to the numerical solution of VIE's by using Bernsteins approximation.
Commum Non-linear Sci Numer simalat 16:647-655.

[26]Matinfar ,M.; Saeidy ,M.; and Vahidi , J. (2012). Application of
Homotopy Analysis Method for solving systems of VIE.Advance in
Applied Mathematics and Mechannics 4(1):36-45.

[27]Mustafa, M.M. (2004).Numerical solution for system of volterra
integral Equations using spline function; ph.D. thesis,alMustansiriy
University.

[28]Maleknejad ,K.; and Shahrezaee, M. (2004) .Using Runge- Kutta
method for solution of the system of VIE.Applied Mathematics and
Computational149:399-410.

[29]Masouia ,Z. (2012).Numerical expansion —iterative method for solving

second kind Volterra and Fredholm integral equation.ISPACS:1-7.

[30]Okayama ,T.; Matsuo, T.;and Sugihara, M. (2011). Theoretical
Analysis for Since-Nystrom method for VIE's.University of Tokyo:1-
25

[31]Proshokouhi , M;and Ghanbari ,B. (2011). Variational Iteration
Method for Solving Volterra and Fredholm Integral Equations of
Second Kind. ICSRS Publication 2(1):143-148.

[32]Quaraderoni, A.; Sacco, R.; and Saleri, F.(2000).Numerical
Mathematics.Springer-Verlag NewYork,Inc.

[33]Rice ,J.R. (1985). Numerical Method software and Anaylisis.
SoftwareAnd analysis,Mcgra Hill.

86

References

[34]Rahman ,M. (2007).Integral Equation and their Applications .Dalhusie
university,canda. WIT Press.

[35]Ramadan ,M. A.; EL-Danaf ,T.; and E.l.Abdaal ,F.(2007).Application
of the Non- Polynomial Spline Approach to the Solution of the
Burgers Equation.The Open Applied Mathematics Journal(1):15-20.

[36]Rahman , M.M, Hakim M. A., Hasan M. K., Alam M. K. and Nowsher,
L., 2012, Numerical Solution of Volterra Integral Equations of Second
Kind with the Help of Chebyshev Polynomials, Annals of Pure and
Applied Mathematics, 1(2): 158-167.

[37]Rashidinia,J. ; and Zarebnia, M. (2008). New Approach for numerical
solution of VIE's of the second kind .International Journal of
Engineering Science,1(5-2):59-65

[38]Rashidinia,J.;mohammadi ,R. (2009).Non-Polynomial Spline
Approximation of singularity perturbed boundary value problem
,TWMSJ. pure Apple.Math. 1(2.2): 336-251.

[39]Rashidinia J,.; Jalilian ,R.; and Farajeyan ,K. (2009).Non-Polynomial
Spline Approach to the Solution of Fifth Order Boundary Problems.
Journal of Information and Computing Science 4(4):256-274.

[40]Rashidinia , J.; Najafi , E.; and Arzhang , A. (2012). An iterative
Scheme for numerical solution of VIE's using collection method and
Chevpolynomial. Springer open journal 6:1-10.

[41]Suhmaker ,L.L. (2007). Spline Function Basic Therory; Third Edition,
Cabride University Press.

[42]Siddiqi,S.S.; Akram ,G. ;and Kanwal ,A. (2011). Non-Polynomial
Spline is used for the Numerical Solution of Fifth Order Singularity
Perturbed Boundary Problems European Journal of Scientific
Research 56 (3), :415-421.

[43]Tahmasbhi, A. (2008).New Approach numerical solution of linear
VIE's of the second kind.3 (32), 1607-1610.

[44]wazwaz ,A. (2011).Linear and Non Linear Integral Equation Method
and Application, Higher Education Press ,Beijing.

87

References

[45]Wang ,W. (2006).A mechanical algorithm for solving VIE.Applied
Mathematics and Computation147:1323-1341.
[46]Zarebnia, M.; Hoshyar ,M.;and Sedahti ,M. (2011).Non-Polynomial
Spline Method for the Solution of Problem in Calculus of Variations.
word Academy Engendering Technology (51):986-991.

[47]Zamani ,M. (2009).Three Simple Spline Method for Approximation on
and Interpolation Data. Department of Technology and engineering
,Yasouj University, Iran.Contemporarag engineering Science 2:373-
381.

[48] Approximation by Spline Function ,lecture 6. www.lce.fi.teaching
/s||4.1100/.

[49] Approximation Function; Math2601;www.hkmath.hku.hk,

[50] polynomial function.www.en.wikipedaia.org,

88

