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By creating antibodies against antigens, B-cells, also named B-lymphocytes, play 

an important role in the immune system to fight against foreign invasion to the host body. 

Within the antigen specific to a certain B-cell antibody, the sections recognized and 

bound by antibody are called B-cell epitopes. As antigenic determinants, B-cell epitope 

identification is of vital importance in many immunological processes, such as vaccine 

design, immunodiagnostic tests, and antibody production. Towards this goal, biologists 

and immunologists have applied a variety of methods to identify B-cell epitopes through 

both experiments and bioinformatic predictions. Since the experiments for searching B-

cell epitopes are time-consuming and expensive, bioinformatic methodologies have 

become important for the high-throughput study of B-cell epitopes. 

There are two kinds of B-cell epitopes: linear (continuous) epitopes and 

conformational (discontinuous) epitopes. The methodologies and difficulties of 

bioinformatic predictions for the two categories are quite different. Due to more 

challenges of conformational B-cell epitope prediction, currently most of prediction tools 

aim to linear B-cell epitope. 



 

 

 

The importance of B-cell epitopes has driven the development of faster and more 

precise tools in the past thirty years. Unfortunately, the limited success of these existing 

methods cannot match expectation because the achieved specificity and sensitivity leave 

room to be desired. In this dissertation, we developed new linear B-cell epitope tool 

SVMTriP with a sensitivity of 80.1% and a precision of 55.2%, which is higher than 

other tools such as BCPred and AAP (Chapter Two). We also developed new 

conformational B-cell prediction tool EPSVR and a meta server EPmeta based on 

Support Vector Regression (Chapter Three). Comparing to other conformational B-cell 

prediction tools such as DiscoTope, EPSVR shows a better prediction with AUC (Area 

Under receiver operating characteristic Curve) of 0.597. In addition, we are working on 

the tool SVMKER to predict epitopic residues on antigen (Chapter Four). To our 

knowledge, SVMKER is the first epitopic residue prediction tool just using protein 

sequence as input. These online tools will provide more choices for the identification of 

protein epitope by bioinformatic methodology.  
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CHAPTER ONE: THE IMMUNE SYSTEM AND B-CELL EPITOPES 

1. Introduction to the Immune System 

1.1 Immune system 

Our immune system protects us throughout our lives against surrounding 

pathogenic factors, such as viruses, bacteria, pathogenic fungi and eukaryotic parasites. 

This powerful and profound system can usually be divided into two major categories: the 

innate immune system and the adaptive immune system (1). The innate immune system, 

also called the non-specific immune system, is the first defense line to fight against the 

invaders. The basic components of the innate immune system include barrier epithelial 

cells, in vivo sentinel cells for recognition and following removal, and Natural Killer cells 

for killing invader. The innate system demonstrates a generic immune response to 

varieties of pathogens. Sentinel cells, for example, present so-called pattern recognition 

receptors (PRRs) on their surfaces. PRRs recognize pathogen-associated molecular 

patterns (PAMPs) presented exclusively on microbe pathogens. Since PAMPs are shared 

by different pathogenic sources, the inflammatory responses followed by the recognition 

of PAMPs by PRRs are still non-specific (1). Furthermore, the innate immune system 

cannot confer memorable and long-lasting immunity to the host.  

In contrast to the innate immune system, the adaptive system responds to 

pathogens in a completely different manner. During adaptive mechanisms, highly 

specialized white blood cells carry on adaptive immune responses to known or unknown 

pathogens on the second and third defense lines of the whole immune system. The 

adaptive immune system uses a small number of genes to express a large amount of 
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different antigen receptors. These receptors are uniquely expressed in different individual 

lymphocytes, and the offspring cells of lymphocytes inherit the same receptor specificity. 

As a consequence, the immunity acquired by the adaptive immune system can be learned, 

memorized, and then kept for long-lasting protection. Therefore, the adaptive immune 

system represents a more flexible evolutionary protection strategy against fugitive and 

unstable environment than the innate one (2). Among the entire defensive lines of the 

immune systems, T- and B-cells play the most important roles to recognize, lock, and 

eliminate the potentially harmful invaders. They will are discussed in the next section. 

1.2 T-Cell and B-cell 

Among immune components, T- and B-cells have been given the most attention 

by immunologists. Both T- and B-cells belong to one kind of white blood cells called 

lymphocytes, but the immune responses mediated by the two cell types are entirely 

different. T-cell immunity is based on cell-mediated attacks against foreign invaders into 

the host, while B-cell specifically plays an important role on so-called humoral immunity, 

which generates antibodies to search and recognize harmful antigens. Both T- and B-cells 

are initiated in bone marrow. However, T-cells are transferred to the thymus before their 

maturation, whereas B-cells stay in bone marrow until maturation. After mature T- or B-

cells form, they will both immigrate to the bloodstream and be transferred throughout the 

host body. 

According to their distinct roles, T-cells may be classified into multiple subgroups, 

including 1) Helper T-cells, 2) Cytotoxic T-cells, 3) Memory T-cells, and 4) Regulatory 

T-cells. Helper T-cells are also called CD4+ T-cells due to the expression of the protein 
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CD4 on the surface of mature helper T-cells. By secreting cytokines, helper T-cells 

function on the maturation of B-cells, activation of cytotoxic T-cells, and enhancement of 

the immune response of macrophages. Cytotoxic T-cells (also called CD8+ T-cells) can 

kill infected target T-cells directly, so sometimes they are also called T-killer cells. 

Cytotoxic T-cells may also kill tumor cells and even normal cells of a transplanted organ 

after surgery. Memory T-cells once experience the antigen-mediated infection, show a 

faster and stronger immune response when encountering the cognate antigen at the 

second time. The immunological memory comes from the proliferation and 

differentiation of naive T-cells undergoing the activation by antigen. 4) Regulatory T-

cells (also known as suppressor T-cells) are a subset of specific T-cells involved in 

immunological tolerance. Regulatory T-cells suppress immune responses of other T-cells 

that can cause tissue damage. They induce tolerance to self-antigens and avoid 

autoimmune diseases (3). Despite the different roles of these T-cells, their immune 

responses are mediated by the cells themselves. It means that these cells are directly 

involved in recognition, binding, and destroying of foreign invaders. 

Unlike the direct action of T-Cells, B-cells produce a variety of antibodies to 

obtain specific recognition to antigens. These antibodies, also called immunoglobulins, 

are a class of secreted proteins with a special Y shape. The Y shape of an antibody is 

composed of three components, one containing two C termini of heavy chains and the 

other two containing N termini of heavy chains and the whole light chains. Among a 

heavy chain, its C terminus is connect to N terminus by a flexible connecting chain 

(Figure 1.1). Therefore, the existence of these flexible connection chains can be adaptive 
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to the movement of N-terminus of Y shape, and enhance the binding of the light chains 

with antigens. 

 

Figure 1.1 The Y shape of an antibody (top) and the 3D structure of the antibody 

(down, PDB ID: 1IGT) (4). Commonly, an antibody is composed of two light and two 

heavy chains. The flexible chains in the middle of the heavy chains determine the 

conformation of the antigen binding site of the antibody. 

Although all the antibodies share the same Y shape, they can be categorized into 

five classes (IgA, IgD, IgE, IgG, and IgM) due to different C regions that are C terminus 

of heavy chain. Each class of antibody has its own in vivo location, acceptor, and specific 

biological function (1, 2). For example, IgA is the dominant antibody class in the 
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mucosal immune system such as the gut, respiratory tract and urogenital tract. IgA may 

prevent pathogen adherence. IgD may function to bind an antigen receptor when a B-cell 

meets with an unknown antigen. IgE is an especially interesting subclass of antibodies 

because it is mainly involved in allergic response. The interaction of allergen and IgE 

triggers the activation of mast T-cells, leading to a series of allergy-related characteristics. 

IgE is also found in autoimmune diseases. IgG is the major form in antibody-mediated 

immunity. It can search and recognize different antigens by taking different forms. In 

addition, IgG is the only antibody class that is transferred from mother to fetus through 

the placenta in passive immunity. IgM has a strong binding to pathogens. If there is no 

sufficient IgG, IgM may act instead to eliminate pathogens. Together, these five classes 

of antibodies can accomplish humoral immunity mediated by B-cells. 

Studies on antibodies advance vaccine invention. A given kind of antibody may 

uniquely bind to its corresponding antigen. At the same time, the immuno-property of the 

antibody can usually be inherited and memorized by the host body as discussed above. 

The injection of vaccine (which actually is a „dead‟ or inactive antigen) to the host body 

aims at the production of corresponding antibody by the in vivo immune system. The 

antibody may be memorized and kept effective against future invasions by the same 

active antigen for a period of time. Hence, understanding the interactions between 

antigens and antibodies becomes a key step to design novel vaccines against different 

kinds of diseases which patients are currently suffering with. 

2. Antibody-antigen complex 3D structure 
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The most accurate way to study the antibody-antigen interaction is with a 3D 

complex structure. Unfortunately, there is a very limited number of antibody-antigen 

complex 3D structures in Protein Data Bank (PDB, 

http://www.rcsb.org/pdb/home/home.do) (5). For example, for Homo sapiens, there are 

only approximately 200 antibody-antigen complex 3D structures available in the PDB as 

of May 20
th

, 2013. To put this in perspective, it has been estimated that humans generate 

10 billion different antibodies, therefore forming 10 billion unique interactions with their 

corresponding antigens (6). Among the 3D structures, most of them show a roughly 

similar appearance due to the special Y shape of the antibody. Using protein structure 

4JAN as example (Figure 1.2), we may clearly find that the antigen-binding site of the 

antibody is located at the component which contains the entire light chain and a part of 

heavy chain. The same binding pattern is also found in other antibodies. 

 Although it is a kind of protein-protein interaction, antibody-antigen binding 

seems quite distinctive from other protein-protein interactions due to the specific roles of 

antibodies. First of all, the antibody-antigen complex is categorized as non-obligate 

which means the individual antibody and antigen also exist in vivo accompanying the 

antibody-antigen complex. Furthermore, this kind of non-obligate antibody-antigen 

complex is proven to be transient, which means the affinity between the antibody and the 

antigen is also not strong (6). Therefore, considering their specific binding patterns, 

antibody-antigen interactions cannot be studied by simply applying regular protein-

protein interaction strategies, especially when trying to develop prediction tools for 

antibody-antigen interactions. 
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To investigate antibody-antigen complexes, much attention has been given to the 

antibody-binding site of antigens since this small portion of the antigen structure is in 

direct charge of binding with the antibody (13). For one thing, the identification of 

antibody-binding sites is a relatively easier task in structural biology due to their 

decreased sizes compared with the complete antigen proteins. Moreover, epitope 

identification is also the most vitally important part in antigen studies for medical 

applications, such as immuno-diagnosis and the development of novel vaccines. B-cell 

epitopes will be discussed in detail in the next section. 

 

Figure 1.2 Crystal structure of broadly neutralizing antibody CH103 in complex 

with HIV-1 gp120 (PDB ID: 4JAN) (8). An antibody binds to the antigen through its 

light-heavy overlap chain.  

 

3. B-cell Epitope 

3.1 Introduction to B-cell Epitopes 
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Epitopes are the antigenic determinants involved in antibody-antigen interactions. 

B-cells are commonly found in most mammals. By creating antibodies against antigens, 

B-cells play an important role in the immune system to fight against pathogenic invasions. 

Among the antigens related to B-cells, the sections recognized and bound by antibodies 

are called B-cell epitopes (Figure 1.3). Since they are antigenic determinants, the 

identification of B-cell epitopes helps biologists and immunologists investigate the 

pathways in the body‟s self-protection systems (9). 

 

 

Figure 1.3 Epitope is the antibody-binding site on an antigen. The blue region of the 

antigen which binds to the antibody is called an epitope. 

There are two types of B-cell epitopes. Linear (continuous) epitopes are short 

peptides containing a contiguous amino acid sequence, whereas conformational 

(discontinuous) epitopes are composed of amino acids that are not contiguous in 

sequence but close in the 3D structures (10).Some researchers have the view that the 
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boundary between linear and conformational epitopes is vague, because one 

conformational epitope may be seen as the combination of more than one shorter linear 

epitopes (13). The searching of conformational B-cell epitopes is much more difficult 

because the scarcely available 3D structure of an antigen is usually needed. Considering 

the complexity of conformational B-cell epitopes, most current research focuses instead 

on linear epitopes. The challenges of conformational B-cell epitope predictions will be 

discussed in detail in Chapter 3. 

3.2 Applications of B-cell Epitopes 

The identification of B-cell epitopes can be the foundation for many immuno-

applications. For example, with the knowledge of an epitope sequence, we can synthesize 

peptides mimicking the epitope for diagnosing human diseases, such as tuberculosis. 

Another more exciting application lies in vaccine design. A vaccine is the assumed „dead‟ 

or inactive form of a disease-caused pathogen, or any item can trigger immune response, 

hich is without the original activity or harmful impact on the host body. Vaccines can 

trigger the immune system and induce the production of correlated antibodies. For the 

host, the appearance of antibodies may be memorized and inherited so that the host body 

can be protected against the same „true‟ pathogen for a period, or even the whole lifetime. 

Vaccines are widely used for human beings from infancy to adulthood against many 

different pathogens and infections. For example, some epidemics which were once fatal 

to the world, such as smallpox, have been controlled efficiently due to the invention of 

disease-specific vaccines (11, 12). Hence, vaccine design is a medical application of vital 

importance, and many more novel vaccines against fatal diseases for public health are 

constantly under investigation and testing. 
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One key step for vaccine design is the determination of the epitope on an antigen.  

With this knowledge, by protein recombinant technologies, we may produce epitope-

based vaccines which reduces or eliminates the pathogenic sites of the real antigens. 

Hence, the epitope-based vaccines will keep the antigenicity and immunogenicity of the 

original antigens due to the presence of the epitopes, but lack the pathogenicity due to the 

absence of the active sites. When these epitope-based vaccines are injected into the host 

body to induce antibody genesis, they pose the least risk of adverse effects due to the 

minimal original antigen structures beyond the epitopes. At the same time, the immunity 

is triggered by epitope-based vaccines which then protects the host body against any 

future invasion of the same kind of antigen (13). Because of this unique advantage, the 

identification of B-cell epitopes is one of the major focuses of research for immunologists. 

4. Immunology and immunoinformatics 

4.1 Immunology 

Immunology focuses on the components, responses, and mechanisms of the 

immune systems of all organisms, especially humans and other vertebrates. Its origin may 

date back to the 18th century or even earlier. In 1796, Edward Jenner firstly discovered 

the induced protection against human smallpox disease by cowpox (14). The induction 

procedure was then called vaccination, which continues to be used today. After the first 

successful demonstration of vaccination, more and more practical vaccines, such as 

rabies vaccine (1885) (15) and influenza vaccine (1945) (16, 17), were found and 

approved for public use. In the serum of a vaccinated individual, Emil von Behring and 

Shibasaburo Kitasato (1898) for the first time found antibodies, the important substances 

specifically binding to corresponding pathogens, which initiated the era with the humoral 
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theory of immunity (18). Thereafter, the causes of infectious diseases were gradually 

discovered, and the roles of pathogenic sources, such as viruses, bacteria, fungi, and 

parasites, were determined as infectious agents. It was accepted that the immune system, 

as the in vivo self-protection mechanism, can automatically reduce or even eliminate the 

effect of invading pathogens. Due to the important medical relevance, the cells and body 

tissues involved in the immune system have been systematically studied since then. By 

understanding how the immune system works, immunologists may design clinical 

strategies to control the immune responses to both disease-causing pathogens and non-

harmful antigens. For example, antihistamine was designed to block histamine binding to 

histamine receptors and then inhibit the subsequent inflammatory responses. Hence, 

antihistamines may be used for allergy relief and to help patients reduce the pain from 

histamine-induced swelling and itching (3). Compared with most other biological 

branches, immunology is a rather new field with many immunological pathways and 

mechanisms still to be discovered. 

The study of immunology is not only challenging but also highly valuable. The 

level of complexity in the immune system comes from life itself. The evolution of life 

always finds a way so that the immune system keeps developing against the evolution of 

the pathogens and their ever-changing invasion strategies. As a consequence, there are 

always new topics to investigate when people attempt to uncover the details of the 

immune system. The immune system is so complex that immunology is divided into 

many individual sub-areas, such as classical immunology, clinical immunology, 

developmental immunology, diagnostic immunology, and evolutionary immunology. 

Varieties of immune organs or tissues, such as T-cell, B-cell, spleen, thymus, bone 
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marrow, and lymph, may be the unique research focuses for individual immunological 

research groups. The achievements from these immunological studies can provide 

valuable insights and strategies for medical applications. As an example, the influenza 

vaccine, a most common immunological application, has saved millions of lives since it 

was introduced to the public. In the history of influenza pandemic, influenza viruses, such 

as H1N1, H2N2, and H3N2, have taken away numerous human lives. For example, Some 

report estimated that spanish flu caused by H1N1 killed at least 50 million people in 

1918-1920 (19). Another H1N1 outbreak occurred in 2009 and ~185, 000 people died 

worldwide from April 2009 to August 2010. The lower mortality rate despite the more 

densely-populated world today was largely due to the invention and the widespread 

adoption of influenza vaccines (20). The induced antibody by the influenza vaccine may 

reduce the probability of virus infection and better protect us. As a consequence, due to 

their direct importance in medical applications, antibodies and their producer B cells are 

one major research focus for immunologists. 

4.2 Immunoinformatics 

The burgeoning immunological data drives a new field in immunology called 

immunoinformatics. Immunoinformatics is a branch of bioinformatics that has been 

developing quickly in the past decade. Using the principles of bioinformatics and 

computational biology, immunoinformatics researchers have begun to manage the 

collection, summary, data mining, and convenient Internet sharing of immunological 

resources. In addition to creating immune-related databases, a series of novel tools, such 

as data analysis, sequence alignments, and biophysical predictions, have been developed 
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to solve the questions on immunology. Below I summarize the development of 

immunoinformatics databases and prediction tools for B-cell epitopes. 

4.2.1 B-cell Epitope Databases 

  With the growing resources of B-cell epitopes, it is necessary to collect and 

organize known information on reported B-cell epitopes with well-designed structures 

into databases. At present, there are several databases available online and free for public 

access. Some of these databases focus on linear B-cell epitopes, such as Bcipep 

(http://www.imtech.res.in/raghava/bcipep/data. html) which contains 2479 known linear 

B-cell epitopes (21). Another popular B-cell epitope database is Immune Epitope 

Database (IEDB, http://www.iedb. org/) which collects not only linear B-cell epitopes but 

also conformational B-cell epitopes and 3D structures of antibody-antigen structures (22).  

Actually, IEDB collects much more entries than other B-cell epitope databases. For 

example, as of May 30, 2013, there are 63452 B-cell linear epitope entries, 2056 

conformational B-cell epitopes entries, and 646 3D structures of antibody-antigen 

complexes related to B-cell available in the IEDB database.  

The B-cell epitopes collected in the databases above still represent only a small 

portion of all antigenic determinants which the immunologists are interested in. There is a 

need to search and identify more. There are many ways to determine B-cell epitopes, 

including experimental searching strategies and bioinformatic prediction tools based on 

biostatistical and bioinformatic technologies. Experimental results are reliable but 

conducting such experiments is time- and resource- consuming. Sometimes such 

experimental searches could be blind or random, in the hope of identifying something 

useful. On the other hand, bioinformatic predictions have the alternative advantages, such 
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as fast speed and low cost, comparing to the experiments. Although such predictions 

suffer from intrinsic false-positive rates, the quick and high-throughput properties are 

highly desirable, allowing researchers to develop novel methods with improved 

prediction performance. Even though 100% accuracy cannot be achieved, the predicted 

epitopes from bioinformatic methods can greatly narrow down the searching space for 

subsequent experiments and validations, and provide reasonable candidates to decrease 

the randomness of experimental searches. Therefore, the development of bioinformatic 

prediction tools has been a vital part of the study on B-cell epitopes. Linear and 

conformational predictions will be reviewed in more detail in the following two sections. 

4.2.2 Principles of Linear B-cell Epitope Prediction 

The prediction of linear B-cell epitopes is easier than that of conformational 

epitopes. Usually, the linear B-cell epitope prediction tool is at the protein-sequence level. 

That is, many previous studies on linear B-cell epitope prediction are based on the 

physicochemical property (or propensity scale) of constituent amino acids. With the input 

of protein sequences, the prediction tools are based upon the amino acid properties 

including hydrophilicity (23, 24), solvent accessibility (25), secondary structure (26), 

flexibility , and antigenicity (27). These known B-cell linear epitope prediction tools 

include but are not limited to: PEOPLE (28), BEPITOPE (29), BepiPred (30), ABCPred 

(31), AAP (32), BCPred (33), BayesB (34), BEOracle/BROracle (35), and BEST (36). In 

these various prediction tools, different properties of amino acid sequences were applied. 

For example, PEOPLE utilized four kinds of physicochemical properties: secondary 

structure, hydrophilicity, surface accessibility, and flexibility (28). BEPITOPE declared 

more than 30 propensity scales such as hydrophobicity scales and flexibility (29). 
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BepiPred did a similar analysis using a number of propensity scales but using a different 

training dataset  (30). ABCPred specifically used a neural network to decrease the false 

positive rate in predicted linear B-cell epitopes (31). In more recent methods, string 

kernals such as spectrum, mismatch,  local alignment, and subsequence were applied in 

BCPred (33) while amino acid pair propensity was used in AAP (32). 

BEOracle/BROracle was based on features from evolutionary, structural and 

compositional information of antigen sequences (35). In BEST, optimal models were 

trained by combining information from the epitope sequence, sequence conservation, 

secondary structure, and relative solvent accessibility (36).  

Although different feature combinations based on antigen sequences were 

attempted by individual linear B-cell epitope prediction models, it is not yet known which 

combination provides optimal prediction performance. Furthermore, it seems that the 

“optimal” feature set may be biased by the training dataset chosen by individual research 

groups. For example, although BCPred tool received a higher AUC (Area Under receiver 

operating characteristic Curve) value than AAP using the Bcipep database, the two tools 

demonstrated approximately equal prediction performance when the IEDB database was 

used (44).  

Another differentiating factor about linear B-cell epitope prediction is the 

application of different machine learning platforms. The most common platforms are 

Support Vector Machine (SVM) (32, 33), Hidden Markov Model (HMM) (30), and 

Artificial Neural Network (ANN) (31). Support Vector Machine is one of the most 

popular supervised learning models used for classification, pattern recognition, and 

regression. A typical SVM is the binary linear classifier. With the input of two classes of 
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classified data, SVM defines the hyper plane as the boundary of two classes by 

calculating the maximum margin. The determination of the hyper plane is the main 

purpose of SVM algorithms. Derived changes, such as kernel trick in non-linear 

classification, may have effect on the hyper plane and be used to modify binary linear 

SVM. SVM has been widely applied, especially in the past decade, in the development of 

linear B-cell epitope prediction tools such as AAP (32), BCPred (33), BayesB (34), 

BEOracle/BROracle (35), and BEST (36). Other tools, such as BepiPred (30), applied 

HMM as their platform. HMM algorithms come from the field of statistics. Generally, 

HMM is deemed as a Markov model inside which there exists a Markov process 

containing unobserved middle states. The optimal model determination is similar to 

maximum likelihood estimation of the parameters involved in HMM given the training 

sequences. ANN is an information-processing paradigm involved in multiple lines of 

interconnected nodes (neurons) computing values from inputs, which has been applied in 

the reported linear B-cell epitope tool ABCPred (31). In contrast with SVM and HMM, 

ANN algorithms are much more complicated and require more calculation machine time.  

4.2.3 Linear B-cell Epitope Prediction Tools 

Below we will introduce and compare some popular linear B-cell epitope 

prediction tools. PEOPLE (Predictive Estimation Of Protein Linear Epitopes) was 

released in 1999 (28). It is a rather sample linear B-cell prediction tool. In PEOPLE, four 

kinds of basic properties of epitopes are used: secondary structure (mainly β-turns), 

surface accessibility, hydrophilicity, and flexibility. The four kinds of profiles are 

combined to calculate an antigenic index (AG). The AG is the final indicator to 

determine whether unknown small protein segments are epitopes. Although it is a rather 
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simple method, the four properties of epitopes used in PEOPLE are still popular in newly 

developed methods for the prediction of linear B-cell epitopes. 

BEPITOPE is an updated version of the PREDITOP program developed by 

Michael Odorico and Jean-Luc Pellequer in 2003 (29). It is not an online tool and needs 

to be installed on local machines. In the BEPITOPE program the authors evaluated more 

than 30 propensity scales, such as hydrophobicity (where the negative values indicate 

hydrophilic regions, and positive scales stand for flexible regions), to search for potential 

epitopes. These propensity scales were calculated by the comparison of real linear B-cell 

epitopes and non-epitopes. Hence, for the BEPITOPE program, the collection of epitope 

set and non-epitope set and the following calculation of propensity scale is of vital 

importance for prediction performance. Although the limited database of linear B-cell 

epitopes may limit the success of BEPITOPE, the propensity scales used in BEPITOPE 

have proven useful in more recently developed tools. 

BepiPred, released in 2006, applied a new strategy to predict linear B-cell 

epitopes (30). In BepiPred, the method relied on HMM. Like BEPTIOPE, propensity 

scales are the major indicator of epitope properties. The involvement of HMM improved 

prediction performance compared with naïve methods like PEOPLE. On its website 

(http://www.cbs.dtu.dk/services/BepiPred), the datasets used in BepiPred are also 

available. The sharing of datasets can be a good reference for other research groups when 

developing and benchmarking their methods, and promotes communication among the 

different research groups. 
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Like BepiPred, ABCPred also applied an interesting machine learning platform 

(31). Recurrent Neural Network is a powerful tool in the field of machine learning and it 

was used for the first time in linear B-cell epitope prediction by ABCPred. The dataset 

used by ABCPred is from Bcipep (21) after careful filtering of similar epitope sequences. 

The process of dataset construction in ABCPred was adopted by many later tools such as 

BCPred and AAP. In ABCPred, flexible epitope length was carefully discussed, and the 

suggested epitope size was no more than 20 amino acids (AA). To our knowledge, 

however, the optimal length of a certain linear B-cell epitope for prediction keeps 

unknown. 

AAP and BCPred are very popular linear B-cell epitope prediction tools (32, 33). 

Both tools are based on the SVM platform and filtered the training dataset from Bcipep 

database using a similar filtering process as in ABCPred. BCPred considered string 

patterns of epitope sequence while AAP applied amino acid pair antigenicity scale in the 

model. In addition, they both investigated and compared different window sizes of 

epitopes, such as 10, 12… and 20. AAP was released in 2007 and BCPred in 2008, and 

both are available online. 

BayesB added new ideas from statistics (34). Bayes feature extraction is a popular 

feature in statistical methods, and it was applied in the BayesB tool in 2010 to enhance 

the performance beyond SVM-based methods. The two datasets in BayesB were 

borrowed from that of AAP and BCPred, again demonstrating the advantage of online 

tools and dataset-sharing. The basic scales in BayesB are relevant position-specific amino 

acid propensities, similar to those used in BEPITOPE.  
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The BEOracle/BROracle (35) tool uses classic strategies for linear B-cell epitopes, 

such as composition of protein sequence properties (including secondary structure, 

solvent accessibility and evolutionary conservation), the popular platform SVM, and 

cross-validation process. Despite this classical approach, it succeeded in generating a 

large training dataset due to the availability of the IEDB database (22). The size of a 

dataset is of vital importance for the success of the prediction tool. Hence, the IEBD 

database gradually replaced Bcipep and became a basic resource for linear B-cell epitope 

prediction. 

BEST tool was released in 2013 (36). It considers evolutionary profiles generated 

by PSI-BLAST. The amino acid pair propensity scale developed for AAP and other 

protein sequence properties such as secondary structure and solvent accessibility were put 

into consideration by BEST. The increasing number of entries in the IEDB database 

offered a bigger training dataset, which benefited prediction performance. The success of 

the BEST tool demonstrated the utility of combining different traditional tools with a new 

and bigger training dataset. 

4.2.4 Principles of Conformational B-cell Epitope Prediction 

Conformational B-cell epitope prediction is more challenging than the task of 

linear prediction. Similar to linear B-cell epitope prediction tools, physicochemical 

properties of amino acid sequence are the major features used in the modeling algorithms. 

However, the difference between linear and conformational B-cell epitope predictions is 

the collection of training datasets. During the construction of datasets for known 

conformational B-cell epitopes, 3D structural information is usually required, which 
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presents a huge barrier for conformational B-cell epitope prediction. With more 3D 

structures of antigens, the latest conformational B-cell epitope prediction tools generally 

outperform their predecessors. 

At present, there are a limited number of available conformational B-cell epitope 

prediction tools, such as DiscoTope (37), BEpro (PEPITO) (38), ElliPro (39), SEPPA 

(41), EPITOPIA (42, 43), and Bpredictor (45). Different tools used different 

combinations of features, which may be biased by their own training datasets. For 

example, DiscoTope integrated a linear combination of two scores, the hydrophilicity 

scale and the epitope log-odds ratio, the latter of which is one kind of epitopic residue 

propensity scores (37). BEpro (PEPITO) also applied linear combination to two scores: 

the epitopic residue propensity and the half sphere exposure values at multiple distances 

(38). ElliPro used only one score, the residue protrusion index (PI) (39). SEPPA 

employed the epitopic residue propensity and the compactness of neighboring residues 

around one residue (e.g., contact number which is the number of Cα atoms in the antigen 

within a distance of 10Å of the Cα atom of target residue), again using linear 

combination (41). EPITOPIA applied a naive Bayesian classifier to forty-four 

physicochemical and structural–geometrical attributes, including secondary structure, 

epitopic residue propensity, evolutionary conservation score, solvent accessibility to the 

surface, and hydrophilicity etc  (42, 43). Bpredictor employed the Random Forest (RF) 

classifier to adjacent residue distance score, accessible surface area, conservation, 

secondary structure, and propensity etc (45).   

In general, the features used by these predictors include conservation score, 

structural features such as secondary composition, geometry characteristics such as 
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protrusion index and planarity score, and amino acid features such as hydrophilicity and 

propensity (odd-ratio). These attributes can be integrated by linear combination or 

machine-learning algorithms, such as naive Bayesian classifiers, Support Vector 

Regression (SVR), and RF classifiers. Different numbers of features were used in a given 

predictor, from two scores to forty-four attributes. For small numbers of attributes, a 

simple linear combination can usually work well, whereas large numbers of features 

often require sophisticated machine-learning algorithms to optimally integrate the scores. 

Notably, some of these features may be mutually exclusive or overlapping. For example, 

the antigenic epitope is frequently located at either a protruding region or a flat surface. 

In such cases, linearly combining the two incompatible terms contradicts the physical 

situation and will degrade the performance of a predictor. In the next section, we will 

introduce these feature applications in several conformational B-cell epitope prediction 

tools released in the past decade. 

4.2.5 Conformational B-cell Epitope Prediction Tools 

Below the popular conformational B-cell epitope prediction tools are introduced 

following the order of release dates, 

DiscoTope is the first conformational B-cell epitope prediction tool based on 

protein 3D structural information (37). DiscoTope uses linear combination to integrate 

two scores, the hydrophilicity scale and the epitope log-odds ratio, the latter of which is 

one kind of epitopic residue propensity scores (37). Its dataset was a group of 76 X-ray 

structures of antibody/antigen protein complexes. Compared with previous sequence-

level tools, the involvement of protein 3D structures offered a more reliable prediction to 
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guide experimental epitope mapping. From the training dataset, a log-odds-ratio was 

calculated and then applied in the construction of the DiscoTope model. On the other 

hand, the tool used simple linear combination rather than popular machine learning 

technologies, such as SVM or HMM. Nevertheless, since the release of DiscoTope in 

2006, the prediction of conformational B-cell epitopes shifted the focus to utilizing 

protein 3D structural data. 

PEPITO, released in 2008, tried to improve prediction performance by applying 

more features of the 3D structure of antibody/antigen protein complexes, such as multiple 

distance thresholds and sphere exposure (38). The dataset of DiscoTope was used by 

PEPITO due to the limited availability of antibody/antigen protein complexes in the PDB 

database. Amino acid propensity scales, which are usually used in sequence-based linear 

B-cell epitope prediction, were also incorporated by PEPITO to enhance predictive 

performance. 

ElliPro can accept either antigen 3D sequence and structure as input (39). If only 

a protein sequence is provided as input, ElliPro will firstly search protein structures in 

PDB based on sequence similarity and use the best-matched 3D structure as the input. 

ElliPro implemented Thornton‟s method which considers the shape of a protein as an 

approximate ellipsoid (40). ElliPro calculates the residue protrusion index (PI) and then 

clusters neighboring residues according to their PI values.  

SEPPA introduced a concept of „unit patch of residue triangle‟ to describe the 

local spatial context on the surface of a protein in 2009 (41). The unit patches were 

involved in the calculation of propensity indices and the following antigenicity scores. In 
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addition, the method constructed its own training dataset containing 84 structures. The 

test set with 119 antigens was from the training set of DiscoTope, IEDB, and Epitome. 

Machine learning platforms were not used in SEPPA. 

Different from the three tools above, EPITOPIA initiated the application of 

machine learning technologies for the prediction of conformational B-cell epitopes (42, 

43). It applied a Naive Bayes classifier to the construction of an online tool. A searching 

antigen input was firstly divided into overlapping surface patches. For each middle 

residue of a patch, its immunogenicity score was calculated by combining 

physicochemical and structural properties of the patch. For EPITOPIA, the 3D structure 

of the antigen is still a must for online prediction. 

We released the two conformational B-cell epitopes EPSVR 

(http://sysbio.unl.edu/EPSVR)  and a meta server EPmeta (http://sysbio.unl.edu/EPmeta)  

in 2010 (44). EPSVR applied the six physicochemical attributes to its surface patch. The 

six attributes include epitope propensity, conservation score, side chain energy score, 

contact number, surface planarity score, and secondary structure. More details will be 

introduced in chapter three. 

Bpredictor is a newer conformational B-cell epitope prediction tool released in 

2011 (45). For this tool, a new concept of „thick surface patch‟ was introduced to 

describe the local spatial context on a protein surface instead of „surface patch‟. It also 

compared the influences of different machine learning platforms. For example, SVM and 

ANN were found to be slower and more sensitive on parameter settings than RF. As to 

http://sysbio.unl.edu/EPSVR
http://sysbio.unl.edu/EPmeta
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dataset, Bpredictor borrowed the dataset from EPITOBIA and EPSVR (44). The latter is 

the conformational B-cell epitope prediction tool we released in 2009. 

5. Summary 

The importance of B-cell epitope drives us to develop new computational 

methods to predict epitopes on protein candidates. Currently the prediction of B-cell 

epitopes, including linear and conformational, still has a place to improve. In this 

dissertation, from chapter two to chapter four, we will introduce our newly developed 

methods to predict linear B-cell epitope (chapter two), conformational B-cell epitope 

(chapter three), and epitopic residues on antigen (chapter four) respectively. 
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CHAPTER TWO: PREDICTION OF LINEAR B-CELL EPITOPES 

1. Introduction 

By secreting antibodies against antigens, B-cells play an important role in the 

immune system to fight invading pathogenic organisms or substances. An antibody can 

specifically recognize and bind to an antigen, analogous to a key into a lock. Antigenic 

epitopes are regions of the antigen surface that are preferentially recognized by B-cell 

antibodies (1). Prediction of antigenic epitopes is useful for the investigation on the 

mechanism of body‟s self-protection systems and can help the design of vaccine 

components and immuno-diagnostic reagents (2). 

B-cell antigenic epitopes are classified as either continuous or discontinuous (3). 

A continuous (also called linear) epitope is a consecutive fragment from the protein 

sequence; a discontinuous epitope is composed of several fragments scattered along the 

protein sequence, but still form an antigen-binding interface in three dimensions. A 

distinction between continuous and discontinuous epitopes is vague; a continuous 

fragment in a discontinuous epitope can be considered as a linear epitope. The majority 

of currently available epitope prediction methods focus on continuous epitopes due to the 

relative simplicity of the problem, in which the amino acid sequence of a protein is taken 

as an input. These prediction methods are based upon the amino acid properties including 

hydrophilicity (4, 5), solvent accessibility (6), secondary structure (7), flexibility (8), and 

antigenicity (9). In addition, based on the epitope databases such as IEDB (10), Bcipep 

(11), and FIMM (12), some methods use machine learning approaches, such as hidden 

Markov models (HMM) (13), artificial neural networks (ANN) (14), and support vector 

machines (SVM) (15, 16), to locate linear epitopes. Such methods include: PREDITOP 
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(9), PEOPLE (17), BEPITOPE (18), BepiPred (13), ABCPred (14), AAP (15), BCPred 

(16), BayesB (19), BEOracle/ BROracle (20), and BEST (21).  

Currently available linear B-cell prediction tools show only a limited success. For 

example, one of the best available methods by 2011, BCPred, was reported as the 

accuracy and specificity of ~72% and ~79% using the five-fold cross-validation based on 

a dataset of 872 B-cell epitopes and 872 non-B-cell epitopes (16).To pursue more reliable 

and stable linear B-cell epitope prediction, immunoinformaticists need to develop new 

statistical models. The new models shall have lower false positive rates so that the 

prediction results can be more reliably used for experimental design.  

Since more information including experimentally determined linear B-cell 

epitopes and 3D structures of antigens has been released in the past decades, development 

of new linear epitope prediction methods became more feasible. For instance, the IEDB 

database collects much more known epitopes than before. With the advance in 

bioinformatics technology, new algorithms have been developed for the prediction of 

active sites of proteins. These innovations stimulate the development of the prediction 

tools of linear B-cell epitopes. 

In this chapter, we developed a new linear B-cell epitope prediction tool, 

SVMTriP, which uses a machine learning technique, SVM, with the tri-peptide similarity 

and propensity scores. SVMTriP was tested for varied epitope sequence lengths. With the 

five-fold cross-validation, SVMTriP achieves a sensitivity of 80.1% and a precision of 

55.2% for sequences with 20 amino acids (AA), which are higher than those of AAP 

(sensitivity:  59.8%, precision: 58.5%) and BCPred (sensitivity: 54.0%, precision: 60.5%).  

2. Materials and Methods 
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2.1 Datasets 

The dataset was constructed by extracting non-redundant linear B-cell epitopes 

from IEDB (10), which is frequently updated and has the most complete set of linear 

epitopes. Total of 65,456 redundant B-cell linear epitopes were obtained from IEDB 

(version June 11th, 2012). The identical epitopes and those possibly related to T-cell 

were removed. The full-length sequences of corresponding epitopes were also collected. 

Then, the various lengths of epitope sequences, including 10AA, 12AA, 14AA, 16AA, 

18AA, and 20AA, were extracted by trimming the long experimental measured epitopes 

or attaching more amino acid residues to both ends of short epitopes according to the full-

length sequences. For a given length, 65,456 epitope sequences are filtered by a threshold 

of less than30% similarity, measured by BLASTP (22), were clustered together and only 

one of them was kept as a representative epitope sequence in the dataset. Finally, the 

positive dataset for each length had a total of 4925 non-redundant epitope sequences. For 

the negative dataset, the same number of non-redundant sub-sequences with each equal 

length is extracted from the non-epitopic segments in the corresponding antigen 

sequences. 

2.2 Attributes 

2.2.1 Tri-peptide Scores Matrix 

The idea of tri-peptide score matrix was borrowed from the prediction method 

used in protein subcellular localization by Lei and Dai (23). A matrix D
k
 of high scored k-

peptide pairs is of dimension 20
k
 × 20

k
 (we did not consider X residue in BLOSUM or 

PAM matrix). The tri-peptide score matrix is defined as: 

T
(i)

= ∑
(i)

  j ,                                                    (1) 
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where 
(i)

 denotes the tri-peptide that represents the i-th attribute, j denotes the j-th tri-

peptide in the tri-peptide subsequence space for the input sequence. The symbol “” 

denotes getting the similarity score of any two corresponding tri-peptide, i.e., sum of 

three similarity scores for three amino acid pairs from a BLOSUM/PAM matrix. For 

example, assuming the length of a given epitope candidate is 20 AA, the tri-peptide 

subsequence similarity kernel for the i-th attribute is generated by summing over 

similarity scores of the 18 pairs of tri-peptide; each pair consists of one tri-peptide from 

the input sequence and the tri-peptide represents i-th attribute from the tri-peptide 

subsequence space. Using BLOSUM62 as example, the steps are shown below: 

a) A sliding window of 3AA along the sequence is used. 

b) The score T
(i)

 is defined as the sum of the score for the respective individual 

residue pair from BLOSUM62 between two pairs of tri-peptide. The score T
(i)

 is 

zero if the sum of BLOSUM62 scores of three individual residue pairs is negative.  

c) Each value in 20
3
 features is calculated from the average score T

(i)
s between the 

i
th

 tri-peptide and all of tri-peptides from step a. 

A graphic interpretation is shown in Figure 2.1 
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Figure 2.1 Illustration of tri-peptide score matrix construction. Each feature score is 

the average score of between the i
th

 tri-peptide and all the peptides from slide window of 

protein sequence. 

 

To build the tri-peptide score matrix, BLOSUM and PAM matrices, the most 

popular score matrices used for protein sequence alignment, were tested. BLOSUM 

matrices are derived from residue-residue substitution probability (24) while PAM is 

based on observed mutations of closely related proteins (25). In our study, different 

BLOSUM matrices were tested, such as BLOSUM30, BLOSUM50, BLOSUM62, and 

BLOSUM75, where the number represents the percentage identity threshold that are used 

for determining closely related protein groups during the construction of BLOSUM 

matrices. Different PAM matrices were used as well, such as PAM120, PAM160, 

PAM200, and PAM250, where the number stands for the times of multiplication of the 

primary PAM matrix (PAM1) by itself when building a PAM matrix. The application of 

different BLOSUM or PAM matrices would influence the prediction result of final 

models. 

2.2.2 Tri-peptide Subsequence Propensity 

The propensity of tri-peptide subsequence representing the i-th attribute is 

calculated as in Equation (2): 

,                                                     (2) 

where f
(i)

 is the frequency of i-th type of tri-peptide in the positive epitopes, and F
(i)

 is the 

background frequency of i-th type of tri-peptide in 5×10
4
 protein sequences randomly 

selected from the Refseq database (26). 

   

P (i) =
f (i )

F
(i )
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2.2.3 Integrations of Tri-peptide Scores Matrix and Tri-peptide Subsequence 

Propensity 

The tri-peptide subsequence space is used to encode the SVM attributes. This 

kernel has a space of 20
3 

attributes for both tri-peptide substring and propensity. The 

score of i-th attribute, K
(i)

, is defined as the tri-peptide subsequence similarity kernel 

modulated by its corresponding tri-peptide propensity. Please see Equation (3): 

K
(i) 

=T
(i)

 •P
(i)

,                                                             (3) 

where K
(i)

 denotes the score of the i-th attribute, T
(i)

 denotes the i-th tri-peptide score 

matrix calculated by Equation (1), and P
(i)

 denotes corresponding tri-peptide subsequence 

propensity of i-th tri-peptide subsequence calculated by Equation (2). Other features of 

physicochemical properties of amino acids, such as hydrophilicity and predicted 

secondary structure, had been also used to modify K
(i)

. For hydrophilic and hydrophobic 

residue group, two fixed weights, e.g., 0.5 and 2, will be used to change K
(i)

. 

2.2.3 Hydrophobicity 

Hydrophobicity scale of residue usually is applied to linear B-cell epitope 

prediction (17, 18). The hydrophobicity profile implies a hydrophobic region that tends to 

be located away from the surface of antigen protein.  A potential hydrophobic region 

represents a low probability to be an antibody-bind site.  Hence, hydrophobicity scale 

was used here in order to evaluate the probability of a residue locating on protein surface. 

Table 2.1 Hydrophobicity Scale Table 

Ala 1.8 Glu -3.5 Leu 3.8 Ser -0.8 

Arg -4.5 Gln -3.5 Lys -3.9 Thr -0.7 

Asn -3.5 Gly -0.4 Met 1.9 Trp -0.9 

Asp -3.5 His -3.2 Phe 2.8 Tyr -1.3 

Cys 2.5 Ile 4.5 Pro -1.6 Val 4.2 
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Amino acid hydrophobicity scales may be calculated by experimental biophysical 

methods. In our study, we used the hydrophobicity scale calculated by Jack Kyte shown 

in Table 2.1 (27). 

2.2.4 Secondary structure 

 The structural information directly declares the spatial location where the residues 

stay. 3D structure is of the most interest but it is also challenging to predict. There are, 

however, many mature secondary structure prediction methods available and the results 

from those tools usually are more reliable. Hence, many linear B-cell epitope prediction 

tools incorporate secondary structural data to their models (17, 20). We also considered 

secondary structure information. 

 To obtain the secondary structural information of antigen, we applied one of the 

popular protein secondary structure prediction tools, PSIPRED, which is based on 

position-specific scoring matrices (PSSM) from PSI-BLAST. In order to run a PSIPRED 

tool on a local machine, the BLAST tool and the associated NR database must also be 

downloaded and installed correctly. PSIPRED tool package is available on 

http://bioinfadmin.cs.ucl.uk/downloads/psipred/ (28) and BLAST can be downloadable 

from National Center for Biotechnology Information (NCBI) website 

(ftp://ftp.ncbi.nlm.nih.gov/blast/ executables/blast+/LATEST/) (22). 

2.3 Support Vector Machine Platform 

Support Vector Machine (SVM) was selected as the machine learning technique 

for our new models. SVM has been proven powerful in various biological and 

immunological applications, such as epitope prediction (15, 16), disease diagnostic (29, 

30), clinical outcome (31), and hub protein determination (32). SVM usually is associated 
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with learning algorithms for the application of classification and regression analysis. For 

example, a typical application is to generate binary linear classifier. SVM takes a set of 

two classes of objects as an input. By fitting the maximum-margin hyperplane, SVM 

determines the boundary between the two classes in a hyper-dimensional space. SVM 

then classifies an unknown object by checking where the unknown object is located 

besides the hyperplane in the hyper-dimensional space. Since developed by Vladimir N. 

Vapnik in 1963 (33), the theory of SVM has been differentiated into multiple branches, 

including linear model and nonlinear model, binary class SVM and multiclass SVM, and 

classic supervised learning SVM and semi-supervised transductive SVM. Many different 

SVM tools have been developed as listed in Table 2.2. Here we used SVM
light

 as a 

platform to train the optimal model. SVM
light

 is an easy standalone tool with customizable 

parameter options. It has been successfully applied in many SVM-based biological 

predictions, such as protein fold recognition. 

 

Table 2.2 Some Available Support Vector Machine Tools 

SVM Tool Downloadable Access 

SVM
light 

(34) http://svmlight.joachims.org/ 

SVM
struct 

(35) http://svmlight.joachims.org/svm_struct.html 

mySVM (36) http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html 

TinySVM http://chasen.org/~taku/software/TinySVM/ 

LIBSVM (37) http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

SVMTorch (38) http://bengio.abracadoudou.com/SVMTorch.html 

LS-SVMlab (39) http://www.esat.kuleuven.be/sista/lssvmlab/ 

 

2.4 Model Training and Evaluation 

2.4.1 Training Procedure 

http://svmlight.joachims.org/svm_struct.html
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The SVM
light

 platform applies a series of parameters to obtain the optimal training 

models. Some important parameters include kernel type, c (trade-off between training 

error and margin), g (parameter γ of the radial basis function kernel), and p (fraction of 

unlabeled examples to be classified into the positive class). In our training procedure, we 

applied the popular kernel of the radial basis function. All SVM parameters were 

optimized by a grid search (c=2
-10~-1

, g=2
-12~-3

, and p=2
-5~-2

). For each grid point of the 

triplets (c, g, and p), a five-fold cross-validation procedure was employed to evaluate the 

performance of the trained SVM model. To carry out the five-fold validation procedure, 

we ran pair-wise similarity comparison to the training dataset. The total of 4925 positive 

epitopes were split into five groups, and any two-epitope sequences from two different 

groups did not have sequence similarity more than 20%. At each triplet point, the F-

measure was calculated as shown in equation (4). F-measure quantifies a tradeoff of 

sensitivity and precision in prediction performance. The optimal parameter set has the 

largest value in all points with the maximum F-measures. During the procedure of five-

fold cross-validation, five test results were used to calculate the mean values and 95% 

confidence intervals of sensitivity, precision, and the maximal F-measure.  

To optimize the parameter set during the process of SVM training, the three 

performance statistics, sensitivity, precision, and F-measure as defined in Equation (4) 

were used as the major criteria. Sensitivity, also called recall, is used to check the 

proportion of true B-cell linear epitopes identified as positives from all actual positives. 

Precision represents the proportion of true positives from the predicted linear B-cell 

epitopes. These two statistics are of the most interest of immunologists when predicting 

linear B-cell epitopes. However, they showed different trends with the change of SVM 
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parameter sets. One example is shown in Figure 2.2. During our training, when 

decreasing the value of g (parameter γ of the radial basis function kernel) precision would 

go down while sensitivity would go up.  Therefore, to determine the optimal g value, we 

can select g value from the cross point in the graph. the optimal parameter set is decided 

by the maximization of F-measure.  

We also attempted different types of kernel functions in SVM
light

, such as linear, 

polynomial, and radial basis. The final kernel in our models focused on the radial basis 

function after comparing their performance. 

 

 

Figure 2.2 Curve of precision and sensitivity with different g values in SVM 

classifier training. g is parameter γ of the radial basis function kernel. The blue curve 
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stands for precision and the gray curve for sensitivity. Usually, the maximum F-measure 

can be found at the cross point of two curves where a optimal g parameter is determined. 

2.4.2 Statistical Evaluation  

To evaluate the prediction performance of linear B-cell prediction tool, 

performance statistics including sensitivity (Sen), specificity (Spe), precision (Pre), 

accuracy (Acc), Mattews correlation coefficient (MCC), and F-measure (F) are calculated 

by Equation (4) below, 

                                (4)             

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false 

negative, respectively. All of calculations above are based on five-fold cross-validation 

procedure. 

Another statistical measure, AUC, is also calculated. AUC is the "area under the 

curve" where the curve is a receiver operating characteristic (ROC) curve. In the ROC 

curve, sensitivity, sometimes called TPR (True Positive Rate), is plotted against FPR 

(False Positive Rate), i.e. FPR = FP / (FP + TN). A higher AUC score represents higher 

,
Sen+Pre

SenPre2
F
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prediction performance. A java program available at 

http://pages.cs.wisc.edu/~richm/programs/AUC/ was used to calculate the AUC.  

Although higher AUC values mean better prediction performance, the 

significance of two AUC score difference must be considered, too. Not significantly 

different AUCs mean that the two classifiers show equal performance when classifying 

unknowns. The online tool StAR was used to test whether the difference between ROC 

curves resulting from two models was statistically significant (40, 41). 

2.5. Online Prediction Tool  

We have also released an online tool for public use. The online tool SVMTriP is 

available on online (http://sysbio.unl.edu/SVMTriP). The major architect of this tool is 

shown in Figure 2.3. In the SVMTriP website, the online prediction tool contains three 

parts, 1) the identified optimal models based on SVM training with carefully-selected 

parameter sets; 2) a database used to store the requests from customers and the final 

prediction results after SVM classification by optimal models; and 3) a background 

server that implements the key process of SVM classification. The technologies involved 

in the SVMTriP online tool include Perl scripts, PHP, and My-SQL database. Blast 

Converting is applied to initial search of protein candidate in known epitope training 

dataset. 



40 

 

 

 

 

Figure 2.3: The illustration of the SVMTriP online tool 

For the application on the online server, the prediction model is obtained by 

training SVMs using the datasets as described in the previous sections. To predict 

epitomes from a given full-length protein sequence, the sliding window method is 

employed to obtain subsequences with variable window sizes including 10AA, 12AA, 

14AA, 16AA, 18AA, and 20AA with a step size of 2AA. For each subsequence, 

SVMTriP calculates its score, and a positive score indicates that the subsequence is a 

putative antigenic epitope. Based on the testing results, 20AA was set as the default 

epitope length for SVMTriP to search for putative epitopes on the web server. 

3. Results  

3.1 Prediction performance 

SVMTriP is trained and tested with different epitope lengths, and for each length, 

the SVM parameters have their independent optimal values. For example, for 20AA-
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length cases, SVMTriP reaches its optimal performance at c=32, g=0.05, and p=0.5 for 

the SVM model with Sn=80.1%±2.1% and P=55.2%±1.0% at the point with the maximal 

F-measure, 0.693. All results are shown in Table 2.3. Though, for different lengths of 

epitope sequences, SVMTriP has various points with the maximal F-measure, the 

precision values for different lengths are similar. The sensitivity increases significantly as 

the length of the epitope sequences increases. The range of the values of areas under the 

receiver operating characteristic curves (AUC) is from 0.674 to 0.702. Based on results of 

the performance assessment, SVMTriP for 18AA- and 20AA-length cases have the best 

performance. However, one may note a fact that most of experimentally determined 

epitopes from IEDB have less than 20 AA residues. A possible reason why SVMTriP 

favors long length of sequences is that a long sequence may have more tri-peptides to 

show a detectable frequency tendency. Another possibility is that the epitopic amino acid 

residues in experimentally determined epitopes are subsets of all real epitopic residues. 

Based on the testing results, 20AA is set as the default epitope length for SVMTriP to 

search for putative epitopes on the web server. 

3.2 Comparison with AAP and BCPred 

For comparison, AAP and BCPred are implemented locally based on their method 

descriptions, trained/tested with the same dataset and the five-fold cross-validation 

procedure for 20AA case. The results are listed in Table 2.4. Compared with BCPred and 

AAP, SVMTriP has a similar precision value, but significantly improved sensitivity at the 

point with the maximal F-measure. Figure 2.4 shows the ROC curves for the three 

methods. One may notice that SVMTriP has significantly larger sensitivity than BCPred 

and AAP in the region of low false positive rate. The AUC values are 0.667, 0.667, and 
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0.702 for AAP, BCPred, and SVMTriP, respectively. The AUC value of SVMTriP is 

significantly higher than those from the other two methods; the p-values of comparison 

against AAP and BCPred are 2.17×10
-5 

and 1.58×10
-5

, respectively.  

Table 2.3 Performance of SVMTriP models with different epitope lengths 

Length (AA) Sn (%) P (%) F-measure AUC 

10 68.5 ± 2.5 55.5 ± 1.5 0.615 ± 0.020 0.674 

12 67.5 ± 3.5 57.0 ± 2.0 0.620 ± 0.030 0.681 

14 64.8 ± 4.9 56.5 ± 2.5 0.605 ± 0.030 0.689 

16 63.5 ± 5.5 57.1 ± 3.0 0.601 ± 0.045 0.685 

18 79.0 ± 1.9 54.1 ± 1.1 0.641 ± 0.015 0.666 

20 80.1 ± 2.1 55.2 ± 1.0 0.693 ± 0.060 0.702 

 

Table 2.4 Performance of different linear B-cell epitope prediction methods 

Methods Sn (%) P (%) F-measure AUC 

AAP* 59.8 ± 0.9 58.5 ± 6.5 0.590 ± 0.040 0.667 

BCPred* 54.0 ± 7.1 60.5 ± 2.5 0.572 ± 0.055 0.667 

SVMTriP 80.1 ± 2.1 55.2 ± 1.0 0.693 ± 0.060 0.702 
*
The results for AAP and BCPred, are obtained by the software implemented locally. 
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Figure 2.4 ROC curves for AAP, BCPred, and SVMTriP  

4.  Discussion  

4.1 Determination of Different Models 

The determination of linear B-cell epitope prediction models relies on different 

factors. The first consideration is the length of epitopes. The range of epitopes 

determined experimentally usually varies from 5 to 30AA. The optimal length of B-cell 

epitopes for computational prediction is unknown. Results obtained by ABCpred 

suggested the epitope length in statistical models should be no more than 20AA (14). In 

this study, we set up individual models with different epitope lengths. Another factor is 

the combination of features used in models. The optimal combination of features is also 

not clear. Based on different training datasets, the optimal feature set in different linear 

B-cell epitope prediction models may be quite different. Hence, in this study, we also 

determined the optimal combination of specific features with statistical evaluation. 
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The optimal window size for linear B-cell epitope is yet another unknown. We 

noticed that among the reported linear B-cell epitopes, over 60% were with the length of 

12-18AA. During the process of learning, there can be a minor deviation between the 

optimal window size for prediction and the average length of real linear B-cell epitopes. 

For example, the function of B-cell linear epitopes is potentially influenced by the 

neighboring residues. Hence, a longer sequence segment embedding linear epitopes may 

contain more useful information. Therefore, in our learning procedures, we attempted 

various lengths of slide window, including 10AA, 12AA, 14AA, 16AA, 18AA, and 

20AA.  

Our training showed the optimal model came from the combination of tri-peptide 

score matrix and tri-peptide subsequence propensity. The hydrophobicity and predicted 

secondary structure scales did not contribute to final model SVMTriP. The optimal 

SVMTriP model was based on tri-peptide score matrix and tri-peptide subsequence 

propensity.  

4.2 The Influence of Different Kernels on SVMTriP Models 

4.2.1 Prediction with tri-peptide propensity alone 

The propensity of tri-peptide alone is tested and the result is shown in Table 2.5. 

The prediction sensitivity is 56.5%, which is little smaller than 59.8% of AAP, a method 

based on bi-peptide propensity. On the other hand, the precision of tri-peptide propensity 

is 61.0%, which is similar with AAP‟s precision of 58.5%. This result indicates that 

combining similarity scores is essential for the tri-peptide model to achieve a better 

performance. 
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4.2.2 Prediction with tri-peptide similarity alone 

The tri-peptide similarity scores can be calculated with either Blosum62 or 

PAM160 matrixes (the results of Blosum and PAM metrics are not shown here). The 

performance of two different matrices for the tri-peptide model is evaluated with the 

same procedure of the five-fold cross-validation for 20AA-length epitopes. The results 

are shown in Table 2.5. Without the propensity score, using Blosum62 matrix shows 

similar performance as using the PAM160. However, when combined with the propensity 

score, Blosum62 matrix leads to a higher prediction performance. 

4.2.3 Discrete tri-peptide subsequence models 

We also implement a method that uses the space of tetra-peptide subsequence 

with one mismatch, i.e., discrete tri-peptide subsequences. For this case, the 

subsequences are considered in patterns either A_AA or AA_A, where „A‟ represents the 

amino acid residue to be considered and „_‟ represents the residue position that will be 

ignored in the comparison. The number of SVM attributes is still 20
3
, which is identical 

to that of the tri-peptide model. Interestingly, as shown in Table 2.5, without considering 

propensity scores, the subsequence models of A_AA and AA_A patterns have similar 

sensitivity and precision with the tri-peptide model. However, the combination of 

similarity and propensity of the tri-peptide model significantly enhances the performance, 

while addition of the propensity does not increase sensitivity and precision for A_AA and 

AA_A patterns. This finding indicates that the propensity is more important for the tri-

peptide model than the discrete tri-peptide subsequence model.  

Table 2.5 Comparison among the tri-peptide subsequence models with or without 

propensity 
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Kernels Sn (%) P (%) F-measure 

Tri-peptide Propensity only N.A. 56.5 ± 12.5 61.0 ± 6.3 0.584 ± 0.085 

Tri-peptide 

w./o. Propensity 
Blosum62 54.5 ± 6.5 60.5 ± 1.5 0.573 ± 0.035 

PAM160 55.0 ± 7.2 61.1 ± 1.8 0.578 ± 0.040 

w./ Propensity 
Blosum62* 80.1 ± 2.1 55.2 ± 1.0 0.693 ± 0.060 

PAM160 69.3 ± 10.0 58.5 ± 3.5 0.633 ± 0.050 

AA_A 

pattern 

w./o. Propensity 
Blosum62 54.8 ± 6.8 60.5 ± 1.5 0.579 ± 0.040 

PAM160 55.2 ± 7.1 61.3 ± 2.0 0.577 ± 0.045 

w./ Propensity 
Blosum62 60.5 ± 5.5 57.5 ± 2.5 0.589 ± 0.040 

PAM160 59.5 ± 5.5 57.5 ± 1.5 0.585 ± 0.035 

A_AA pattern 

w./o. Propensity 
Blosum62 55.5 ± 8.5 60.6 ± 2.2 0.581 ± 0.050 

PAM160 55.2 ± 8.1 60.5 ± 1.5 0.577 ± 0.055 

w./ Propensity 
Blosum62 60.5 ± 6.5 57.5 ± 1.5 0.590 ± 0.040 

PAM160 59.5 ± 5.5 57.5 ± 1.5 0.585 ± 0.025 
*
 The parameter set with Blosum62, Tri-peptide, and propensity were chosen to 

determine the optimal model of SVMTriP 

 

4.2.4 Top weighted tri-peptide 

The prediction model relies on the occurring-frequency distribution of tri-peptides 

in the tri-peptide space, i.e., all combinations of any three amino acids. In Table 2.6, tri-

peptide with top 20 weights in the optimal SVM model of 20AA-length epitopes are 

listed. All of the top ranked tri-peptides contain Glutamine or Proline, whereas the 

occurring frequencies of Glutamine and Proline in known linear epitopes (20AA) are 

only 8.1% and 6.84%, respectively. In the background of overall proteins, the occurring 

frequencies of Glutamine and Proline are 3.84% and 3.44%, which is not significantly 

different to the values in linear epitopes. The tri-peptide containing Glutamine or Proline 

may play an important role in epitope recognition by B-cell antibodies. The algorithm of 

SVMTriP successfully utilized this difference to distinguish linear epitopes from other 

parts of protein peptides. 
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Table 2.6 Weights of tri-peptides in the optimal SVM model 

Tri-peptide Rank Weight Score*  Tri-peptide Rank Weight Score* 

QQP 1 503251.79  GQQ 11 121677.62 

PQQ 2 488627.71  QPY 12 116598.60 

QPQ 3 367386.40  YPQ 13 113237.37 

QPF 4 246462.39  QQF 14 81709.59 

FPQ 5 234868.65  PYP 15 79191.37 

PQP 6 231353.73  FQQ 16 77357.97 

QGQ 7 153161.76  PPP 17 76320.05 

PFP 8 151840.02  QPP 18 64756.05 

QQQ 9 128930.20  QFP 19 63814.16 

QQG 10 122291.90  PPQ 20 63173.33 
*
Weight scores are calculated by the formula w =∑αixi. Here αi is dual representation 

of the decision boundary; and xi (i=0, 1, 2…n) is vector described in SVM model. Both 

αi and xi are available in the model file. 

 

4.3 Independent Test to Compare SVMTriP and Other Linear B-cell Epitope 

Prediction Tools  

Another independent test was developed as a tendency test between virus and 

human proteins by BCPred, AAP, and SVMTriP. Independent testing of different epitope 

prediction methods is challenging because of the limited number of known epitopes. In 

this study, we devise an alternative independent test method. In the training set, most 

epitopes are from virus or bacteria, and their corresponding antibodies are mainly human 

antibodies. A basic property of the human immune system is the capability to distinguish 

any pathogenic agents, viral or bacterial, from the innate structures of the human being. 

All known B-cell epitopes in the training set came from the response of whole immune 

system, including the response of CD4 T helper cells. Trying to simulate the human 

immune system, a successfully trained epitope prediction method should act the same, i.e., 

be able to distinguish pathogenic proteins from human proteins. In other words, the virus 

proteins should be preferentially more highly scored than human proteins by a successful 
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prediction algorithm. To implement this test, 105 20AA-length peptides are collected 

from virus and human proteins: 5×10
4
 peptides are randomly selected from 391,466 virus 

proteins and others from 81,967 human proteins in the NCBI Refseq protein database. 

AAP, BCPred, and SVMTriP are applied to these virus and human peptides, and top-

ranked peptides are returned. The fractions of virus peptides in different numbers of top-

ranked peptides are shown in Figure 2.4. All three methods returned more virus peptides 

than human peptides within the top-ranked peptides. SVMTriP, however, selected higher 

percentage of virus peptides than both AAP and BCPred. For example, in total 400 top-

ranked peptides returned by SVMTriP, 90.5% of them, i.e. 362, are virus peptides. There 

are 47.8% (191) and 56.5% (226) virus peptides returned by AAP and BCPred, 

respectively. This indicates the exceptional ability of SVMTriP to distinguish epitopic 

and non-epitopic peptides. 

 

Figure 2.4 Tendency test for BCPred, AAP, and SVMTriP. Three bars at the same 

point on the x-axis are the results for APP (blue), BCPred (green), and SVMTriP (red), 
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respectively. In the same bar, the light part is for the number of returned human peptides, 

and the dark part is for virus. For example, at the point of 400 returned peptides, the dark 

part in the red bar is 362, which means that 362 viral peptides are return in all 400 

peptides by SVMTriP, and the light red part represents 38 human peptides. 

4.4 The Challenge of Linear B-cell Epitope Prediction 

Although the prediction of linear B-cell epitope has achieved some success, we 

are still not fully satisfied with currently available tools. One of major issues is still rather 

high false positive rates. The main reason is that antibody-binding sites on antigens are 

much less conserved than other types of binding sites. The predator-prey game between 

antibody and antigen has changed the triumphal side many times during the evolutionary 

history. Antigen tried to avoid the recognition and clearance by antibody by changing its 

active sites, while antibody does all the best to figure it out and bind to the antigen. As a 

consequence, the binding sites on antigen, i.e., epitopes, show less conservation and 

lower sequence similarity. At present, almost all of linear B-cell epitope prediction tools, 

including SVMTriP, are based on the assumption of conservation and sequence similarity 

among known linear B-cell epitopes. This is a dilemma between evolutionary immune-

pressure and computational algorithms. One possibility is that B-cell antibodies show 

certain favorite binding pattern on antigen considering their special Y-shapes. 

Another uncertainty in these available prediction tools is from the training 

datasets used. Obviously the datasets are of vital importance for prediction performance. 

The known linear B-cell epitopes mostly were determined by well-designed experiments. 

However, such experimental determination is slow and fund-consuming. Moreover, these 
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experiments usually focus on specific disease-related antigens which people are more 

interested in. The bias in datasets used for training linear B-cell epitope prediction 

methods influences the identification accuracy. With a limited number of available linear 

B-cell epitopes, Blythe and Flower (42) showed that propensity based methods cannot be 

used reliably for predicting B-cell epitopes, which could only yield success rate 

marginally better than random prediction. A bigger non-redundant dataset should be one 

of key factors in future development of improved linear B-cell epitope prediction 

methods. 

We also compare the specificity of linear B-cell epitope prediction compared to 

other protein-protein interaction prediction. For example, given the interaction between 

antibody and antigen is usually transient non-obligate, the binding tends to be one kind of 

rather weak interaction (43). It means that residues of antibody and antigen proteins are 

involved in temporary and unstable adjacency. Special properties of these residue-residue 

bonds potentially affect the performance of algorithms which based on conserved and 

stable residue-residue interaction, such as some protein-protein binding site prediction 

tool (44). Hence, it is difficult to simply use prediction methods for regular protein-

protein interaction in epitope prediction. 

We developed a new method, SVMTriP, to predict linear antigenic epitopes. 

Applied to non-redundant B-cell linear epitope data extracted from IEDB, SVMTriP 

achieves a sensitivity of 80.1%, a precision of 55.2%, and AUC of 0.702 with five-fold 

cross-validation. The combination of similarity and propensity of tri-peptide 

subsequences can improve the prediction performance for linear B-cell epitopes. 
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Moreover, SVMTriP is capable of recognizing viral peptides from human protein 

sequences effectively.  

The SVMTriP website collects the queries from users and stores them as the job 

queue in the database. The local service checks these queries and completes the searching 

along the input antigen sequence one by one. The predicted linear B-cell epitopes will be 

stored in the database and sent to the Result webpage. Generally, under a normal job load, 

a complete search on 200AA-length antigen needs about 20 minutes. 

On the SVMTriP website, we also released the training dataset extracted from 

IEDB database as of June 11
th

, 2012 (http://sysbio.unl.edu/SVMTriP/download.php). 

This dataset is a non-redundant linear B-cell epitope set containing 4925 entries. For each 

entry, we obtained the real epitope segments and the full-sequence of the corresponding 

antigen. We extended or subtracted real epitope segments to construct 10AA, 12AA, 

14AA, 16AA, 18AA, and 20AA subset. These datasets may be used to similar model 

training for new B-cell linear epitope prediction tools using other training features or 

algorithms.  

  



52 

 

 

 

References 

1. Getzoff, E. D., Tainer, J. A., Lerner, R. A., and Geysen, H. M. (1988) The 

chemistry and mechanism of antibody binding to protein antigens, Advances in 

immunology 43, 1-98. 

2. Milich, D. R. (1989) Synthetic T and B cell recognition sites: implications for 

vaccine development, Advances in immunology 45, 195-282. 

3. Reineke, U., and Schutkowski, M. (2009) Epitope mapping protocols,  2nd ed., pp 

1 online resource (xiii, 456 p., [416] p. of plates), Humana Press, New York. 

4. Hopp, T. P., and Woods, K. R. (1981) Prediction of protein antigenic 

determinants from amino acid sequences, Proceedings of the National Academy 

of Sciences of the United States of America 78, 3824-3828. 

5. Parker, J. M., Guo, D., and Hodges, R. S. (1986) New hydrophilicity scale 

derived from high-performance liquid chromatography peptide retention data: 

correlation of predicted surface residues with antigenicity and X-ray-derived 

accessible sites, Biochemistry 25, 5425-5432. 

6. Emini, E. A., Hughes, J. V., Perlow, D. S., and Boger, J. (1985) Induction of 

hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide, 

Journal of virology 55, 836-839. 

7. Pellequer, J. L., Westhof, E., and Van Regenmortel, M. H. (1993) Correlation 

between the location of antigenic sites and the prediction of turns in proteins, 

Immunology letters 36, 83-99. 

8. Karplus, P. A., and Schulz, G. E. (1985) Prediction of Chain Flexibility in 

Proteins - a Tool for the Selection of Peptide Antigens, Naturwissenschaften 72, 

212-213. 

9. Kolaskar, A. S., and Tongaonkar, P. C. (1990) A semi-empirical method for 

prediction of antigenic determinants on protein antigens, FEBS letters 276, 172-

174. 

10. Vita, R., Zarebski, L., Greenbaum, J. A., Emami, H., Hoof, I., Salimi, N., Damle, 

R., Sette, A., and Peters, B. The immune epitope database 2.0, Nucleic acids 

research 38, D854-862. 

11. Saha, S., Bhasin, M., and Raghava, G. P. (2005) Bcipep: a database of B-cell 

epitopes, BMC genomics 6, 79. 

12. Schonbach, C., Koh, J. L., Sheng, X., Wong, L., and Brusic, V. (2000) FIMM, a 

database of functional molecular immunology, Nucleic acids research 28, 222-

224. 

13. Larsen, J. E., Lund, O., and Nielsen, M. (2006) Improved method for predicting 

linear B-cell epitopes, Immunome research 2, 2. 

14. Saha, S., and Raghava, G. P. (2006) Prediction of continuous B-cell epitopes in an 

antigen using recurrent neural network, Proteins 65, 40-48. 

15. Chen, J., Liu, H., Yang, J., and Chou, K. C. (2007) Prediction of linear B-cell 

epitopes using amino acid pair antigenicity scale, Amino acids 33, 423-428. 

16. El-Manzalawy, Y., Dobbs, D., and Honavar, V. (2008) Predicting linear B-cell 

epitopes using string kernels, J Mol Recognit 21, 243-255. 

17. Alix, A. J. (1999) Predictive estimation of protein linear epitopes by using the 

program PEOPLE, Vaccine 18, 311-314. 



53 

 

 

 

18. Odorico, M., and Pellequer, J. L. (2003) BEPITOPE: predicting the location of 

continuous epitopes and patterns in proteins, J Mol Recognit 16, 20-22. 

19. Wee, L. J., Simarmata, D., Kam, Y. W., Ng, L. F., and Tong, J. C. SVM-based 

prediction of linear B-cell epitopes using Bayes Feature Extraction, BMC 

genomics 11 Suppl 4, S21. 

20. Wang, Y., Wu, W., Negre, N. N., White, K. P., Li, C., and Shah, P. K. 

Determinants of antigenicity and specificity in immune response for protein 

sequences, BMC bioinformatics 12, 251. 

21. Gao, J., Faraggi, E., Zhou, Y., Ruan, J., and Kurgan, L. BEST: improved 

prediction of B-cell epitopes from antigen sequences, PloS one 7, e40104. 

22. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., 

and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of 

protein database search programs, Nucleic acids research 25, 3389-3402. 

23. Lei, Z., and Dai, Y. (2005) An SVM-based system for predicting protein 

subnuclear localizations, BMC bioinformatics 6, 291. 

24. Henikoff, S. and Henikoff, J.G. (1992) Amino acid substitution matrices from 

protein blocks, PNAS 89, 10915-10919. 

25. Dayhoff, M.O., Schwartz, R. and Orcutt, B.C. (1978) A model of Evolutionary 

Change in Proteins. Atlas of protein sequence and structure (volume 5, 

supplement 3 ed.). Nat. Biomed. Res. Found. pp. 345–358. ISBN 0-912466-07-3. 

26. Pruitt, K. D., Tatusova, T., Klimke, W., and Maglott, D. R. (2009) NCBI 

Reference Sequences: current status, policy and new initiatives, Nucleic acids 

research 37, D32-36. 

27. Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the 

hydropathic character of a protein, Journal of molecular biology 157, 105-132. 

28. Jones, D. T. (1999) Protein secondary structure prediction based on position-

specific scoring matrices, Journal of molecular biology 292, 195-202. 

29. Wang, H., and Huang, G. Application of support vector machine in cancer 

diagnosis, Medical oncology (Northwood, London, England) 28 Suppl 1, S613-

618. 

30. Zhang, M. M., Yang, H., Jin, Z. D., Yu, J. G., Cai, Z. Y., and Li, Z. S. Differential 

diagnosis of pancreatic cancer from normal tissue with digital imaging processing 

and pattern recognition based on a support vector machine of EUS images, 

Gastrointestinal endoscopy 72, 978-985. 

31. Schramm, A., Schulte, J. H., Klein-Hitpass, L., Havers, W., Sieverts, H., 

Berwanger, B., Christiansen, H., Warnat, P., Brors, B., Eils, J., Eils, R., and 

Eggert, A. (2005) Prediction of clinical outcome and biological characterization 

of neuroblastoma by expression profiling, Oncogene 24, 7902-7912. 

32. Andorf, C. M., Honavar, V., and Sen, T. Z. Predicting the binding patterns of hub 

proteins: a study using yeast protein interaction networks, PloS one 8, e56833. 

33. Vapnik, V., and Lerner, A. J. (1963) Pattern recognition using generalized partrait 

method, Automation and Remote Control 24, 774-780. 

34. Joachims, T. (1999) Making Large-Scale SVM Learning Practical, Advances in 

Kernel Methods - Support Vector Learning, B. Scholkopf and C. Burges and A. 

Smola (ed.), MIT-Press. 



54 

 

 

 

35. Schölkopf, B., Burges, C. J. C., and Smola, A. J. (1999) Advances in kernel 

methods : support vector learning, MIT Press, Cambridge, Mass. 

36. Ruping, S. (2000) mySVM-Mannual, University of Dortmund, Lehrstuhi 

Informatik 8, http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM. 

37. Chang, C. C., and Lin, C. J. (2011) LIBSVM: a library for support vector machine, 

ACM Transaction on Intelligent Systems and Technology 2:27. 

38. Collobert, R., and Bengio, S. (2001) SVMTorch: Support Vector Machines for 

Large-Scale Regression Problems, Journal of Machine Learning Research 1, 143-

160. 

39. Pelchmans, K., Suykens, J. A. K., Gestel, T. V., Brabanter, J. D., Lukas, L., 

Hamers, B., Moor, B. D., and Vandewalle, J. (2002) LS-SVMlab: a Matlab/C 

toolbox for Least Squares Support Vector Machines, Internal Report 02-44, 

ESAT-SISTA, K.U. Leuven (Leuven Belgium) Lirias number: 21472. 

40. DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988) Comparing the 

areas under two or more correlated receiver operating characteristic curves: a 

nonparametric approach, Biometrics 44, 837-845. 

41. Vergara, I. A., Norambuena, T., Ferrada, E., Slater, A. W., and Melo, F. (2008) 

StAR: a simple tool for the statistical comparison of ROC curves, BMC 

bioinformatics 9, 265. 

42. Blythe, M. J., and Flower, D. R. (2005) Benchmarking B cell epitope prediction: 

underperformance of existing methods, Protein Sci 14, 246-248. 

43. Ponomarenko, J. V., and Bourne, P. E. (2007) Antibody-protein interactions: 

benchmark datasets and prediction tools evaluation, BMC structural biology 7, 64. 

44. Neuvirth, H., Raz, R., and Schreiber, G. (2004) ProMate: a structure based 

prediction program to identify the location of protein-protein binding sites, Journal 

of molecular biology 338, 181-199. 

45. Ashkenazy, H., Erez, E., Martz, E., Pupko, T., and Ben-Tal, N. ConSurf 2010: 

calculating evolutionary conservation in sequence and structure of proteins and 

nucleic acids, Nucleic acids research 38, W529-533. 

 

  



55 

 

 

 

CHAPTER THREE: PREDICTION OF CONFORMATIONAL B-

CELL EPITOPES 

1.  Introduction 

Conformational B-cell epitopes are discontinuous segments along antigen 

sequence and they are responsible to the interaction between antigen and antibody. A 

conformational epitope is usually composed of several shorter antibody-binding regions 

physically separated on antigen sequence. Therefore, a conformational B-cell epitope can 

be considered as the union of multiple distinct shorter linear B-cell epitopes.  These short 

linear B-cell epitopes are located independently on the surface of antigen. Therefore, it is 

also possible each of these linear epitopes belongs to different chains of the antigen if a 

quaternary structure of multiple polypeptide chains exists in the antigen protein (1, 2). 

The distribution of subunits of conformational B-cell epitopes gives a hint for the 3D 

structural shape of the entire antigen protein. Determining conformational B-cell epitopes 

approximately equals to identifying the binding surface structure of antigen proteins. 

Usually in the process of identification conformational B-cell epitopes experimentally, 

resolving 3D structures of antigen proteins is the primary strategy. Protein 3D structures 

can be determined by the nuclear magnetic resonance (NMR) or the X-ray 

crystallography, both highly time-consuming. In the Protein Bank Database, therefore, 

there is only a very limited number of structures of antigen-antibody complexes (3).  

Although accurate prediction of antigenic epitopes is needed for immunological 

research and medical applications, it is still a challenging task. Prediction of 

conformational B-cell epitopes seems more difficult so currently there are only a few 
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such methods available. The lack of 3D structures of antigens is the main barrier. Without 

3D structural information of antigen binding to antibody, it is difficult to identify 

discontinuous subunits of conformational B-cell epitopes and to construct a positive 

training dataset for prediction methods. As we discussed, the reliable and unbiased 

positive training dataset is the key for the success of conformational B-cell epitope 

prediction. All discontinuous epitope prediction methods require the three-dimensional structure 

of the antigenic protein. The small number of available antigen-antibody complex structures 

limits the development of reliable discontinuous epitope prediction methods and an unbiased 

benchmark set is very much in demand (4, 5). 

Although discontinuous epitopes dominate most antigenic epitope families (6), 

due to their computational complexity, only a very limited number of prediction methods 

exist for discontinuous epitope prediction". It also reads much better. Currently only 

several conformational B-cell epitope prediction tools are available: CEP (7), DiscoTope 

(8), BEpro (PEPITO) (9), ElliPro (10), SEPPA (11), EPITOPIA (12, 13) and EPCES (4), 

and Bpredictor (14). Due to unsatisfactory performance of currently available methods, 

we developed new tools aiming to improve prediction reliability of conformational B-cell 

epitopes. In this section, we introduce an antigenic Epitope Prediction method by using 

Support Vector Regression (EPSVR) with six attributes: residue epitope propensity, 

conservation score, side chain energy score, contact number, surface planarity score, and 

secondary structure composition. With an independent test dataset, we compare EPSVR 

against other conformational B-cell prediction tools. EPSVR and its related resources are 

available on http://sysbio.unl.edu/EPSVR.  

http://sysbio.unl.edu/EPSVR
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The idea of consensus results to improve confidence of prediction is popular in 

bioinformatic research. For example, ensemble method for gene prediction may integrate 

multiple single predictions. Among known conformational B-cell epitope prediction tools 

released, most of them have their own biased results due to its specific training datasets. 

To decrease the biased influences, a meta server can be used to obtain a consensus output 

from multiple prediction tools.  

The success of the meta server also depends on the prediction performance of 

each member. We first consider the prediction performance of each method reported in 

literatures. The attributes used in prediction must be taken into consideration. Prediction 

would be biased if some attributes are used repeatedly in multiple methods. We also have 

to pay attention to the training sets used in those tools. Use of similar training datasets in 

multiple tools may cause bias in prediction. A good meta server should include methods 

based on a wide range of training sets. Finally, the availability of tools is also a 

requirement if we want to install it locally or obtain the results online for further 

consensus analysis. For example, because CEP tool is no longer available online, we 

removed it from our candidates. Similarly, we did not include ElliPro because it was not 

available for download. 

Our EPmeta server incorporates EPSVR, EPCES, EPITOPIA, SEPPA, PEPITO, 

and Discotope1.2. Prediction is done by each tool individually first. The outputs from the 

six tools are combined together to generate a single consensus output. With an 

independent test dataset, EPmeta showed a more confident prediction than its each 

member. The EPmeta server is available at http://sysbio.unl.edu/EPmeta. 
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2. The Development of Novel Conformational B-cell Epitope Tool, EPSVR 

2.1 Dataset collection 

a) Training Dataset 

        The training set was gathered and screened from three protein datasets: 1) 22 

antigen-antibody complexes and their unbound structures from protein docking 

Benchmark 2.0 (15); 2) 59 representative antigen-antibody complexes compiled by 

Ponomarenko and Bourne (5); 3) 17 antigen-antibody complex structures released 

between February 2006 and October 2008 with available unbound antigen structures, 

which was the test set use in EPCES server (4). Any antigen-antibody complex was 

discarded if its antigen had no available unbound structure because the unbound 

structures were required for prediction. A complex structure was not used if its antigenic 

epitope consisted of amino acid residues located on multiple chains. A complex was 

included if the sequence identity between its antigen and all other antigens from the other 

complex structures was less than 35% following local sequence alignment. For an antigen 

with a sequence identity in the range of 35~50%, we accepted the antigen-antibody 

complex if the binding topology was not the same as its homologous complex. For an 

antigen with more than one antigenic epitope, only one was used in order to avoid 

confusion in subsequent application of support vector regression methods. As a result, a 

total of 48 complexes and their unbound structures meeting the above criteria were used 

as a training set. 

b) Testing Dataset 
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The test set was curated from 293 entries of the Conformational Epitope Database 

(CED, Release 0.03) with the following criteria (16). We only considered entries that had 

unbound antigen structures, but no complex structures. Multiple entries with the same 

antigen structure were combined and considered as one target, and antigenic residues 

from multiple entries were mapped onto one protein structure. The sequence identity 

between any two selected proteins was also required to be less than 35%. All selected 

antigens were also screened against the rest of CED database and our training set; the 

sequence identity between a selected antigen and other antigens with complex structures 

in the CED or in the training set was less than 35%. A total of 22 antigenic proteins in the 

CED met all the above criteria; these were: 1www, 1hgu, 1eku, 1mbn, 1av1, 1pv6, 1al2, 

2gmf, 1a7c, 1y8o, 1og5, 1jeq, 1dab, 1w7b, 1ly2, 1rec, 1nu6, 2b5i, 2gib, 1p4t, 1xwv, and 

1qgt.  Three antigenic proteins, 1www, 1hgu, and 1xwv, were excluded since they had 

multiple antibody-binding sites and the mapped antigenic residues were evenly 

distributed on the protein surfaces. Therefore, the final test set contained 19 antigen 

structures. 

2.2 Attributes 

    Six attributes were used to antibody binding site prediction.  

a) Epitope propensity 

    Epitope propensity at the amino acid position i, Epropensity (i), is defined as 

Epropensity (i) = (ln
Pr

interface

Pr

surface
)´

Sr

Sr

ave
     (1) 
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where Pr
interface

 and Pr
surface 

represent the probabilities of residue type r located on 

antibody-binding interface or just on the surface of antigen protein, respectively. They 

were calculated based on the residue types from the antigen proteins in the training set. 

All of epitopic residues were considered to be at the antibody-binding interface. 

Parameters Sr and Sr
ave

 are the relative accessible surface area of residue r at the sequence 

position i and the average relative accessible surface area of surface residues of type r, 

respectively. The Cα atom of Gly is considered as a side chain atom for convenience (17). 

Since antigen-antibody interfaces have different residue composition compared with 

other protein-protein interfaces, we used the training dataset to derive residue-specific 

antibody binding site propensities in epitopes and background proteins.  

b) Conservation score 

      A residue conservation score relies on position-specific substitution matrix 

(PSSM), which is obtained by three rounds of searches using PSI-BLAST (18) starting 

with the BLOSUM62 substitution matrix. The conservation score at the position i is 

defined as 









00

0

   - B, if M

,  - B|, if M - B|M
 (i)=E

rrir

rrirrrir

conserv     (2) 

where Mir is the position-specific score in PSSM for the residue type r at sequence 

position i, and Brr is the diagonal element of BLOSUM62 for residue type r. 

Conservation score is set to 0 if the position-specific score after three rounds of PSI-

BLAST search is larger than the original position-specific score in BLOSUM62 (17). As 

we discussed in chapter two, epitopic residues show lower conservation than other 
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functional residues of most of non-antigenic proteins. In contrast to regular protein-

protein interaction where conserved surface residues in the unbound structure are 

considered as interface residues, the poorly conserved residues of antigen are considered 

as the putative antibody-binding site residues due to adaptive evolutionary pressures for 

antigen proteins. 

c) Side-chain energy score 

       Side-chain energy can influence protein structural conformation and further 

function on the spatial context of protein surfaces. Side-chain energy score is calculated 

from the side-chain energies of all possible rotamers for a given residue type at a 

sequence position whereas other sequence positions have native residue types and 

observed atomic coordinates. The weights of the energy function are optimized so that 

the native residue was predicted energetically favorable at each position of the training 

proteins. The assumption is that the residues at the antibody binding site have a higher 

energy score than other surface residues so that the free energy of the antigen-antibody 

system could go down significantly upon association. 

       The definition of side-chain energy score was given in Liang and Grishin (19). 

The energy unit is kcal·mol
−1

. The side-chain energy score of amino acid i is defined as, 

Eside chain (i) = - f  ln exp -Eside chain (Ri )[ ]
R

å{ }     (3) 

where the summation is over all the rotamers available for a given residue type and the 

constant prefactor f = 1/2.41, which is from the slope of the regression line between the 

calculated and experimentally measured unfolding ΔΔG of a set of point mutation data.  

Ri is a given rotamer of residue i and Eside chain (Ri) is defined as,  
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Eside chain (Ri ) = - 0.143 Scontact  + 0.724 Voverlap + 1.72 Ehbond + 28.6 Eelec  

- 0.0467Spho + 0.0042Sphi + 1.14 (Fphi )
30 + 7.95 Vexclusion - 0.919 ln(f1 f2 ) 

- 4.3 Nssbond - Gref

 (4) 

where Scontact, Voverlap, Ehbond, Eelec, ΔSpho, and ΔSphi represent atom-contact surface area, 

overlap, H-bond energy, electrostatic interaction energy, buried hydrophobic solvent 

accessible surface, and buried hydrophilic solvent accessible surface between the rotamer 

of residue i and the rest of protein, respectively. Fphi, Vexclusion, Nssbond, and ΔGref are 

defined as the fraction of the buried surface of non-hydrogen-bonded hydrophilic atoms, 

the normalized solvent exclusion volume around charged atoms, the flag of disulfide 

bridge(1 or 0), and the difference between the free energy of the rotamer in solvent and 

denatured protein, respectively. f1 is the observed frequency of the rotamer and f2 is the 

observed frequency of the amino acid residues in a given backbone conformation.  

d) Contact number 

       The residue contact number is the number of Cα atoms in the antigen within a 

distance of 10 Å of the Cα atom of residue i (8). A residue with a small contact number 

was considered as an antibody binding site residue. 

e) Surface planarity score 

      The planarity of each surface patch was calculated by evaluating the root mean 

squared deviation (rmsd) of all the Cα atoms in the surface patch from the least squares 

plane through the atoms. The rms deviations were inverted such that a high planarity 

score for a patch was interpreted as a planar patch and antibody binding site (20). 

f) Secondary structure composition 
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This score was defined as the fraction of patch residues forming turns or loops in 

all 20 patch residues. Based on Chou and Fasman's method (21), the α-helix and β-sheet 

were defined as four or more consecutive residues having φ and ψ angles within 40° of (-

60°, -50°) and three or more residues having φ and ψ angles within 40° of (-120°, 110°) 

or (-140°, 135°), respectively. The remaining regions were considered turns and loops. 

2.3 Training Procedure for EPSVR 

For each surface patch, the number of epitopic residues could be any integer value 

between 0 and the patch size (20 for this study), and each surface patch had six Support 

Vector Regression (SVR) attributes as described above. The residue epitope propensity, 

conservation score, and side-chain energy score were calculated at the residue level and 

averaged over all residues in the patch. The six scores and the number of observed 

epitopic residues in the patch were scaled to 0~1.  

All SVR parameters were optimized by a grid search (c = 2
-10~-1

, g = 2
-12~-3

, and p 

= 2
-5~-2

) where c is trade-off between training error and margin, g is parameter gamma for 

radial basis function kernel, and p is the fraction of unlabeled examples to be classified 

into the positive class (22); and for each grid point of triplets, a leave-one-out procedure 

was applied to evaluate the trained SVR model. Specifically, the patch score of each 

surface patch for a target in the training set was predicted by the SVR model trained with 

the other 47 antigen-antibody complexes, from which the residue epitope propensity 

score was also derived. After this procedure was repeated 48 times, the mean AUC value 

of 48 predictions represents the performance of the current grid point for SVR parameters. 

The triplet of parameters that reached the highest value of mean AUC was chosen and 
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used for the test set, and the final support vector machine model was trained with all 48 

targets. 

2.4 Prediction Procedure for EPSVR 

A surface patch is defined as a central surface residue and its 19 nearest surface 

neighbors in space, where a surface residue is defined if the relative accessibility of its 

side chain is greater than 6% with probe radius = 1.2Å. First, we searched for all surface 

residues and enumerated all surface patches of a given antigen structure, and calculated 

their six SVR attributes. For each surface patch, we predicted the number of putative 

epitopic residues by the trained SVR model. Here, a patch score was defined as the 

fraction of the number of putative epitopic residues to the total number of amino acid 

residues in the patch, i.e., 20. One surface residue was assigned a residue score by 

averaging patch scores of all patches in which this amino acid residue is included. Finally, 

we sorted surface residues according to their residue scores and the top-ranked ones were 

considered as epitopic residues. The assumption here is that a residue frequently 

appearing in top- scoring patches is likely an epitopic residue. 

Patch analysis was used in all existing B-cell discontinuous epitope studies. In the 

examples of EPCES and EPITOPIA, a patch score was derived by averaging the scores 

of all residues in the patch, and the central residues of top scored patches were predicted 

as epitopic residues. However, the value of the patch score was actually correlated with 

the number of epitopic residues in the patch rather than the central residue. Here, we used 

SVR to predict the number of epitopic residues in a surface patch and residues frequently 

located in the top scored patches were predicted as epitopic residues. For this case, the 
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SVR model is more suitable than a support vector classifier. In this study, we used an 

SVR package, called LIBSVM, obtained from http://www.csie.ntu.edu.tw/~cjlin/ libsvm. 

2.5 Results 

2.5.1 Prediction for the Training Set for EPSVR 

When c=2
-6

, g=2
-5

, p=2
-3

, the mean value of AUC for the 48 targets in the training 

set reached its maximum, 0.670, in the leave-one-out test. As a comparison, the mean 

AUC value is 0.644 predicted by EPCES, whose residue interface propensity was derived 

from the other 47 targets using the same leave-one-out procedure as described. The 

improvement of EPSVR could be attributed to the machine learning method because 

EPSVR and EPCES used the same six scoring terms.  In another study, Rubinstein et al. 

applied support vector classifier (EPITOPIA) to predict B-cell epitopes and obtained a 

mean AUC value of 0.65 for a similar non-redundant set of 47 antigen-antibody complex 

structures in cross validation (13). Our algorithm showed slightly better performance for 

a somewhat different training set. 

2.5.2 Prediction for the Test Set for EPSVR 

We applied our algorithm, with the optimally trained parameters, to the 

independent test set, and achieved a mean AUC value of 0.597, which was lower than 

that of the training set.  Nevertheless, 6 out of 19 targets were predicted with an AUC 

value greater than 0.7.  Note that the interface residues of antigens in the test set were 

identified by point mutations, overlapping peptides, and ELISA, which are not as 

accurate as the crystal complex structure method. 
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Six antigens in test proteins (1eku, 1av1, 1al2, 1jeq, 2gib, and 1qgt) contained 

multiple chains, but we only used a single chain where the experimental antigenic epitope 

was located for prediction. If the whole protein was used for prediction, the mean AUC 

value of the six proteins decreased from 0.672 to 0.623.  Unlike antigenic epitopes, the 

interfaces of protein-protein complexes, especially non-transient complexes, are usually 

more hydrophobic and conserved than protein surfaces; it makes the exposed protein-

protein interfaces relatively-easily distinguishable from both the antigenic epitopes and 

other protein surfaces. In other words, a single chain protein that has both protein-protein 

binding interfaces and epitope made the epitope prediction task easier. 

3. Development of Conformational B-cell Epitope Meta Tools EPmeta 

3.1 Selection of Conformational B-cell Epitope Prediction Tools 

       Selection of conformational B-cell epitope prediction tools is a key step in 

constructing the meta server. Before EPSVR, there were only a limited number of 

methods available, i.e., CEP (7), DiscoTope (8), PEPITO (9), ElliPro (10), SEPPA (11), 

EPITOPIA (12, 13), and EPCES (4). These tools applied different physicochemical 

properties of epitopes in their corresponding model-training, such as the hydrophilicity 

scale and the epitope log-odds ratios in DiscoTope (8), the epitopic residue propensity 

and the half sphere exposure values at multiple distances in PEPITO (9), residue 

protrusion index (PI) in ElliPro (10), the epitopic residue propensity and the compactness 

of the neighboring residues around one residue in SEPPA (11), forty-four 

physicochemical  and structural–geometrical attributes in EPITOPIA (12, 13), and six 

physicochemical properties used in EPCES (4) and EPSVR (23). These attributes have 
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different effects on determining conformational B-cell epitopes. Hence, in our EPmeta 

server, different servers should have different weights in constructing the consensus 

result. 

3.2 The Architecture of EPmeta 

       An open question for any meta server is how to quickly obtain prediction results 

from multiple tools. One choice is install these tools locally. Local installation requires 

standalone packages. Unfortunately, DiscoTope (8), PEPITO (9), ElliPro (10), SEPPA 

(11), or EPITOPIA (12, 13) cannot provide a standalone package for local installation. 

       With the idea of remote searching technology, a machine-simulation will obtain 

the searching results on web browser through accessing remotely available servers. In 

contrast to using locally installed programs, a meta server can directly access to remotely 

available services, run a query, and download the results from the remote servers. This is 

the strategy used for EPmeta. 

 

Figure 3.1 Architecture of the EPmeta server. 
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3.3 The programming technologies to complete the EPmeta server 

       The main technological blockage in using remote servers is how to communicate 

between the meta server and other online tools. Unfortunately, we solved this issue by 

carrying out a type of machine-simulation  of automated web-browser navigation. Scripts 

can automate completing a series of customized operations on web browsers, such as to 

open a web browser, input a Uniform Resource Locator (URL) address, fulfill the form 

on web page, upload a PDB file (3D protein structures), and download a web source page. 

All the operations including human-like activities with mouse and keyboard in front of a 

computer are simulated. Hence, the meta server does not need an API or a web server to 

communicate with online tools. It just relies on the successful access to the remote 

servers by a web browser, such as Internet Explorer or Firefox. 

        There are many ways to carry out machine-simulated automated navigation of a 

web browser. Similar technologies are applied on automated testing during the 

development of web applications. To decrease human labor on repeated software testing, 

software development engineers in testing (SDET) developed the platform of automated 

testing. For automated testing of web applications, machine-simulated navigation of a 

web browser is one of the fundamental functions of the platforms.  Although many such 

automated testing platforms are commercial products, there are a few open-source free 

platforms on Microsoft Windows with Internet Explorer and fewer on Linux with Firefox. 

In this study, we chose a platform based on a programming language Ruby and the Watir 

platform to our EPmeta. Watir is an open-source free platform providing the Ruby library 

for automating web browsers (http://watir.com/). Using Ruby and Watir, we completed 

http://watir.com/
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the automated access of online tools by our meta sever and achieved the query on these 

tools.  

      Figure 3.1 illustrates the architecture of the EPmeta server. We choose the six 

tools because their reports showed the best predictions when we prepared EPmeta server 

in 2009. After completing six queries to EPSVR, EPCES, EPITOPIA, SEPPA, PEPITO, 

and Discotope1.2, we generate a consensus result. 

For the Meta server, the basic idea was that a surface residue is predicted as an 

epitopic residue if two or more single servers voted for it. In this naive sense, the mean 

AUC values of the 19 testing proteins was calculated to be 0.562, 0.618, 0.627, 0.621, 

and 0.612 predicted by the top 2, 3, 4, 5, and 6 servers, respectively (Table 3.1). To adopt 

a more sophisticated strategy, the top 25% of surface residues were returned as predicted 

epitopic residues by EPSVR, EPCES, and EPITOPIA. When the number of the predicted 

residues was increased from 25% to 50%, from 50%to 75%, and from 75% to 100%, 

SEPPA, PEPITO, and DiscoTope1.2 were, respectively, included in the voting. For 

example, the new antigenic residues predicted by EPSVR, EPCES, EPITOPIA, and 

SEPPA were added to the top 25% residues predicted by EPSVR, EPCES, and 

EPITOPIA. The prediction started with 1% of the surface residues for each of the four 

servers and increased insteps of 1% until 50% of surface residues were predicted as 

antigenic residues. Then we added PEPITO and used five servers to predict the top 

50%~75% surface residues and so on. With this method, we achieved a mean AUC value 

of 0.638, which is higher than all single servers, especially, Discotope1.2 and PEPITO (p-

value < 0.05). The reason that we used this strategy to integrate the various predictions 

results from our finding that a single server had better prediction accuracy when only a 
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small fraction of the surface residues were predicted as epitopic residues. If 50% of 

surface residues, for example, were predicted as epitopic residues by the Meta server, the 

prediction accuracy was 14.4% for the Meta server with a voting set including EPSVR, 

EPCES, and EPITO-PIA, where each server output the top 51% surface residues as 

candidates of antigenic residues. As a comparison, the prediction accuracy was slightly 

higher (15.3%), if the Meta server also returned 50% of the surface residues as epitopic 

residues, but got votes for those returned residues from all of the six servers, where each 

server output their own top 32% surface residues as candidates of epitopic residues. 

      The following is the final algorithm:  

[ 

BEGIN 

N = the total number of surface residues; 

E = the number of predicted epitopic residues; 

if E ≤25% * N then, 

return Predictor (0, E, EPSVR, EPCES, EPITOPIA);   

else if E > 25%*N AND E ≤50%*N then, 

return Predictor (R25, E, EPSVR, EPCES, EPITOPIA, SEPPA);  // Rp = p% of surface 

residues already predicted as epitopic residues; 

else if E > 50% AND E ≤75%*N then, 

return Predictor (R50, E, EPSVR, EPCES, EPITOPIA, SEPPA, PEPITO); 

else if E > 75% AND E ≤100%*N then, 

return Predictor(R75, E, EPSVR, EPCES, EPITOPIA, SEPPA, PEPITO, Discotope1.2) 

endif. 

 

Function Predictor(Rp,E,SERVER1,SERVER2,SERVER3,...) 
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Begin 

set the prediction of each single server to 0; 

do { 

Increase the prediction of each single server at the step of 1%; 

Collect residues predicted by at least two of the servers; 

} While(Rp + collected epitopic residues other than Rp < E); 

Return total epitopic residues; 

END 

] 

 

3.4 Results 

Although EPSVR and EPCES used the same six scoring terms, we found that it 

was necessary to include both of them in the Meta server.  When we used a voting server 

set including EPCES, EPITOPIA, and SEPPA, i.e. excluding EPSVR, the average AUC 

value decreased to 0.587 for the test set.  The average AUC value predicted by EPSVR, 

EPITOPIA, and SEPPA (0.611) was also lower than that predicted by EPSVR, EPCES, 

and EPITOPIA in the standard procedure (0.618). We also tried to increase the threshold 

of votes from two to three for a voting server set, but the results did not improve. 

4. Discussions 

We introduced a SVR method to integrate six attributes for discontinuous epitope 

prediction and a server, EPSVR, which can be accessed online. The AUC of EPSVR is 

0.597, which is higher than that of any other existing single server. Although they used 

the same scoring functions, EPSVR exhibited improved performance over EPCES. This 

was attributed to the fact that EPSVR searched the six-dimensional parameter space of all 
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scores more broadly than the voting method we previously used. Furthermore, a Meta 

server, EPmeta, combining EPSVR and the other existing single servers together, had an 

AUC value of 0.638, which is higher than any single server, especially, DiscoTope and 

PEPITO. We also found that the use of both EPSVR and EPCES, which use the same 6 

scoring terms, resulted in a higher performance for EPmeta than if only one was used. 

The AUC results for different methods are shown in Table 3.1. 

Table 3.1 List of the Conformational B-cell Epitope Prediction Methods and Their 

Obtained AUC Results 

Method URL of web server AUC 
Accuracy

b
 

(%) 

DiscoTope (8) http://www.cbs.dtu.dk/services/DiscoTope/ 0.567 15.5 

BEpro(PEPITO) (9)  http://pepito.proteomics.ics.uci.edu/ 0.570 17.0 

ElliPro (10) http://tools.immuneepitope.org/tools/ElliPro/iedb_input 0.585 14.3 

SEPPA (11) http://lifecenter.sgst.cn/seppa/index.php 0.576 17.2 

EPITOPIA (12, 13) http://epitopia.tau.ac.il/index.html 0.579 17.8 

EPCES (4) http://sysbio.unl.edu/EPCES/ 0.586 18.8 

EPSVR (23) http://sysbio.unl.edu/EPSVR/ 0.597 24.7 

Bpredictor (14) 
http://code.google.com/p/my-project-

bpredictor/downloads/list 0.598
a
 24.0

c
 

EPmeta (23) http://sysbio.unl.edu/EPmeta/ 0.638 25.6 
a) 

The AUC value is obtained from the Reference (14). 
b)

 10% of surface residues are 

returned as predicted epitopic residues. 
c)

 Estimated based on the Figure 4 in the 

Reference. 

 

To assess and compare prediction performance of these predictors, we carried out 

an independent test by the testing set containing 19 protein monomer structures with 

epitope information derived from experimental methods other than crystal structures. 

AUC score is the major criterion for each method. A receiver operating characteristic 

(ROC) curve represents a dependency of true positive rates (sensitivity) and false positive 
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rates (1-specificity), plotted at various thresholds. To change the thresholds, the number 

of predicted residues is increased in steps of 1% of total surface residues. The mean AUC 

values are calculated using a java program available at 

http://pages.cs.wisc.edu/~richm/programs/AUC/ (24), except for Bpredictor. For 

Bpredictor, the AUC value is directly obtained from the manuscript (14) where the same 

benchmark by Liang et al. (4) was applied as in the current work. Among single servers, 

EPSVR and Bpredictor have the best performance according to the AUC values. 

Although EPSVR has the highest mean AUC value, the differences between EPSVR and 

other servers are not statistically significant (p-value >0.05), according to the pairwise t-

student tests. The Meta server, EPmeta, achieves a mean AUC value of 0.638, which is 

significantly higher than all single servers. 

We also calculated the accuracy by the same independent test because the 

accuracy, i.e. positive prediction rate, is useful for experimental testing. When each 

server returns 10% of surface residues as predicted epitopic residues, the accuracy was 

14.3%, 15.5%, 17.0%, 17.2%, 17.8%, 18.8%, 24.7%, and 25.6% for Ellipro, 

DiscoTope1.2, BEpro (PEPITO), SEPPA, EPCES, EPITOPIA, EPSVR, and EPmeta, 

respectively, as shown in Figure 3.2. The accuracy is around 24% for Bpredictor based 

on Figure 4 in the Reference (14). The rationale of selecting 10% surface residues to be 

predicted as positive is because the average length of antigen proteins is around 200 

amino acids and the average size of epitopic patch is about 20 amino acid residues. The 

current level of accuracy of all predictors is not yet satisfactory. Even the highest 

accuracy, 25.6% achieved by EPmeta, leaves room for further improvement. If 3% of 
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surface residues are returned as predicted epitopic residues, the accuracy of EPmeta is 

31.6%, which is the overall highest value by all conditions and methods. 

 

Figure 3.2 Prediction accuracy of six antigenic epitope prediction servers and Meta 

server on 19 independent testing proteins. Y-axis is AUC score and x-axis is the 

threshold of prediction score. The prediction accuracy was averaged for 19 independent 

testing proteins, except for EPITOPIA because it failed to assign scores for the antigenic 

residues of 1jeq and the prediction accuracy was averaged over the other 18 proteins. 

For the EPmeta server, its architecture of using remote web servers lowers the 

pressure of the local meta server. The computational time is mainly based on the speed of 

online tools and the transferring speed throughout the internet. While with steady internet 

connection, communication between the meta server and online tools is no longer an 

issue, computational time with each online tool is the major time consuming part. Most of 

conformational B-cell epitope prediction tools require more than ten minutes, even half 

an hour, to complete one query for 200-aa sequence. For example, the average computing 
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time for EPITOPIA is over thirty minutes based on our tests accessing from the 

University of Nebraska – Lincoln. The distributed architecture of the meta server allows 

the parallel operations involved in multiple queries to different online tools. Therefore, 

unlike local implementation of different tools, we can run these queries online 

simultaneously and we do not have to care about the machine pressures since these online 

servers are independent. Distributed system has been widely applied for large-scale or 

intensive computation, usually shared among multiple physical machines. 

This distributed architecture also lowers the risk of the EPmeta server for 

installation and maintenance of multiple programs. Since we did not intend to install the 

tools locally, proper installation was not an issue. It is also easier to track the newest 

version of tools by just accessing them directly online. As a result, the distributed 

architecture of the meta server guarantees always the good query of results from different 

tools. 

5. Challenge of Conformational B-cell Epitope Prediction 

In recent years, a number of new conformational B-cell epitope prediction 

algorithms have been developed. While the prediction performance has been improved, it 

is still far from satisfactory. Compared with other bioinformatic problems, antigenic 

epitope prediction is especially difficult due to the lack of properties that are universally 

but uniquely observed for the antigenic epitopes but not for other protein surfaces. 

Additionally, regular binding-site prediction methods are not suitable for antigenic 

epitope prediction because they focus on the conservation of surface residues. 

5.1 Single Chain or Multiple Chains 
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The recognition of antibody to antigenic epitopes has high specificity; the epitopic 

surface is not as conserved as other functional protein binding sites, which comes from 

the conserved functions of protein-protein interactions during evolution. The interfaces of 

regular protein-protein binding are usually more conserved and have more hydrophobic 

amino acid residues than non-binding protein surfaces. This makes the exposed protein-

protein interfaces relatively easy to distinguish from both the antigenic epitopes and non-

binding protein surfaces. In other words, the prediction task for a single chain protein that 

has both protein-protein binding interfaces and an antigenic epitope is easier than that of 

a protein complex.  

In the benchmark dataset, six of the proteins (PDB IDs: 1eku, 1av1, 1al2, 1jeq, 

2gib, and 1qgt) possess multiple chains. Therefore, in our evaluation all methods were 

tested with two different scenarios for these six proteins: prediction on a single chain 

where the experimental antigenic epitope is located and prediction on the whole protein 

including all chains. When multiple chains were examined, all chains were considered, 

and the total number of surface residues was counted for the intact complex structure. As 

a result, some methods, such as EPSVR, showed decreased performance with lower mean 

AUC values for the 6 proteins when the whole protein was used for prediction compared 

with those based on the single chain containing the antigenic epitope. Therefore, in the 

future, if sufficient data exist, a range of test datasets shall be compiled for different cases, 

i.e., single chain antigens, single chains from antigen complexes, and antigen complexes. 

A good antigenic epitope predictor shall have satisfying performance on all types of 

benchmarks.  

5.2 Protein Binding Site Prediction Methods 
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Due to the lack of many epitope prediction methods for analysis and comparison, 

potein-binding site prediction methods are frequently used for conformational epitope 

prediction (5, 25) since epitopic patches can be considered as a type of protein binding 

sites. The methodologies used by protein binding site prediction and epitope prediction 

are similar; both integrate some amino acid scoring functions with a machine learning 

algorithm or other platform to train a prediction model on known data. The major 

difference is their distinct training sets; while protein binding site prediction uses all 

known protein-protein binding complexes, an epitope prediction method is trained with 

antibody-antigen complexes only. Therefore, we also applied the benchmark epitope 

dataset to test some binding site prediction methods. For this we selected binding-site 

prediction methods that have both demonstrated good performance and convenient web 

servers for public use. The AUCs achieved by these methods for the epitope benchmark 

are shown in Table 3.2. One can see that the performances of the binding-site prediction 

methods to predict B-cell epitopes are significantly lower than all conformational epitope 

prediction methods (shown in Table 3.1). This is not surprising because all binding-site 

prediction methods are designed based on the conservation and hydrophobicity of 

binding patches. B-cell epitopic patches are neither conserved nor more hydrophobic 

compared with other protein-protein binding surfaces. Instead, the residues on the 

antigenic epitopes are more diverse than regular surface residues due to the evolution 

pressure from the host immune system. Therefore, we conclude that the general binding-

site prediction methods are not suitable for antigenic epitope prediction. Any epitope 

prediction methods developed in the future is not recommended to claim performance 

improvement by simply compared with binding-site prediction methods.  
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Table 3.2 List of the Protein Binding Site Prediction Methods and Their Obtained 

AUC Results 

Method URL of web server AUC 

ProMate (26) http://bioinfo.weizmann.ac.il/promate/ 0.530 

ConSurf (27) http://consurf.tau.ac.il/index_proteins.php 0.460
a
 

PINUP (17) http://sysbio.unl.edu/services/PINUP 0.562 

PIER (28) http://abagyan.ucsd.edu/PIER/pier.cgi?act=dataset 0.537 
a)

 Conserved residues are selected as for common binding site prediction. 

5.3 Future Directions 

Currently, various sets of attributes and classifiers have been applied by different 

existing epitope prediction algorithms. It naturally leads to one question: which 

combination of attributes is optimal for the prediction? To answer this question, one may 

systematically evaluate different machine-learning algorithms on all non-redundant 

attributes and allocate the optimal set among them. Also of great importance to the 

epitope prediction research is the growth of the training data, especially the antigens that 

have both bounded and unbounded structures. It is also important to collect high quality 

independent testing data, such as the ones compiled by Liang et al. (23), that contain 

experimentally measured epitopic residues but no complex structures. We also 

recommend that all future researchers implement their developed algorithms as free 

accessible web servers or downloadable software packages, because B-cell epitope 

prediction algorithms will likely become more and more complicated and meta-methods 

usually have better prediction accuracy than any of the single algorithms. 
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CHAPTER FOUR: PREDICTION OF EPITOPIC RESIDUES WITH 

PROTEIN SEQUENCES 

1. Introduction  

In the previous chapters, we discussed the two kinds of B-cell epitopes: linear and 

conformational epitopes. It was reported that about 90% B-cell epitopes are 

conformational (1). Therefore, we developed prediction tools for conformational epitopes 

based on known 3D structures of given antigens. However, the small number of solved 

structures of antigens limits the application of our epitope prediction. In this chapter, we 

will tackle this difficulty by developing a new method to analyze antigen protein 

sequences to predict epitopic residues. Currently the study on protein-sequence-level 

prediction of epitopic residues of B-cell epitope is still under development. One possible 

reason is a limited resource of known epitopic residues of B-cell epitope. Another reason 

lies in the complexity of epitope binding patterns. At present, to our knowledge, there are 

a very few epitope-antibody binding patterns reported. So it is still difficult to extract the 

principles of key residues from known epitope-antibody binding patterns. Due to these 

facts, we must find a new way to predict the key residues of B-cell epitopes. 

In chapters two and three, machine learning methods have been proven powerful 

in terms of classification. By the analysis of known B-cell epitopes and non-epitopes, a 

machine learning method draws a border to separate epitopes and non-epitopes. In this 

chapter, we will apply the Support Vector Machine (SVM) as a tool of machine learning 

to predict epitopic residues based on input of protein sequences.  

To set up a training process, the first step is to collect known epitopic residues of 

B-cell epitopes. The immune epitope database (IEDB) contains the updated information 
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of B-cell epitopes most of which are still hypothetical (2). For our study, we employ a 

more reliable way to collect key epitopic residues of antigens. In our study only 3D 

structures of antigen-antibody complexes precisely showing the residues of epitope 

directly bound to antibody are used as the data resource. To construct the positive dataset, 

we have investigated 561 antigen-antibody complexes whose antigens come from 11 

species. For these antigen sequences, we filtered them by a threshold of 30% similarity to 

generate an unbiased dataset. After the similarity filtering, we extracted 2682 key 

residues which come from 134 unique antigens. The details about building the positive 

dataset containing known key epitopic residues are described in section 2.1. 

For each epitopic residue, the subsequence surrounding it with a certain length is 

extracted from the original antigen, and the sequence pattern and physicochemical 

characteristics of any given subsequence are quantified for epitopic residue prediction. 

The sequence pattern and physicochemical properties of these segments include Shannon 

Entropy (SE), Relative Entropy (RE), Position Specific Scoring Matrix (PSSM), 

Predicted Secondary Structure (SS), Protein Disorder (DIS), Solvent Accessible Area, 

Overlapping Properties (OP), Sequence Complexity (SC), and Averaged Cumulative 

Hydrophobicity (ACH). They are considered and optimized as the segment features for 

SVM training in our study. Similar strategy and features can also be applied to the point 

residue prediction, such as the prediction of phosphorylation sites (3, 4). 

In this study, we developed a novel tool, named SVMKER, to predict the epitopic 

residues with an input of a protein sequence only. With carefully designed feature 

characterization of the sequence segments, SVMKER has shown a precision of 59.5% 

and a sensitivity of 52.2% using five-fold cross-validation process. It is the first time that 
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a prediction tool has been developed for epitopic residue prediction at the protein 

sequence level. This tool can provide a preliminary search for epitopic residues on 

antigens before an experimental design.  

2. Materials and Methods 

2.1 Datasets 

The original information about epitopic residues of B-cell epitopes was extracted 

from PDB (5). As of June 2012, we downloaded 561 3D structures of antigen-antibody 

complexes involved in 11 species. From these 3D structures, we extracted 134 low-

similarity antigen sequences with a threshold of 30% similarity. An amino acid residue of 

the antigen is considered as one epitopic residue if it has at least one atom that has less 

than 6 Å distance to any atom of antibody (6). The criterion is illustrated with an example 

in Figure 4.1 below. 

 

Figure 4.1 The distance of atom-atom distance between antigen and antibody. The 

epitopic residue on an antigen must contain at least one atom with less than 6 Å distance 

away from an antibody‟s atom. For example, in the 3D structure of human IgM 

rheumatoid factor Fab bound to its autoantigen IgG Fc (PDB ID: 1ADQ) (7), the amino 

acid residue ASN-384 is considered as an epitopic residue because it contains two atoms 

less than 6 Å from the antibody. The same happens to GLN-386. 
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After identifying all known epitopic residues from the 3D structures of the 

antigen-antibody complexes, we created the positive datasets containing 2682 protein 

sequence segments with epitopic residues in the middle positions. The segment length 

includes 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23 amino acids (AA). Figure 4.2 shows 

protein sequence segments with different sizes. The negative dataset was constructed by 

including the non-redundant segments with the same length of positive dataset segments 

from the sections of antigen sequences where no epitopic residues exist. The total 

numbers of positive and negative segments are 2682 each; the positive and negative 

segment ratio is 1:1. 

 

Figure 4.2 A segment in the positive dataset determined by extending the key 

epitopic residue in both sides along the antigen sequence. 

 

2.2 Attributes 

For a machine-learning technology, we need to quantify the sequence pattern and 

physico-chemical properties of these protein segments in the training set. We used 

multiple attributes including Shannon Entropy (SE), Relative Entropy (RE), Position 

Specific Scoring Matrix (PSSM), Predicted Secondary Structure (SS), Protein Disorder 

(DIS), Solvent Accessible Area, Overlapping Properties (OP), Sequence Complexity 
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(SC), and Averaged Cumulative Hydrophobicity (ACH). The details of calculation for 

these attributes are described in the following sections. 

2.2.1 Shannon Entropy (SE) 

SE score, a widely used sequence conservation measure, is calculated by 

weighted observed percentages (WOP) extracted from the results of PSI-BLAST (8) with 

Non-redundant protein sequence database. The WOP vector for a position in a given 

protein sequence shows the position-specific distribution of 20 amino acids. The SE score 

for the given position is defined as: 

 i
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i ppSE log
20

1




 ,                                                            (1) 

where pi=ai/Σaj,  aj is the j-th value in the WOP vector for this given position. If a 

position has complete conservation, the SE score has the smallest value, 0. 

2.2.2 Relative Entropy (RE) 

RE measures the amino acid background distribution, and also requires the WOP 

matrix. The RE score of one type of amino acids is calculated as: 
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where pi =ai/Σaj,  aj is the j-th value in the WOP vector for this given position and p0 

is the protein BLOSUM62 background distribution. 

2.2.3 Position Specific Scoring Matrix (PSSM) 

PSSM is commonly used for the representation of motifs or patterns in biological 

sequences. To identify the pattern of neighbors besides key epitopic residues, we 

calculated the PSSM matrix using the BLASTP tool. PSSM can provide 20 bits for vector 

features. 
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2.2.4 Secondary Structure (SS) 

The most accurate way to obtain the information of secondary structures would be 

from the 3D structures of proteins. However, for a given protein sequence, the secondary 

structures can only be predicted. In this chapter, the SS attribute of each residue has three 

bits to show the possibility scores of three types of secondary structures (H: helix, E: β-

sheet, and C: coiled coil ) which is predicted by PSIPRED (9). 

2.2.5 Protein Disorder (PD) 

PD is important for protein function. Previous works suggest that protein disorder 

information is helpful to improve the discrimination between active sites and non-active 

sites (10). In our study, protein disorder areas are predicted by DISOPRED (11). The 

prediction result provides a score for each residue between 0 and 1, corresponding to 

more structured to more disordered status.  

2.2.6 Accessible Surface Area (ASA) 

All epitopic sites are on the surface of an antigen, and hence, large solvent 

accessibility is also an important feature of the catalytic residues. To improve the 

prediction accuracy, the solvent ASA information of each residue is included into the 

algorithm as well. The ASA attribute needs to be predicted from protein sequences. In 

our study, RVP-net is used to predict the relative solvent ASA for each residue in a given 

protein sequence (12). Each residue has a real value in (0, 1) for the ASA attribute.   

2.2.7 Averaged Cumulative Hydrophobicity (ACH) 

ACH has been demonstrated to be an important attribute for protein functional 

residues. The attribute is quantified by computing the average of the cumulative 

hydrophobicity indices over the segment sizes of 3, 5, 7, ... , 21, and 23AA. There are 
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ACH scores for 10 bits in the feature vector. The hydrophobicity index proposed by 

Sweet and Eisenberg is used in this chapter (13).  

2.2.8 K-nearest neighbor profiles (KNN)  

KNN usually is applied in the prediction of active sites, such as phosphorylation 

sites (4). A KNN score for one given sequence is the proportion of positive key epitopic 

residue in its k nearest neighbors in the training set where the distance between the two 

sequences is proportional to their sequence similarity; a pair of similar sequences has a 

short distance. The parameter k of KNN is set as 0.25%, 0.5%, …, and 5.and the KNN 

profile attribute has 20 bits.  

2.3 Training and Five-fold Cross Validation 

The training process is based on the Support Vector Machine tool, SVM
light 

(14). 

The kernel function used is the radial basis function, exp(-γ||a-b||
2
). To obtain the optimal 

training performance, we did a grid searching in the range of (c=2
-10~1

, g =10
-8~0

, and 

p=2
-5~0

) where c is the trade-off between training error and margin, g is the parameter γ in 

the radial basis function kernel, and p is the fraction of unlabeled examples to be 

classified into the positive class. For each segment length of the training dataset, the grid 

searching was independently executed and completed for different optimal parameter sets.  

 Five-fold cross-validation is executed for SVM training in the absence of an 

independent testing set. We first split the training dataset into five subgroups with the 

same size. Each group contains the same number of positive segments (epitopic residue 

inside) and negative segments (non-epitopic residue) as any other fold. During the 

procedure of making five groups, we make sure that a segment has more similarity with 

sequences in the same group than one from other group. The segments with more 
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sequence similarity are grouped in the same fold, which can significantly reduce the 

potential bias in the validation. During the five-fold cross-validation process, in turn the 

four folds are used to calculate the model and the last one is to evaluate the accuracy of 

the model calculated. 

The related statistical evaluation is listed below, 

Sen = 
TP

TP+FN
´100%

Pre = 
TP

TP+FP
´100%

F = 
2 ´ Pre ´ Sen

Pre+Sen
,

 

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false 

negative, respectively. All of calculations above are based on five-fold cross-validation 

procedure. We also generated the receiver operating characteristic (ROC) curve for 

statistical evaluation of SVMKER. In the ROC curve, false positive rate, i.e. FPR = FP / 

(FP + TN), is x-axis while sensitivity (Sen or true positive rate, as shown above), is y-

axis. Area under the curve (AUC) has been widely accepted as a performance index, with 

a higher AUC score representing a higher prediction performance. A java program 

available at http://pages.cs.wisc.edu/~richm/programs/AUC/ was used to calculate the 

AUC (15).  

 

3. Results 

The length of segments extending from epitopic residue will greatly impact the 

prediction. The shorter lengths, such as 3, 5, and 7AA, are difficult to generate a stable 

prediction performance. In current version of SVMKER, the eight attributes were applied, 

and they are SE (1 bit), RE (1 bit), PSSM (20 bits), SS (3 bits), ASA (1 bit), PD (2 bits), 
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ACH (10 bits), and KNN (20 bits). Using 3AA as example, the length of a feature vector 

for a given sequence segment is 7× (1+1+20+3+1+2+10+20) = 174. The small numbers 

of features for training might be the major reason to lower the prediction performance for 

3, 5, and 7AA. Under current conditions, 19AA is the most accommodative option, and 

hence, 19AA is used for the actual search of unknown proteins. 

Each segment lengths, i.e., 3AA, 5AA, 7AA, …, 19, 21, and 23 AA, showed the 

specific optimized parameter sets (Table 4.1). With the five-fold cross-validation, the 

statistical evaluation was obtained and it is also listed in Table 4.1. The predictions for 3, 

5, or 7AA length show very low performance. The reason may be the fact that short 

segments enclosing epitopic residue hardly provide enough information for classification. 

The best prediction is based on 19AA segment training dataset, and 17AA yields close 

prediction performance based on the F-measure. Furthermore, with longer segments as 

21AA and 23AA, the statistical evaluation showed worse prediction performance than 

19AA and 17AA (shown in Table 4.1). The influence of segment lengths on the 

prediction of key epitopic residue is similar to what we observed in sliding-window 

lengths on linear B-cell epitopes. For our previous tool, SVMTriP, the prediction on 

20AA is better than that on the shorter epitope lengths (16).  

 

Table 4.1 Statistical Evaluation of SVMKER with Different Lengths 

Segment c g p Sen Pre F 

3AA 0.25 0.01 0.0625 0.240 0.275 0.256 

5AA 0.25 0.001 0.125 0.232 0.270 0.250 

7AA 0.25 0.001 0.125 0.267 0.315 0.289 

9AA 0.125 0.0001 0.25 0.335 0.389 0.360 

11AA 0.25 0.001 0.125 0.387 0.445 0.413 

13AA 0.125 0.0001 0.125 0.468 0.434 0.450 

15AA 0.125 0.0001 0.25 0.522 0.483 0.502 
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17AA 0.125 0.001 0.25 0.572 0.535 0.553 

19AA 0.125 0.001 0.25 0.595 0.522 0.556 

21AA 0.125 0.0001 0.125 0.469 0.481 0.475 

23AA 0.125 0.0001 0.25 0.442 0.493 0.466 

 

 

We also compared SVMKER with our two conformational B-cell epitope 

prediction tools, EPCES (17) and EPSVR (18). The ROC curves of the three tools are 

shown in Figure 4.3 using a length of 19AA. EPCES shows the best prediction 

performance, EPSVR the second, and SVMKER the third. The AUC scores for EPCES, 

EPSVR and SVMKER are 0.632, 0.582, and 0.549, respectively. The fact that EPCES 

received a higher AUC score may be from different test dataset usage. It is in accordance 

with the facts that both EPCES and EPSVR are 3D structure-level tools while SVMKER 

is based only on protein sequences. All structural level information of a given antigen is 

known for EPCES and EPSVR. For EPCES and EPSVR, only surface residues are 

considered for prediction. However, SVMKER needs to predict epitopic residues from all 

amino acids of a given antigen.  
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Figure 4.3 ROC curves for EPCES, EPSVR, and SVMKER throughout five-fold 

cross-validation. The area under each ROC curve (AUC) is 0.632, 0.582, and 0.549, 

respectively. 

 

4. Discussions 

Compared with conformational B-cell epitope tools, SVMKER may possess more 

potential for the study of epitopes. For example, although EPCES and EPSVR have better 

performance than SVMKER, both require 3D structures of antigens, which greatly limit 

their applicability. After all, only a very small proportion of antigens have solved 3D 

structures. The determination of protein 3D structures using X-ray diffraction or nuclear 

magnetic resonance spectroscopy is time- and fund-consuming. SVMKER requires only 

a simple input, i.e., the amino acid sequence of protein candidate, and therefore, it is 

more practical for the immunologists. SVMKER has much wider applicability without 

the knowledge of 3D structure of protein candidates. Moreover, our comparison shows 

that the performance of SVMKER is close to that of EPSVR. Therefore, in despite of the 

room for accuracy improvement, as a sequence-level tool, SVMKER may be very useful 

in epitopic residue search as a preliminary filter for subsequent experimental design. 

SVMKER may not have yet reached the most optimal model. One of the reasons 

is the optimization of attributes. The eight attributes mentioned above are usually applied 

to predicting binding patterns and motifs. Note that some attributes are dependent to 

others. For example, PSSM is often a pre-condition considered in the prediction tool of 

protein secondary structure (9). PSSM and SS thus require to be treated as associated 

indices if they are both considered in SVMKER. Another issue is the normalization of 
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multiple attributes. In the current version of SVMKER, all the attributes have been 

normalized into the range of [0, 1]. To improve SVMKER, we will add more attributes 

into further consideration. The dependence and normalization of these attributes must be 

kept in mind. 

We calculated the weight scores of eight attributes in the 19AA optimized model. 

The weight scores are calculated by the formula w =∑ αi xi. Here α is dual representation 

of the decision boundary; and xi (i=0, 1, 2…n) is vector described in the SVM model. 

Both αi and xi are available in the model file. After normalizing weight scores of eight 

attributes, we illustrated their weight scores in the optimal model in Figure 4.4. Among 

these eight attributes, PSSM has the largest weight score (0.218) while PD is the least 

(0.049). That means that PD (the protein disorder feature) only weakly contributes to the 

determination of the SVMKER optimized model. The reason could be because of the low 

performance of the protein disorder prediction tool that we used. Considering the high 

weight scores of PSSM, SS, and KNN, the sequence similarity is still the major factor to 

determine the boundary between epitopic residue and non-epitopic residue. 

 

Figure 4.4 The Weight Scores of Eight attributes in 19AA optimal model. 
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Another way to improve SVMKER comes from the update of the training dataset. 

In the current version of SVMKER, we only applied the 3D structures of the antigen-

antibody complex deposited in the PDB database by June 2012. The 3D protein structures 

of antigen-antibody complex may precisely provide epitopic residues but the limited 

number of available 3D structures constraints the size of the training dataset. More 

resource should come from the IEDB database. By the end of 2013, there are more than 

50K B-cell epitopes reported in IEDB database. For most epitope entries, the 

corresponding binding sites or epitopic residues are recorded or suggested. Some of 

epitopic residues were determined by the determination of protein structure or point 

mutation experiments. However, most of epitopic residues in IEDB are still hypothetical 

from prediction tool and not suitable for training dataset. Obviously, our model cannot be 

simply based on these hypothetical epitopic residues since they are predicted and contains 

many false positives. It is necessary to carefully check and filter by excluding those 

hypothetical epitopic residues in IEDB before they are added to the training dataset. We 

believe that the SVMKER performance will be improved when more known epitopic 

residues are used to optimize the model. 

5. Conclusions 

In this chapter, we developed a new tool, SVMKER, to predict epitopic residues 

in antigens. The determination of epitopic residues greatly benefits the application of B-

cell epitope, such as vaccine design. It can act as the pre-condition for point mutation 

experiments on the validation of antigen. The current version of SVMKER reaches a 

precision of 59.5% and a sensitivity of 52.2% using five-fold cross-validation. In further 

evaluation, we compared SVMKER and EPCES and EPSVR. The AUC score of the 
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three tools is 0.549, 0.632, and 0.582, respectively. SVMKER shows a close prediction 

performance with EPSVR. Considering its significant advantage as a sequence-level tool, 

SVMKER meets much broader needs than EPCES and EPSVR, which are structure-level 

tools. We will keep improving SVMKER through further optimization of the attributes 

and the continuous enrichment of the training dataset using the IEDB database. All of 

optimal models, datasets, and online tool will be released for public usage in the future.  
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CHAPTER FIVE: SUMMARY AND FUTURE WORK 

1. Summary 

In this dissertation, we investigated several computational methods to identify the 

antigenic epitopes of protein candidate. First, a new linear B-cell epitope prediction tool 

SVMTriP was developed based on the combination of tri-peptide similarity and their 

propensity (1). Being compared with other linear B-cell epitope prediction tools, such as 

BCPred (2) and AAP (3), SVMTriP showed a better prediction performance with AUC 

score as 0.702 (BCPred: 0.667; AAP:0.667). Then, we developed a conformational B-cell 

epitope prediction tool called EPSVR and a meta server, EPmeta (4). EPSVR was 

developed based on six attributes with Super Vector Regression. EPmeta integrated 

multiple single servers, such as DiscoTope (5), PEPITO (6), SEPPA (7), EPITOPIA (8), 

EPCES (9), and EPSVR (4), to find a consensus result. The statistical evaluation based 

on an independent test dataset showed that EPSVR has the AUC score as 0.597 and 

EPmeta as 0.638. The third tool that we developed is SVMKER that can predict epitopic 

residues of an antigen sequence. To our knowledge, SVMKER currently is the first 

prediction tool of epitopic residues using protein sequence as input. These tools we 

developed provide more choices for immunologists to identify the antigenicity of protein 

candidate in a quick and cheap way. 

 

1.1 Linear Epitope Prediction 

Currently, Users can access SVMTriP by http://sysbio.unl.edu/SVMTriP. 

Generally, it takes 20-30 minutes to complete the prediction process for a protein 

sequence with a length of 200 AA. If any linear B-cell epitopes are found, they will be 

http://sysbio.unl.edu/SVMTriP
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listed with their scores and locations on the original protein sequence. Users can select 

different epitope lengths, from 10AA to 20AA, for their specific cases. In addition, the 

training dataset collected from IEDB (10) in SVMTriP is also shared online 

(http://sysbio.unl.edu/SVMTriP/Download). These dataset may benefit other B-cell 

prediction groups as references to develop new tools. 

Since May 12
th

 2012 when the online server was set up, SVMTriP has been 

visited more than 17,000 times, and more than 26,000 jobs were submitted for prediction. 

Moreover, we also helped other research groups to predict 12205 protein candidates by 

offline operation of SVMTriP. 

The application of SVMTriP helps immunologists to quickly narrow the range of 

protein candidates. A real case was reported from Dr. Yurij Innov‟s group, Department of 

Cancer Genetics, Roswell Park Cancer Institute, NY (private communications). In their 

investigation, two non-redundant linear epitopes on the human PAP protein were 

discovered by their experiment. One of these two linear epitopes was successfully 

predicted by SVMTriP. Other applications of SVMTriP were reported as well, such as 

meta-analysis of IgE-binding allergen epitopes (11) and prediction of IL4 Inducing 

Peptides (12). 

 

1.2 Conformational Epitope Prediction 

We also constructed the online servers for EPSVR (http://sysbio.unl.edu/EPSVR) 

and EPmeta (http://sysbio.unl.edu/EPmeta) in 2010. EPSVR requires an input of 3D 

structure of protein candidate when submitting a query. The average running time for 

EPSVR is 10-20 minutes. Same as EPSVR, EPmeta requires 3D structure of protein 

http://sysbio.unl.edu/SVMTriP/Download
http://sysbio.unl.edu/EPSVR
http://sysbio.unl.edu/EPmeta
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when opening a new query. Usually, EPmeta requires much longer time that EPSVR 

because it needs to get the prediction results from all single servers, and then integrate 

into a consensus result. The statistics showed the average running time for a job is 1.5-2 

hours. 

The development of EPSVR and EPmeta give rise of new members for the very 

limited set of available conformational B-cell epitope prediction tools. EPSVR has been 

applied to the epitope prediction by many other groups. For example, a read case came 

from the identification of epitopes on D8 antigen (13). The prediction of D8 antigen 

using EPSVR generated 13 potential epitopic residues. After experimental validation by 

site-directed mutations, 6 of 13 variants indeed showed a significant drop in antibody-

antigen interaction (13).  

More antigen-antibody complex structures may increase the prediction 

performance for EPSVR. When we released EPSVR in 2010, only 98 antibody-antigen 

complex 3D structures were involved into the training of model. In the past four years, 

more and more antibody-antigen complex 3D structures were released. According to 

IEDB records, till June 2014, there were 591 antibody-antigen complex 3D structures 

reported in PDB database (14). Hence, it is possible to update the training dataset for 

EPSVR. 

 

1.3 Epitopic Residue Prediction 

Currently, the SVMKER approaches our preliminary requirement but still needs a 

further improvement. SVMKER reached a precision of 59.5% and a sensitivity of 52.2%. 

The five-fold cross-validation process showed the AUC value of SVMKER was 0.549, 
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which was lower than EPCES (0.632) and EPSVR (0.582). Considering the input of 

SVMKER was protein residue sequence while that of EPCES and EPSVR was protein 

3D structure, SVMKER is more valuable for real studies because most proteins do not 

have known 3D structures yet. 

The improvement of SVMKER is under our consideration. A possible way is to 

find more known epitopic residues and then increase the size of training dataset. Another 

strategy is to optimize the vector features of SVMKER model. By determining optimal 

weights of vector features, SVMKER is expected to show a higher AUC score.  

 

2. Future Work  

2.1 Importance of Food Allergen Prediction 

We will extend the epitope prediction tools that we developed to food allergen 

prediction. In chapter one, various types of B-cell antibodies, including IgE, which is 

mainly involved in allergy (15), were described. For atopic people, a specific allergen 

elicits T helper lymphocyte type 2 (Th2) responses (16), and leads to synthesis of 

allergen-specific IgE antibodies, which bind to mast cells and basophils. Further exposure 

to the antigen may stimulate the release of vasoactive mediators such as histamine and 

leukotrienes that cause the symptoms of allergy (17, 18). An IgE can recognize and bind 

to the allergen, which leads to a series of allergy-related symptoms. IgEs can bind to 

allergens and then stimulate the release of chemical materials, such as histamine and 

cytokinase, from the mast cells (19). Hence, allergen should contain at least one IgE 

binding site, i.e., epitope. 
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Among the variety of allergies troubling human beings, food allergy is one of the 

most prevalent diseases affecting almost all races in all geographic locations. Food 

allergy is a non-protective immune response triggered by food(s) specific to the affected 

individual, such as eggs, cow‟s milk, peanuts, certain tree nuts, soybeans, wheat, and 

other complex foods. Allergy is estimated to occur in over 20% of the population in 

industrialized countries, primarily as airway allergy, but with between 2-4% of adults and 

6-8% of children experiencing allergic symptoms following exposure to specific foods 

(20).  

The risk of food allergy is increasing synchronously due to the quick development 

and application of transgenesis in agriculture. Transgenesis can introduce one or more 

exogenous genes, so called transgenes, into a living target organism, such as agricultural 

crop or other interesting species. The transgenesis process means new proteins are 

expressed in the target organism which potentially increases the risk of food allergen. 

Our study on B-cell epitope prediction stimulates our interests on the prediction of 

food allergens. Considering the relationship between regular antigen dominant epitopes 

and allergens, we proposed to apply our developed tools, such as SVMTriP, EPSVR, and 

EPmeta to the prediction of allergens.  In the following sections, we will explain our 

primary research to assess the probability of an unknown protein as an allergen.   

2.2 Design of the Food Allergen Prediction Pipeline 

 The allergen prediction pipeline includes sequence similarity searching, protein 

structure modeling, sequence-level epitope predication, and 3D structure-level epitope 

prediction. Figure 5.1 shows the flowchart of the pipeline. 
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Figure 5.1: Allergen prediction pipeline using epitope tools 

  

The initial sequence similarity searching is done to broadly search for the allergen 

protein candidates including those with even low probabilities to be allergens. The 

allergen databases, such as AllergenOnline.org and AFDS, will be used in our pipeline 

for this step. For the result of sequence similarity search, the criteria include: 1) 

moderately long stretches of amino acid (80 amino acids) with a minimum of 35% 

identity and 2) very short stretches (6-8 amino acids) of 100% identity. The search result 

matching either of the two criteria will be treated as a potential allergen and therefore 
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qualified for the next check. In our preliminarily study, these initial hits from sequence 

similarity searching possibly contained rather many false positives, which must be 

eliminated by further refinement as discussed in the next sections. 

 If protein candidate has no available 3D structure, we will apply linear B-cell 

epitope prediction tool such as SVMTriP and SVMKER. By SVMTriP, sliding-window 

search along the protein sequence is executed to determine the epitopic probability. With 

the pre-defined cutoff (the default cutoff is 0.2), once the epitopes are picked up, these 

potential antibody-binding sites, usually with 8-20 amino acids, will have another round 

of similarity search against allergen databases, such as AllergenOnline.org and AFDS. If 

the high similarity hits (>80%) find in allergen databases match the epitopes from 

SVMTriP, the protein candidate is thought of one allergen with a high confidence. 

 If the 3D structure of protein candidate is available, conformational epitope 

prediction tools such as EPSVR, EPCES, and EPmeta can be used. If the protein structure 

is not available, we will conduct the structural modeling  to predict the protein structure 

with SPARKS-X, a tool to predict 3D protein structures (28, 30). After the 3D structure is 

predicted, conformational B-cell epitope tools will continue the rest of prediction 

processing. 

 

2.3 Summary 

Our developed B-cell epitope prediction tools are the good supplement for the 

prediction of allergens. Considering the very limited resource of known allergens and 

even more limited knowledge regarding IgE-binding sites on these allergens, it is quite 

difficult to apply any machine learning technologies to the classification and 
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identification of IgE binding site on proteins. Currently the most common strategy still 

relies heavily on the traditional sequence similarity search using FASTA and BLASTP 

tools. However, the results from FASTA and BLASTP contain an unsatisfactory level of 

false positive rates. In the pipeline we designed, we apply the similarity search method as 

well as epitope prediction methods, both linear and conformational, to predict the 

potential epitopic sites on a protein candidate. The discovery of antibody epitopes will 

increase the confidence level for the allergen prediction. The candidates with low scores 

that do not pass the checking point of epitopic sites are eliminated to decrease the false 

positive rate from the sequence similarity search.  
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