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Streptomyces aureofaciens is a Gram-positive Actinomycete used for commercial 

antibiotic production. Although it has been the subject of many biochemical studies, no 

public genome resource was available prior to this project. To address this need, the 

genome of S. aureofaciens ATCC 10762 was sequenced using a combination of 

sequencing platforms (Illumina and 454-shotgun). Multiple de novo assembly methods 

(SGA, IDBA, Trinity, SOAPdenovo2, MIRA, Velvet and SPAdes) as well as 

combinations of these methods were assessed to determine which provided the most 

robust assembly. Combination strategies led to a consistent overestimation of the total 

genome size. Empirical data from targeted PCR of predicted gap regions provided a 

robust validation framework for our de novo assemblies. Overall, the best assembly was 

generated using SPAdes. The total length of this assembly was 9.47 Mb and the average 

G+C content was 71.15 %. We annotated this assembly using the NCBI Prokaryotic 

Genome Annotation Pipeline, revealing 8,073 total genes, including a total of 7,627 

protein coding sequences. Additional functional analysis using the KEGG GENES 

database provided functional predictions for over 1,400 of these sequences whose 

functions were not initially inferred by NCBI. The information provided from multiple 

independent assemblies allowed us to close 200 scaffold gaps present in our first hybrid 

assembly. Comparative genomic and phylogenetic analyses suggested S. aureofaciens 
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ATCC 10762 may be more closely related to the genus Kitasatospora than to 

neighboring Streptomyces species. Our results highlight the need for, and the value of, 

multiple assemblies when attempting to produce high quality prokaryotic genome 

sequences.
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CHAPTER 1: INTRODUCTION 

Streptomyces aureofaciens is a Gram-positive Actinomycete bacterium identified 

in 1948 1, from Plot 23 in Sanborn Field, a timothy hayfield at the University of Missouri 

2. Like many bacteria, S. aureofaciens produces compounds not required for immediate 

survival. These secondary metabolites often exhibit anti-microbial activity and include 

the common antibiotics tetracycline and chlortetracycline 2. Although S. aureofaciens has 

been used for the commercial production of tetracycline antibiotics for some time 1,3 and 

has been the subject of numerous biochemical studies, no public genome assembly was 

published until very recently. Certain characteristics have been well-studied – for 

example, the Streptomyces are known to have high G+C genome content (estimated at 

74%, overall), and fairly large genomes in the range of 9 – 12 Mbp 4,5. Still, there remains 

a dearth of information with regard to the phylogenetic classification of many 

Actinomycetes, including the S. aureofaciens type strain.  

Over the past 30 years, DNA sequencing methods have improved significantly.   

Emergent technologies like Sanger sequencing produced relatively little sequence data at 

great expense 6; a decade later, the invention of the polymerase chain reaction (PCR) 

opened the door for molecular biologists to rapidly and specifically amplify DNA 

molecules 7. However, sequencing entire genomes remained difficult until the arrival of 

next-generation sequencing platforms, such as those developed by Illumina (e.g., the 

HiSeq and MiSeq platforms) and Roche (e.g., 454 pyrosequencing). These technologies 

have contributed to a drastic decline in sequencing costs and an ever growing number of 

completed sequencing projects, including the human genome 8. 
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The advancement of sequencing technology was not itself sufficient to make this 

possible. Over the same time period, genome assembly algorithms have drastically 

improved to exploit more efficient processors, increased memory capacities and multi-

core technologies that are now widely and cheaply available. The raw data (reads) 

produced by the aforementioned sequencing methods is very short relative to the length 

of a genome, typically around a few hundred base-pairs (bp). Assembly algorithms 

transform raw reads into longer, contiguous sequences (contigs) by identifying and 

joining overlapping regions between reads, which may then be further assembled into 

scaffolds (comprised of contigs and gap regions of an estimated size) or super-scaffolds 

(comprised of multiple scaffolds in a specific orientation). There are two assembly 

strategies: reference-guided assembly methods, which use information from prior 

assemblies of closely related taxa to minimize error and increase assembly accuracy, and 

de novo assembly methods, which utilize only sequence reads, without using another 

genome as a reference. While individual implementations differ, many modern 

assemblers make use of de Bruijn graphs for this purpose, breaking the individual reads 

into shorter pieces (k-mers) and representing their overlapping regions via a directed 

graph 9. Additional information is also used, such as the approximate distance between a 

given pair of sequences (in the case of Illumina long-jump distance sequencing) or 

sequence information from both ends of the same DNA fragment (paired-end 

sequencing). In this way, large genomes composed of millions of nucleotide base pairs 

can be reconstructed from a large number of short reads. 

Despite these algorithmic improvements, several factors continue to make it 

difficult to produce high-quality finished genomes. These difficulties are present at both 
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the sequencing and assembly levels, and affect both de novo and guided assemblers. At 

the sequencing level, GC-rich regions are more stable and less prone to denaturation, 

which can prove problematic during PCR amplification 10; sequencers often have 

difficulty accurately sequencing repeat regions 11; and even with low rates of sequencing 

error (i.e., incorrect base-calling), larger sets of reads may contain hundreds of thousands 

of incorrectly called bases 12–14. At the assembly level, repeat regions continue to pose a 

challenge 15; short reads may leave segments of the genome uncovered 16, and suboptimal 

parameterization (e.g., k-mer size or base quality score thresholds for base-clipping) 

contributes to erroneous, highly-fragmented assemblies 17. 

Many of these challenges can be addressed by careful experimental planning –  

for example, ensuring sufficient sequencing coverage (defined as the average number of 

reads covering each base in the assembly), often 100X or more. In recent years, more 

complex computational approaches have evolved to take advantage of longer sequence 

reads. These methods are increasingly capable of integrating multiple sets of reads 

generated by differing sequencing platforms. These ‘hybrid assemblers’ can exploit the 

overlap information provided by long reads to build longer contigs and more complete 

scaffolds while using accurate, high-coverage short reads to more confidently infer the 

correct base at each position. Prior studies have indicated that the assembler SPAdes 18 

consistently outperform many alternative assemblers, particularly when building hybrid 

assemblies 19–22.  

The aims of my thesis were to: 1) thoroughly evaluate the performance of several 

assemblers for the S. aureofaciens ATCC 10762 genome, with a focus on comparing 

hybrid and non-hybrid assembly strategies; 2) evaluate the effectiveness of integrating 
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multiple existing assemblies into a single, meta-assembly; and 3) perform comparative 

genomics, functional, and phylogenetic analyses on S. aureofaciens and closely related 

species. We compared six non-hybrid assemblies generated with SOAPdenovo2, Trinity, 

IDBA, SGA, MIRA and SPAdes, and two hybrid assemblies generated with Velvet and 

SPAdes. Additionally, combination assemblies were generated using CISA. Overall, 

SPAdes, using hybrid data, produced the best assembly which we annotated. 

Phylogenetic and comparative genomic analyses were conducted to more clearly define 

the lineage of S. aureofaciens strain ATCC 10762. This strain was found to be more 

closely related to the genus currently known as Kitasatospora than to other Streptomyces 

species. Additional, functional analysis via the KEGG database provided additional 

information on over 1,400 sequences whose functions were not initially annotated from 

our hybrid SPAdes assembly. Our analyses showcase the utility of a hybrid assembly 

approach, emphasize the difficulty of proper phylogenetic placement and highlight 

shortcomings that may result from attempting to generate a meta-assembly.  
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CHAPTER 2: MATERIALS AND METHODS 

2.1 – Bacterial Culture and DNA Isolation  

S. aureofaciens strain ATCC 10762 (lot 3856567) was purchased, lyophilized in a 

sealed glass ampule. It was hydrated with 5 ml of ISP Medium 1 (Tryptone Yeast Extract 

Broth) and used to inoculate 500 mL of WI FVM Seed Media (hereafter referred to as 

DM1) 23. Bacteria were cultivated in 2L baffled flasks at 30oC, with 150 rpm aeration 

with a 2” throw1 for 48 hours. This culture was used to make a master seed stock by 

aliquoting 4.5 mL into cryovials and storing at -80oC. 

One vial of the master seed was thawed, and 2.5 mL used to inoculate 500 mL of 

DM1 media. This culture was grown in 2 L non-baffled flasks at 30oC, 150 rpm with a 2” 

throw for 9 days.1 A 200 mL sample was taken for DNA extraction and refrigerated at 

4oC. The isolation and purification of high molecular weight DNA from fresh S. 

aureofaciens cultures was completed by CTAB extraction 24. Extracted genomic DNA 

was further evaluated for molecular weight integrity by agarose gel electrophoresis and 

nucleic acid fluorometric quantitation for construction of the DNA library 

 

2.2 – DNA Sequencing 

Illumina and 454-shotgun sequencing, and read quality filtering, were completed 

by Eurofins MWG Operon (Alabama, USA). Illumina MiSeq sequencing was done with 

long jumping distance sequencing (3-kb and 8-kb inserts), generating paired-end 150-bp 

reads; 454-shotgun sequencing was completed using the Roche 454 Genome Sequencer 

FLX platform. For quality filtering, very short (<30 bp) reads and Illumina adapter 

																																																								
1	This	distance	describes	the	diameter	of	the	orbital	path	produced	by	the	shaking	mechanism.		
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sequences were removed, and low quality bases were clipped out using Trimmomatic 25. 

The raw reads have been deposited in the National Center for Biotechnology Information 

(NCBI) Short Read Archive; 454 reads are available under the accession number 

SRX1122678, and the 3-kb and 8-kb Illumina libraries are available under SRX1122692 

and SRX1122693, respectively. 

 

2.3 – De novo Genome Assembly 

2.3.1 – Non-hybrid Genome Assembly 

The Illumina reads were assembled using six methods: Iterative De Bruijn Graph 

Assembler (IDBA v. 1.1.1) 26, String Graph Assembler (SGA v. 0.10.13) 27, Trinity v. 

2.0.6 28, MIRA v. 4.0.2 29, SOAPdenovo2 v. 2.04 30 and SPAdes 18. These assemblers are 

optimized for slightly different applications. Briefly, IDBA uses a range of k-values in an 

attempt to automatically identify the optimal k-mer length for building the de Bruijn 

graph; SGA eschews the de Bruijn method in favor of string graphs, with the goal of 

being extremely memory efficient; Trinity is a suite of three programs (i.e., Inchworm, 

Chrysalis and Butterfly) designed to reconstruct transcripts from RNA-sequencing reads; 

MIRA is a memory-intensive, iterative assembler that also avoids de Bruijn graphs in 

favor of an overlap-layout-consensus approach; SOAPdenovo2 is primarily designed to 

handle larger genomes, like those of plants and animals; and SPAdes implements an 

iterative k-mer search strategy similar to that of IDBA, along with contig error-correction 

and assembly merging algorithms. Both the 3-kb and 8-kb Illumina libraries were 

provided as input. Excluding Trinity and MIRA, which do not implement scaffolding 

algorithms, each assembler generates a set of contigs and scaffolds. 
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 Default k-mer selections were used for each assembly, requiring no additional 

parameter specification.  

 

2.3.2 – Hybrid Genome Assembly 

A hybrid assembly was performed by Eurofins MWG Operon (Alabama, USA) as 

follows. The quality filtered 454-shotgun reads were assembled with Newbler (GS Data 

Analysis Software package, 454 Life Sciences). The filtered Illumina reads were mapped 

to the resultant 454 contigs to infer the approximate insert size for each library, after 

which the paired-end Illumina reads and the 454 contigs were assembled using Velvet (v 

1.2.10) 31 across a broad range of k-mer sizes. This assembly has been deposited in 

NCBI’s GenBank under the accession GCA_001188955.1. It should be noted that this 

assembly (version 1) has been superseded by the assembly described below 

(GCA_001188955.2). 

For the second hybrid assembly, SPAdes (v. 3.7.1) 18 was used to assemble all the 

quality filtered Illumina and 454 reads, including singletons, across a range of k-mers 

(the default behavior of SPAdes – this requires no specific k-mer arguments). The ‘—

careful’ option was used to reduce mismatches and short indels. This assembly has been 

published 32 and was deposited in NCBI’s GenBank under the accession 

GCF_001188955.2.  

 

2.3.3 – Integration of Multiple Assemblies 

Because assemblies vary, the multiple combinations of contig sets were merged 

using the Contig Integrator for Sequencing and Assembly (CISA) 33. CISA does not 
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implement its own de novo or guided assembly algorithm – rather, it attempts to identify 

and extend overlapping regions of pre-existing contigs. As such, use of CISA requires at 

least three separate assemblies. We generated four CISA datasets: set 1 consists of the 

IDBA, Trinity and Velvet contigs; set 2 includes all of set 1 with the addition of the SGA 

contigs; set 3 includes all of set 2, and the MIRA contigs, and set 4 additionally includes 

the SPAdes contigs. 

 

2.4 – Comparative Analysis of Assemblies 

2.4.1 – Contig and Scaffold Alignments 

Pairwise alignments of contig sets were generated via nucleotide BLAST searches 

and MUMmer 3.0 34. MUMmer identifies and clusters matching sequence regions 

between the contig sets, then extends matches within these clusters using Smith-

Waterman alignment techniques. We report the total percentage of aligned bases, 

indicating the total proportion of nucleotides from the first contig set that align to at least 

one match cluster in the second set. This is distinct from a measure of percent identity, 

which indicates the similarity of individual alignments between match clusters.  

Assemblies were also compared using the Quality Assessment Tool for Genome 

Assemblies (v. 4.0) 35, which provides a number of summary statistics, including total 

length, G+C percentage, the N50 length (a commonly used statistical measure, defined as 

sequence length N such that half of the assembly is contained in contigs of N bp or 

greater) and L50 (the number of contigs equal to or longer than N50; in other words, the 

minimal number of contigs covering half of the assembly).  
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2.4.2 – PCR of Predicted Gap Regions 

Regions that were predicted to contain short gaps (<100 bp, based on the Velvet 

assembly, GCA_001188955.1 ) were selectively amplified using the ‘slowdown PCR’ 

protocol which was designed to amplify GC-rich regions 10. The difficulties of 

amplifying such templates are well documented 36–38. The three hydrogen bonds formed 

between guanine and cytosine make GC-rich regions more stable than AT-rich regions, 

impeding DNA denaturation. Our initial PCR failed to amplify any templates. This led us 

to switch to the slowdown PCR protocol, which reduces the heating and cooling ramp 

rates, implements a progressively lowered annealing temperature over the length of the 

protocol and appends several annealing cycles at the end 10. This method, combined with 

the addition of DMSO, was sufficient to facilitate template amplification. 

Final reaction volumes were always 50 µL. Each reaction included: 25 µL 

DreamTaq PCR Master Mix (2X) from ThermoFisher Scientific (Waltham, MA); 1 µL 

each of forward and reverse primer (10 nmol concentration); and 1 µL template S. 

aureofaciens ATCC 10762 genomic DNA, and 19.5 µL nuclease-free water. Each set of 

reactions also included one replicate containing 2.5 µL (5% v/v) dimethyl sulfoxide 

(DMSO). Successfully amplified PCR products were isolated and purified with the 

QIAquick PCR Purification Kit from Qiagen (Valencia, CA) and sequenced in both 

directions by Eurofins MWG Operon (Alabama, USA). We targeted 34 regions in total, 

successfully amplifying 14. Of these 14, we were able to generate reliable sequence 

information for 9 regions. Manual sequence correction was performed as necessary 

according to the resultant chromatograms. All primer sets are listed in Appendix 1. 
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2.5 – Contaminant Filtering 

The contig sets of both hybrid assemblies were screened for the presence of non-

host DNA in the form of prophage and plasmid sequences. For prophage screening, we 

used the PHAge Search Tool (PHAST) webserver, available at 

http://phast.wishartlab.com 39.  

Plasmid screening was conducted using two independent methods. First, contig 

sets were scanned using the PlasmidFinder webserver, available at 

https://cge.cbs.dtu.dk//services/PlasmidFinder/ 40. Second, we manually attempted to 

identify plasmids by aligning both sets of contigs and scaffolds against all plasmid 

sequences available from NCBI as of 25 Apr 2016 using the BLASTN program (v. 

2.2.30+), which is part of the standalone BLAST package (BLAST+) 41,42.  

 

2.6 – Automated Annotation of Genomic Features 

Genomic features (e.g., coding sequences, rRNAs, tRNAs, etc) were annotated 

using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP), the core of which is 

built on the gene prediction suite GeneMarkS+ (v. 2.6 rev. 440435 for the Velvet 

assembly, GCA_001188955.1; v. 3.1 for the SPAdes assembly, GCA_001188955.2) 

(Tatusova et. al., 2013). 

 

2.7 – Circular Visualization of the Genome 

A circular visualization of the genome assembly was generated using ClicO FS, a 

web-based implementation of the Circos plotting tool 43,44. 
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2.8 – Comparative Genomics 

 To identify homologous genes, we performed protein BLAST searches using the 

coding sequences from our SPAdes assembly. Identical homologs are defined by 

alignments with 100% query coverage and sequence identity (no gaps or mismatches). 

Non-identical homologs are defined by alignments with >95% sequence identity and 

query coverage. 

 

2.9 – Phylogenetic Inference 

Ortholog sets were aligned using MAFFT, v. 7.245 with the L-INS-I option 45–47. 

Maximum likelihood phylogenies were inferred using RaxML,v. 8.2.4 48, with the 

following options: ‘-f a’, which performs a rapid bootstrap analysis and searches for the 

best-scoring tree in a single run; ‘-x’, which enables rapid bootstrapping; and ‘-p’ which 

is necessary for parsimony inferences. The ‘-x’ and ‘-p’ options were followed by 

random number seeds. The GTRGAMMA substitution model was used for both protein 

and nucleotide phylogenies, and 500 bootstrap replicates were sampled to assess branch 

support.  

 

2.10 – Functional Annotation  

Additional verification of the automated gene annotations was performed as 

necessary via local BLAST searches of the proteins made available by the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 49, specifically the KEGG GENES 

database.   
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 Annotated genes were divided into two groups: genes with an associated function, 

and those annotated only as “hypothetical proteins”. The latter group was further 

subdivided according to search results when queried against the NCBI CDD 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) or the Pfam-A protein database, 

retrieved 15 Dec 2014 (using jackhmmer 3.1b1) 50. Sequences that returned a hit from 

either (but not both) of these searches were labeled as “moderate confidence” with regard 

to their function. Sequence queries that produced no information via either method were 

classified into a “low confidence” group whose functions were weakly inferred according 

to the highest scoring subject sequence with an annotated function, when searched 

against the non-redundant protein database with BLASTP. HHpred, HHblits and 

jackhmmer were also used to annotate the moderate and low confidence sequence groups, 

as these methods apply hidden Markov models and are more sensitive than homology 

based methods like BLAST. 

  BLAST searches of the KEGG GENES database were performed in three 

iterations, with the aim of identifying the highest scoring subject sequence with an 

associated KEGG Orthology (KO) number. The first search was conducted using an E-

value threshold of 10 and examined the top 100 BLAST hits per query. The second 

search used the same E-value threshold, but expanded to include the top 500 hits for each 

query. The third search reduced the E-value threshold to 1.0, and expanded the list of hits 

to a maximum of 10,000 per query. 
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CHAPTER 3 – RESULTS 

 

3.1 – S. aureofaciens ATCC 10762 Genome Sequencing 

After quality filtering, we obtained 2.46 Gb of Illumina sequences in 19.42 

million short reads (3.90 million pairs and 12.84 million singletons) and 132.76 Mb of 

454-shotgun sequence data in 209,530 reads with a mean length of 633 bp. 

 

3.2 – Non-hybrid Assemblies 

Six de novo assemblies of the S. aureofaciens ATCC 10762 genome were 

generated using only the Illumina short reads. Summary statistics are shown in Table 1. 

The non-hybrid assembly produced by SPAdes has the largest contig N50 (59,816 bp) 

and the fewest number of contigs overall (n = 574), with mean and maximum contig 

lengths of 16,131 and 412,063 bp, respectively. SPAdes also generated the assembly with 

the largest scaffold N50 (59,816 bp) and the fewest scaffolds (n = 393), with mean and 

maximum scaffold lengths of 23,722 and 685,539 bp, respectively.  This assembly also 

includes all gap regions covered by PCR (n = 9). The SPAdes and SOAPdenovo2 

assemblies exhibit the highest and lowest proportion of mapped Illumina reads, with 

90.52% and 78.04%, respectively.  

 

3.3 – Hybrid Assemblies 

Two hybrid assemblies using Velvet and SPAdes were generated using both 

Illumina and 454 reads. Here also, the SPAdes assembly has the largest contig N50 

length (228,235 bp, versus 46,576 bp from Velvet), but the scaffold N50 length for the 
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Velvet assembly is significantly larger (8,005,420 bp, versus 660,648 bp from SPAdes). 

The hybrid SPAdes assembly consists of 120 contigs in 60 scaffolds with respective N50 

values of 228,235 bp and 660,648 bp (Table 1). Thus, this assembly is notably more 

contiguous than the non-hybrid SPAdes assembly which comprises 574 contigs (N50 = 

59,816 bp) in 393 scaffolds (N50 = 155,320 bp). Notably, the total number of scaffolds 

produced by the non-hybrid SPAdes assembly (n = 393) and the hybrid velvet assembly 

(n = 389) are comparable. The hybrid SPAdes assembly also has a higher proportion of 

successfully mapped reads (90.56%) than the Velvet assembly (87.13%).  

 

3.4 – Quality Assessment of Assemblies 

We aligned the Velvet assembly against the IDBA and hybrid SPAdes assemblies 

to determine which gap regions could be closed on the Velvet scaffolds. We were able to 

close 109 gaps using IDBA, and 200 using the hybrid SPAdes assembled contigs. 

Additionally, we selected 34 regions predicted to have short gaps (<100bp) in scaffolds 

assembled using Velvet (Appendix 1). Among them, 14 targeted regions were 

successfully amplified. We observed no difference between PCR amplifications 

performed with and without the addition of DMSO. From these, we were able to 

sequence 9 regions (Appendix 2). Three of these sequences were of sufficient quality and 

did not require manual correction; the remaining 6 were corrected, using the provided 

chromatograms. These 9 sequences were used to evaluate our de novo assemblies; all 9 

were correctly assembled (>50% query coverage and sequence identity when aligned via 

BLASTN) by every method except velvet (n = 0), SGA (n = 7) and SOAPdenovo2 (n = 

8). This does not necessarily mean that the data from these sequences is missing within 
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these contig sets, but it does reflect the discontinuous nature of these assemblies (as SGA 

and SOAPdenovo2 have the largest number of contigs and the smallest N50 values of the 

assemblies evaluated). This adds to the evidence that these assemblers are performing 

poorly in this context. Predicted and actual gap sizes for all sequenced regions are shown 

in Appendix 2; 8 of the 9 regions have actual sequence lengths significantly longer than 

the predicted gap lengths. Only one sequence, spanning Velvet contigs 397 and 398, was 

shorter, with an actual length of 112 bp compared to a predicted length of 281 bp.  

 

3.5 – Integration of Multiple Assemblies 

CISA was used to merge different assemblies in four combinations (Table 3). Set 

1, comprised of the IDBA, Trinity and Velvet assemblies, produced the assembly with 

the fewest number of contigs (n = 4,519) and the smallest total length (30,073,865 bp), 

but the largest N50 (18,974 bp). Set 4, which includes the assemblies from set 1 along 

with the SGA, MIRA and hybrid SPAdes assemblies, exhibits the largest total length 

(59,346,503 bp) and possesses the second-largest N50 (15,343 bp). The total lengths of 

the merged assemblies were notably and consistently larger (30 – 60 Mbp) than the total 

lengths of the assemblies produced by the corresponding individual methods. Individual 

assemblies, both hybrid and non-hybrid, provided a more consistent estimate of total S. 

aureofaciens genome length, in the range of 9.2 – 11.5 Mbp. 

 

3.6 – Annotation of Genomic Features 

The hybrid assembly generated by SPAdes was ultimately chosen as the best 

assembly owing to its high contiguity, low proportion of scaffold gaps and the superior 
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proportion of Illumina reads that map to it. We annotated this assembly in addition to the 

hybrid Velvet assembly provided by Eurofins. using the NCBI PGAP. Contaminant 

filtering of the hybrid SPAdes assembly resulted in the removal of four contigs that 

appeared to be of plasmid origin.  

A significant difference in the number of genomic features was observed between 

the annotations of the two hybrid assemblies (Table 4). There are 1,393 more total genes 

and 205 more pseudogenes annotated within the annotation of SPAdes assembly. We 

identified 6,103 pairs of homologous coding sequences between the two annotations; of 

these, 5,270 are completely identical and 833 exhibit vary in length by at least 1 amino 

acid. We also observed sequences unique to both the Velvet (n = 21) and SPAdes (n = 

192) annotations. 

 

3.7 – Comparative Genomics 

 Presently, there are 5 other S. aureofaciens genomes available from NCBI (Table 

5). We compared our SPAdes assembly of the S. aureofaciens ATCC 10762 genome to 

other publicly available S. aureofaciens genomes (Table 6). During the course of this 

work, five S. aureofaciens genomes were deposited in the NCBI Assembly database 

under accession numbers ASM71917v1, ASM97851v1, ASM71688v1, ASM72084v1 

and ASM127066v1.  These strains were designated as NRRL B-2657, NRRL 2209, 

NRRL B-1286, NRRL B-2183 and NRRL B-2658, respectively. We aligned our contigs 

from the hybrid SPAdes assembly against these assemblies using MUMmer (see section 

2.4.1). Our assembled contigs are virtually identical to NRRL B-2657 / ASM71917v1 

(99.75% total aligned bases) and only slightly divergent from NRRL 2209 / 
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ASM97851v1 (99.05% total aligned bases). Our assembly has a larger total length and 

N50, and a smaller number of contigs, compared to these assemblies. Interestingly, our 

assembled contigs differ significantly from NRRL B-1286 / ASM71688v1, NRRL B-

2183 / ASM72084v1 and NRRL B-2658 / ASM127066v1 (83.69%, 10.31% and 9.92% 

total aligned bases, respectively). We also observe significant variation in the distribution 

of ATCC 10762 coding sequence homologs between these annotations, with NRRL B-

2657 having the largest number of orthologous sequences (n = 7,483) while NRRL B-

2183 and NRRL B-2658 have the fewest (n = 3,857 and 3,984, respectively), highlighting 

a potentially distant evolutionary relationship between the latter strains and ATCC 10762. 

 

3.8 – Phylogenomic Analysis 

Using 16S data from our S. aureofaciens annotation, we identified an additional 

set of 18 taxa, including Streptacidiphilus and Kitasatospora species, for further 

phylogenomic analyses. We identified orthologs of the 16S rRNA and recA genes (the 

latter having been selected for its known, high degree of conservation), and aligned 

sequences from this total set of taxa (n = 24) to reconstruct the maximum-likelihood 

phylogenies (Figures 2 – 3).  In both trees, we observe S. aureofaciens strain ATCC 

10762 clustering with Kitasatospora taxa, with large branch lengths between ATCC 

10762 and S. aureofaciens strains NRRL B-2183 and NRRL B-2658, indicating greater 

than expected evolutionary distance (Figures 2 – 3).  
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3.9 – Functional Analysis 

 The NCBI annotation of our SPAdes assembly includes a large number of 

sequences of unknown function, annotated only as hypothetical proteins (n = 3,185). We 

examined the entire set of coding sequences from this assembly (n = 7,627). Our BLAST 

searches of the KEGG GENES database were able to associate some KEGG-described 

function, in the form of a KO number, with 5,783 sequences, including 1,786 sequences 

that were initially annotated at hypothetical proteins by NCBI. This represents 76% of the 

total CDS dataset and 56% of hypothetical proteins, respectively, from the hybrid 

SPAdes annotation. 

 Next, we identified a set of 72 sequences of interest, all annotated as hypothetical 

proteins by the NCBI pipeline. For these sequences, our combined searches of CDD, 

KEGG and Pfam were sufficient to infer function for 13 proteins with at least a moderate 

level of confidence (i.e., overlapping functional predictions endorsed by two or more 

independent search methods). 
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CHAPTER 4 – DISCUSSION  

4.1 – De novo Assembly of S. aureofaciens ATCC 10762 Genome 

As expected, we observed a substantial variation between the six non-hybrid 

assemblies. Overall, SOAPdenovo2 performed most poorly, producing an assembly with 

the largest number of contigs and the smallest contig N50 to which only 78% of reads 

could be mapped (Table 1). At the scaffold level, however, we observe that the 

SOAPdenovo2 assembly also has the largest total scaffold length and the largest scaffold 

N50. This highlights the danger of relying only on summary statistics to evaluate de novo 

genome assemblies, despite the widespread acceptance of this practice. Under a more 

comprehensive evaluation accounting for the percentage of mapped reads, coverage of 

known sequence regions (i.e., the gap regions sequenced by PCR) and a relatively small 

number of contigs and scaffolds, SPAdes clearly outperforms the competing non-hybrid 

assemblers.  

The assemblies produced by CISA exhibit less overall variation than the set of 

non-hybrid assemblies, particularly with respect to the percentage of mapped reads 

(Table 3). The first three datasets are approximately equal by this metric, with 90.19, 

90.21 and 90.24% of reads mapped, respectively. The fourth dataset is an exception, with 

only 88.89% of reads mapped. This suggests that merged assemblies based on the same 

data have a point of diminishing return, wherein relatively few new regions of the 

genome are covered with each successive addition. Additionally, we observed a 

consistent and significant overestimation of total genome size amongst all four CISA 

assemblies. 
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 Both hybrid de novo assemblies are significantly more contiguous than those 

assemblies generated only from the Illumina reads (Tables 1 and 2). Even so, the two 

hybrid assemblies differ significantly from one another. Most notably, the Velvet 

assembly is comprised primarily of a single very large scaffold (8,005,420 bp) containing 

a large number (n = 310) of gap regions. These gaps represent 1.38% of the total bases in 

the assembly, or more than ten times the number of gap characters contained in all of the 

hybrid SPAdes assembled scaffolds. The SPAdes assembly generated 60 scaffolds with 

57 total gap regions, representing 0.12% of all assembled bases. Why does the percentage 

of gaps present in scaffolds differ by more than an order of magnitude between these two 

assemblies, generated with the same input data? These assemblies represent notably 

different approaches, with significant implications. The pipeline implemented by 

Eurofins begins with assembly of the 454-shotgun reads by Newbler into contigs, onto 

which the paired-end Illumina reads are mapped. This allows them to infer the genome 

size and the insert sizes for each library, which are incorporated downstream as the 454 

contigs and Illumina reads are assembled, then manually inspected. This results in an 

assembly with a deceptively high scaffold N50 of 8,005,420 bp, since the distribution of 

scaffold lengths is uneven, with the longest and second longest scaffold lengths equaling 

8,005,420 bp and 52,293 bp, respectively. Excluding the longest scaffold, the remaining 

388 scaffolds lengths sum to 1,451,044 bp or 15.3% of the total assembled scaffold 

length. A comparison of contig N50 lengths (Velvet: 46,576 bp; SPAdes: 228,235 bp) 

and the percentage of mapped reads (Velvet: 87.13%; SPAdes: 90.56%) implies that 

SPAdes is producing a better assembly (Table 2).  
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While both Velvet and SPAdes implement read error-correction algorithms 18,31, 

SPAdes performs a much larger number of functions overall, including: 1) iterative de 

Bruijn graph assembly using multiple k-mer sizes (similar to IDBA); 2) merging of these 

different assemblies, which facilitates better performance, particularly in cases where 

read coverage varies significantly and 3) contig error-correction, by aligning the original 

reads back to the contigs using the Burrows-Wheeler Aligner 51. This allows SPAdes to 

take advantage of the information provided by very small k-mers (which are very 

sensitive, but not specific) and larger k-mers (which are specific, but not as sensitive). 

This is reflected across several metrics, including the percentage of mapped reads and the 

large number of Velvet scaffold gaps covered by the SPAdes contigs (n = 200). 

The marked difference in the number of genomic features annotated within the 

two hybrid assemblies is difficult to interpret, as the core annotation software used by 

NCBI for this process (GeneMarkS+) underwent multiple, significant updates between 

the two submissions. Specifically, version 2.7 (released shortly after annotation of the 

Velvet contigs) implemented significant changes that improve the annotation of very 

short proteins (e.g., leader peptides), and version 3.0 re-classified many partial proteins in 

the database as pseudogenes, affecting the annotation of proteins produced in the middle 

of contigs 52. Even so, the NCBI PGAP process is necessarily conservative, as we 

observed during our efforts to gather additional information on sequences annotated only 

as hypothetical proteins.  
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4.2 - Comparative Genomics and Phylogenetic Analyses 

The sequence of the 16S small ribosomal subunit is extremely conserved, and has 

long served as the gold standard for bacterial phylogenetic inference. However, low 

levels of 16S sequence diversity have been observed, which may make 16S-based 

phylogenetic analyses insufficient for confident inference of evolutionary relationships 

between closely related species, and there is no universal agreement on the level of 16S 

similarity required for definitive taxonomic classification 53–55. The recA gene we 

selected, in combination with a large number of statistical replicates to assess clade 

support, provided a robust phylogenetic tree that implies evolutionary relatedness 

between the S. aureofaciens ATCC 10762 type strain and a number of Kitasatospora 

species. The distinguishing features of the Streptomyces and Kitasatospora genera have 

been debated for many years, with some proposing their union 56,57. While our analysis is 

insufficient to make definitive claims about the relationship between these two genera, it 

does highlight continued need for robust bacterial classification schemes.  

 In addition to the evidence provided by our two individual gene 

phylogenies, the wide variation of homologous ATCC 10762 coding sequences observed 

within the other publicly available S. aureofaciens annotations suggests that two 

assemblies, NRRL B-2183 and NRRL B-2658, may be published under an incorrect 

taxonomic classification, as both assemblies only share approximately half of their 

coding sequences with S. aureofaciens ATCC 10762.  
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4.3 – Functional Analysis 

As previously stated, additional functional analysis was necessary to infer the 

function of a large number of sequences whose functions were not predicted by the NCBI 

annotation pipeline. Our manual search of the KEGG GENES database produced a large 

quantity of additional information for these sequences without a large quantity of manual 

effort. This highlights the danger of relying on a single source for functional predictions 

and the value of integrating information from multiple database searches. It also 

highlights the need for intensive manual curation of gene annotations.  
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CHAPTER 5 – CONCLUSIONS  

 The aims of this project were: 1) to evaluate the performance of several de novo 

assembly strategies, particularly hybrid and non-hybrid approaches; 2) to assess the 

effectiveness of meta-assemblies, and 3) to better characterize S. aureofaciens ATCC 

10762. We have shown that independent hybrid assemblies generated from the same 

input data can vary wildly, and that hybrid assembly approaches appear to outperform 

assembly strategies that rely on data generated only by a single sequencing platform. We 

have also shown that while merged assemblies generated with CISA may offer slightly 

more accurate representations of the genome than individual assemblies (according to the 

proportion of successfully mapped reads), they also significantly overestimate the actual 

genome size. Having thus selected the hybrid SPAdes assembly as the most robust, 

comparisons of this assembly with other, publicly available S. aureofaciens assemblies 

revealed significant genetic diversity, and phylogenetic and phylogenomic analyses 

support the notion that at least two of the publicly available S. aureofaciens assemblies 

may be taxonomically incorrect.  

How should investigators robustly evaluate de novo genome assemblies? When is 

an assembly finished? In the absence of a proper reference genome (which may itself 

contain errors), these questions appear daunting. Ideally, a finished assembly should be 

exactly the same length as the biological molecule it represents. Manual assembly 

finishing remains a time- and labor-intensive task, but unfinished ‘draft’ genomes have 

enormous research value, even if all genes are not represented or contig order and 

orientation remain partially uncertain. Here, the draft genome annotation allowed us to 

perform the phylogenetic, phylogenomic and functional analyses that highlight 
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unexpected diversity among S. aureofaciens strains. Our analyses highlight the need for 

all investigators to have a realistic understanding of data quality and methodological 

limitations when assembling microbial genomes without a reference. In this regard, our 

work joins a growing body of literature19,20,58,59 that asserts no single assembly strategy is 

objectively best across all contexts, and emphasizes the continued need for robust, 

empirical validation strategies. Future work must emphasize the development of such 

strategies and the importance of interleaving computational and empirical data, 

particularly for the purposes of functional and metabolic studies. We aim to conduct such 

studies for the purposes of more fully understanding S. aureofaciens and related species, 

given their enormous relevance to human health.  
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Table 1. Summary statistics for non-hybrid assemblies. 

Assembler 
# contigs  

[# scaffolds] 
Total length (bp) Max length (bp) 

Mean length 

(bp) 

N50 length 

(bp) 

# PCR 

Sequences 

Present 

% Mapped 

Reads 

IDBA 
1,249  

[1,382] 

9,236,484  

[9,073,474] 

94,475  

[220,877] 

7,395  

[6,565] 

18,458  

[26,759] 
9 / 9 88.63 

SGA 
11,319  

[5,264] 

9,890,301  

[10,722,212] 

33,489  

[35,102] 

874  

[2,037] 

2,459  

[4,822] 
7 / 9 87.09 

SOAPdenovo2 
36,660  

[19,305] 

12,282,331  

[18,990,823] 

16,806  

[5,538,220] 

335  

[984] 

1,713  

[1,678,425] 
8 / 9 78.04 

SPAdes 
574  

[393] 

9,259,003  

[9,322,718] 

412,063  

[685,539] 

16,131  

[23,722] 

59,816  

[155,320] 
9 / 9 90.52 

MIRA1 5,385 10,158,828 97,273 1,887 8,106 9 / 9 89.512 

Trinity1 2,559 11,511,866 48,849 4,499 10,612 9 / 9 89.602 

Statistics for scaffold assemblies are shown in brackets.  
1These assemblers do not produce scaffolds.  
2Reads were aligned against assembled contigs. 
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Table 2. Summary statistics for hybrid assemblies. 

Assembler 
# contigs  

[# scaffolds] 

Total length 

(bp) 

Max length 

(bp) 

Mean length 

(bp) 

N50 length 

(bp) 

# PCR 

Sequences 

Present 

% Mapped 

Reads 

SPAdes 
120 

[60] 

9,234,994 

[9,244,380] 

881,164 

[1,746,076] 

76,958 

[154,073] 

228,235 

[660,648] 
9 / 9 90.56 

Velvet 
711 

[389] 

9,325,515 

[9,456,464] 

309,247 

[8,005,420] 

13,116 

[24,310] 

46,576 

[8,005,420] 
0 / 9 87.13 

Scaffold counts include singleton (unplaced) contigs.
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Table 3. Summary statistics for merged assemblies generated by CISA.  

Input assemblies1 # contigs 
Total length 

(bp) 
Max length (bp) 

Mean 

length (bp) 

N50 length 

(bp) 

% Mapped 

Reads 

1: IDBA + Trinity + Velvet 4,519 30,073,865 309,247 6,655 18,974 90.19 

2: 1+ SGA 15,838 39,964,166 309,247 2,523 12,052 90.21 

3: 2 + MIRA 21,072 50,111,509 309,247 2,378 10,784 90.24 

4: 3 + SPAdes (hybrid) 21,192 59,346,503 881,164 2,800 15,343 88.89 

1The contig sets merged by CISA.
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Table 4. Comparison of annotated genomic features.1 

Feature type 
Number annotated 

Velvet assembly SPAdes assembly 

Genes (total) 6,680 8,073 

Protein coding genes 6,401 7,627 

Pseudogenes2 144 349 

Ribosomal RNA 37 22 

Transfer RNA 74 72 

Non-coding RNA 24 3 

1NCBI RefSeq accession numbers: NZ_JPRF00000000.1 (Velvet assembly) and 
NZ_JPRF00000000.2. (SPAdes assembly). 
2Includes incomplete sequences and entries with frameshifts and premature stop codons.
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Table 5. Proportion of aligned bases and conserved coding sequences identified between S. aureofaciens ATCC 10762 and 

other S. aureofaciens assemblies. 

Strain name Accession No. # contigs # coding 
sequences 

Total percentage of 
aligned bases 

# 
conserved 

CDS 
S. aureofaciens ATCC 10762 ASM118895v2 107 7,627 - - 

S. aureofaciens NRRL B-2657 ASM71917v1 279 7,587 99.75 7,483 

S. aureofaciens NRRL 2209 ASM97851v1 989 7,395 99.05 7,302 

S. aureofaciens NRRL B-1286 ASM71688v1 505 7,591 83.69 6,388 

S. aureofaciens NRRL B-2183 ASM72084v1 167 7,367 10.31 3,857 

S. aureofaciens  NRRL B-2658 ASM127066v1 269 7,874 9.92 3,984 
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Table 6. Comparison of protein coding sequences annotated in Velvet and SPAdes 

assemblies of S. aureofaciens ATCC 10762. 

Sequence category 
Number annotated 

Velvet assembly SPAdes assembly 

Identical CDS 5,270 

Non-identical CDS1 833 

Unique to annotation2 21 192 

1These coding sequences differ in length between the two annotations. 
2These coding sequences appear only in the indicated annotation.	 	
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Figure 1. Circular genome plot of S. aureofaciens ATCC 10762. Scaffolds from the 
hybrid SPAdes assembly are plotted in descending order of scaffold length. From the 
outermost ring, the following elements are shown: scaffolds, contigs, forward strand 
CDS, reverse strand CDS, transfer RNAs, ribosomal RNAs and G+C content.	
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Figure 2.  Maximum likelihood phylogeny of S. aureofaciens ATCC 10762 and neighboring species inferred from 16S rRNA 
gene sequence. The phylogeny was reconstructed with RAxML as decribed in Materials and Methods. Bootstrap values for well 
supported clades (≥ 70%) are shown. The scale bar indicates the number of nucleotide substitutions per site. 
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Figure 3.  Maximum likelihood phylogeny of S. aureofaciens ATCC 10762 and neighboring species inferred from recA gene 
sequence. The phylogeny was reconstructed with RAxML as decribed in Materials and Methods. Bootstrap values for well supported 
clades (≥ 70% ) are shown. The scale bar indicates the number of nucleotide substitutions per site.
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APPENDICES 
 
Appendix 1: List of PCR primers for sequencing of gap regions found in the Velvet 
scaffolds. 
 
Region name Forward primer (5’ – 3’) Reverse primer (5’ – 3’)  Amplified Sequenced? 

contig_392_393 GAAGGTGTCGTGGTCCATCT CTGGAGAAGTCGGACGGTTC 	 	
contig_397_398 ACTGGGCGCAGATCCTCT CTCGTGCATGAAGCGTTGC x	 x	

contig_398_399 ACTGGGCGCAGATCCTCT CTCGTGCATGAAGCGTTGC x	 x	
contig_399_400 CCGAGATCACCGTCATGGTC GGTAGCAGTCGTCGATCCG 	 	
contig_401_402 CCGATAGTTCCGCCTGTACG CACCGGATGAGCCTGTTGTA 	 	
contig_404_405 GCTGAGATGGAACTCGCAGA CAACTCTGCCGGGCGTC x	 x	
contig_411_412 ACGCTTCGGTCTCGGG TTCGGCGTGCCTGTTTATCG 	 	
contig_416_417 AAGAACGCGAACCGCCA GGCGGTCACCGAACCG x	 	
contig_428_429 ACACCGTCTTGGCGATCTG CCAACGATCGATCAGGAGCA x	 x	
contig_437_438 ATGGAACCGCGCTTGAGG CGGCCTCGCCTACACC 	 	
contig_444_445 GAACGGGAACGGCTGGAG GTTCTCGGTGGAGGTGCC 	 	
contig_452_453 AAGGGATCGTCCCAGGTCA GACGATCACGTCGCTCATCA 	 	
contig_456_457 GCGGGCGGCTCGTATAAC GACGGTCGAACTACGCTTCC 	 	
contig_460_461 CAGTTCGTCCCACTCCTCGG CGGACAAGCCGACCACAC 	 	
contig_462_463 TCCTGGACACTGACGCACA AATCGCCCGGAGTTTCGAG 	 	
contig_466_467 GCAGTCCCGACGACCAGAG CGAGGATCAGCGGCGTCT 	 	
contig_470_471 CGACGTAGCCGAGCGTG CGCAGGCCGCTGTCA 	 	
contig_487_488 AGTTGCACTCTACGGGGTGA CAAGTATTCGTGCAGACACGG 	 	
contig_512_513 CGGGCCAAGGGGTTAGTTAC GCCTTCGGGCTCACCTT 	 	
contig_523_524 CTGCTCGACACCGCCC CGAGCAGCCATTCGACCG 	 	
contig_533_534 GGCGAATGTCCACCGAGC CCCTCGTAGCGGTCGAACA x	 	
contig_536_537 CCACCAGCAGCCAGTTCA GTGGTGATCGTGGACGAGG 	 	
contig_554_555 CGCTGGCGACCGAGAAC CGCCGTACCGGAGCAC 	 	
contig_557_558 GACTGCTCGCCGAAGCC CCCGGGTCAACTCGCCTT x	 x	
contig_561_562 TGGAGTTCGGCTACGAGACC CAGGCGCTCATGCTCGAAG 	 	
contig_604_605 TACGGGAGTTGGGTGGAGAG CCAACTACGCCTACGAGCG x	 x	
contig_631_632 CCCCTGTGATCCCGTGAAG CGATCATGGTGAACTCCGGC 	 	
contig_634_635 GACCCTCAGGCGGTAAGG GGCACCCTGGTCGTTCC x	 	
contig_635_636 GTAGGTCGGAAGCTCGACGG CCAGGAGACGATCGAGGACG 	 	
contig_636_637 AGGAGACCGTCCAGGTCC TGTCCTCCTTCGGGGTCAG x	 	
contig_641_642 GAGGTCCTTGAAGGGGTGC GTCACCTGGGAGCGGTTC x	 x	
contig_644_645 CCAGTACTCCATTTGCCGC TTCCACGCCAAGCACGAC x	 	
contig_651_652 AGCGAAACACGGAGACATAGA GGGATTCGACGGTGTACGA x	 x	
contig_699_700 TTCGCATGCGGTTGGAGAT GGTGGTCCCTATCAGCGTG x	 x	
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Appendix 2 – Lengths of gap regions predicted by Velvet compared to the actual 
sequences. 
 

Region name Predicted gap 
length (bp) Actual length (bp) G+C content 

(%) 
contig_397_398* 281 112 85.05 
contig_398_399* 148 235 80.85 
contig_404_405 10 142 82.98 
contig_428_429 10 101 80.20 
contig_557_558* 10 234 82.70 
contig_604_605 10 64 85.94 
contig_641_642* 10 61 81.97 
contig_651_652* 10 108 57.41 
contig_699_700* 10 50 70.00 

*Sequences were manually corrected according to the corresponding chromatogram. 
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Appendix 3 – Full-text PDF of Gradnigo et. al., 2016. 
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