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Phenotypic plasticity is the ability of one genotype to express multiple phenotypes under 

variable environments. Behavioral plasticity is a type of phenotypic plasticity in which 

individuals adjust behavior in response to changes in environment. Often, behavioral 

plasticity is studied at the level of the population, rather than at the level of the individual. 

Further, few studies have considered the effect of individual traits, such as size and age, 

on the expression of behavioral plasticity, or, how individual plasticity may be correlated 

across different contexts. In this study, we used female green swordtails (Xiphophorus 

hellerii) to test the effects of body size at testing and age at maturation on the expression 

of predator-related behavioral plasticity in two social contexts: (1) intrasexual (two 

females) and (2) intersexual (two females and a male). We also tested the extent to which 

plasticity is correlated across contexts within individuals, to elucidate whether females 

that show a high degree of plasticity in one context also show a high degree of plasticity 

in another context. For two agonistic behaviors, we found differing effects of the 

interaction of body size at testing and age at maturation on the expression of predator-

related plasticity across social contexts. These results suggest that individual traits 

interact in a complex manner to affect patterns of plasticity across contexts, and, that 



alleles influencing age at maturation may be associated with alleles that affect plasticity. 

Across contexts, we found no evidence of correlated plasticity in a given behavior, 

suggesting that individuals are not consistently plastic across the contexts tested. Within 

contexts, however, the plasticity expression for several different behaviors was correlated, 

and was similarly affected by body size at testing and age at maturation. Overall, this 

study indicates that the type and degree of individual predator-related behavioral 

plasticity expressed is partially dependent on multiple traits, and varies substantially 

between social contexts. Few studies have examined the effect of multiple factors on the 

expression of plasticity, or plasticity in multiple social contexts, and, our results indicate 

that the causes and consequences of phenotypic plasticity are likely to be complex.
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CHAPTER 1: Inter-individual variation in predator-related behavioral plasticity 

expressed by female green swordtails (Xiphophorus hellerii) 

 

ABSTRACT 

Phenotypic plasticity is the ability of a genotype to express different phenotypes, under 

different environmental conditions. Behavioral plasticity is a type of phenotypic plasticity 

in which a change in phenotype can rapidly occur. Though often studied at the level of 

the population, behavioral plasticity studies at the level of the individual could provide 

insight into how plasticity evolves and is maintained in a population. Further, individual 

differences in phenotypes (such as body size) may predict differences in the degree of 

plasticity expressed by individuals within a population. We used female green swordtails 

(Xiphophorus hellerii) to test the effects of body size at testing and age at maturation on 

the expression of predator-related behavioral plasticity in an intrasexual social context 

(i.e., two females). We found that all females, regardless of body size at testing or age at 

maturation, expressed predator-related plasticity in spatial positioning. Further, later-

maturing females darted more from the monitor displaying a film stimulus than earlier-

maturing females, whether or not the filmed sequence included a predator. Finally, both 

body size at testing and age at maturation affected the degree of predator-related 

plasticity in the expression of an agonistic behavior: transverse display. In the presence of 

a predator, small, early-maturing females decreased the time spent transverse displaying, 

whereas small, late-maturing females increased the time spent transverse displaying. 

Large females expressed the opposite pattern. In the presence of a predator, large, early-
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maturing females increased the time spent transverse displaying, whereas large, late-

maturing females decreased the time spent transverse displaying. This study shows that 

both body size at testing and age at maturation affect plasticity in at least one behavior in 

female green swordtails. In general, our results suggest that the degree and direction of 

plasticity expressed by an individual may be affected by complex interactions of its other 

traits . Thus, simple predictions concerning the effects of environment on plasticity 

expression may be misleading, and future studies should consider multiple factors when 

investigating individual differences in behavioral plasticity. 

 

INTRODUCTION 

The ability of one genotype to express different phenotypes under variable environmental 

conditions is referred to as phenotypic plasticity (West-Eberhard 1989; DeWitt et al. 

1998). The evolution of such flexibility in fitness-related traits can provide individuals 

with the means to adaptively respond to environmental changes that occur within their 

lifetime.  Behavioral plasticity is a type of phenotypic plasticity that allows organisms to 

make rapid behavioral responses to changes in their environment (Komers 1997; 

Pigliucci 2001).  

Plasticity in behavior has been studied predominately at the level of the 

population (Sih and Bell 2008). Such studies have been accomplished by documenting 

how populations respond to natural or experimental changes in their environment, e.g., 

timing of breeding in response to climate change (Nussey et al. 2007). Less well-studied 



3 

is how variation in traits at the level of the individual, such as body size and age, affect 

individual differences in the degree of plasticity expressed, e.g., timing of breeding by 

young versus old females in response to climate change. This is particularly true outside 

the context of mate choice (Stamps 2015; Ah-King and Gowaty 2016). A focus on how 

differences in individual traits may influence the expression of behavioral plasticity 

merits further attention because, although population-wide phenotypic plasticity may be 

favored in a fluctuating environment, the optimal response of different individuals within 

a population may vary (Wolf et al. 2008).  

There is ample evidence that prey species adjust their behavior in response to the 

presence of a predator—i.e., they exhibit predator-related plasticity in behavior. For 

example, one study found that female Trinidadian guppies (Poecilia reticulata) from a 

high-predation environment (Quaré River) preferred brightly colored males, but reduced 

this preference in the presence of a predator. Females from a low-predation environment 

(Paria River) also preferred brightly colored males; however, they did not reduce their 

response in the presence of a predator (Godin and Briggs 1996). Yet, in a different study, 

females from the same low-predation environment (Paria River) reduced their preference 

for a brightly colored male in the presence of a predator, and in some cases switched their 

preference for a brightly colored male to one that was dull (Gong and Gibson 1996). Such 

differing results may arise because of differences in individual traits, such as body size or 

age that may affect the expression of plasticity in mate choice. For example, when female 

Atlantic mollies (Poecilia mexicana) that differed in body size were tested for preference 

for male size in the presence and absence of a predator, both small and large females 
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preferred large males in the absence of a predator. However, in the presence of the 

predator, large females reduced their preference for large males. This study suggests that 

large female Atlantic mollies are behaviorally plastic, but small females are not (Bierbach 

et al. 2011). A better understanding of how different traits affect inter-individual 

variation in behavioral plasticity could provide insight into the evolutionary trajectory of 

phenotypic plasticity within a population, as well as how such plasticity can be 

maintained (Pigliucci 2005; Nussey et al. 2007; Dingemanse et al. 2010). 

Differences in body size among individuals within a population regularly predict 

differences in their behaviors (Peters 1986). In taxa with determinate growth, an 

individual’s body size (often measured as length), but not necessarily mass, is frequently 

fixed as an adult, and may affect a variety of behaviors related to fitness (Sebens 1987; 

Brown et al. 1993; Barnett et al. 2015). This is the case in bluegill sunfish (Lepomis 

macrochirus), in which mating strategies are contingent upon the size of an individual; 

small males are consistently ‘sneakers’ that surreptitiously obtain copulations, whereas 

large males perform often-elaborate courtship displays (Gross 1991). Plasticity in anti-

predator behavior is expressed to different degrees by small and large three-spined 

sticklebacks (Gasterosteus aculeatus). After exposure to a predator, small sticklebacks 

take less time to emerge from a refuge than large sticklebacks. A possible reason for this 

difference is that small individuals may have greater metabolic needs than large 

individuals. If so, small individuals must forage more often than large individuals, despite 

the predation risk associated with such activity (Krause et al. 1998).  
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Another trait that often affects the expression of behavioral plasticity is age. For 

example, young female field crickets (Gryllus lineaticeps) are plastic in mate preference 

in response to environments differing in male density, whereas older crickets are not 

(Atwell and Wagner 2014).  The effects of age at maturation per se on behavioral 

plasticity are less well known. Age at maturation and current age may have differing 

effects on plasticity, because age at maturation is a part of life history strategy (Flatt and 

Heyland 2011), whereas age is a life stage. Only some individuals share the same life 

history strategies, including age at maturation, however, many more individuals will 

progress through the same ages. The effect of age at maturation per se on behavioral 

plasticity compared to age may be different, especially when considering other individual 

traits associated with age at maturity. 

Members of the genus Xiphophorus (family Poeciliidae), swordtails and platyfish, 

are ideally suited to test the effect of individual traits on the expression of behavioral 

plasticity for several reasons. First, behaviors exhibited by members of this monophyletic 

group of live-bearing fresh-water fishes have been studied extensively in the laboratory 

as well as in the field (Rauchenberger et al. 1990; Dugatkin 2001; Kazianis and Walter 

2002). Second, heritable determination of body size and age at maturation is well studied 

in this genus, and is controlled by a sex-linked genetic polymorphism at the pituitary 

locus (P-locus; Kallman and Borkoski 1978; Kallman 1989). Although first discovered in 

southern platyfish (X. maculatus), it seems that some swordtail species have a P-allele-

like system as well (Kallman 1983; Zimmerer and Kallman 1988; Kallman 1989). For 

example, correlations between size and age at maturity in the green swordtail X. hellerii 
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(also known as X. helleri; Froese and Pauly 2016) appear to be reflective of a P-allele-

like system, and, body size in males appears to be heritable (Kallman 1989; Campton 

1992). For species in which the P-locus has been identified, different genotypes for early 

or later maturation produce fish of varying maturation ages and sizes. At sexual 

maturation, early-maturers are smaller, whereas late-maturers are larger (Kallman et al. 

1973; Schreibman et al. 1973; Basolo 2008). Finally, while P-alleles are known to only 

affect age and size at sexual maturation in platyfish, P-alleles have also been identified to 

be associated with behavior in swordtails (Schreibman et al. 1973; Borowsky 1987; Ryan 

and Causey 1989; Zimmerer and Kallman 1989).  

In one species of swordtail, X. multilineatus (formerly X. nigrensis; 

Rauchenberger et al. 1990), alleles that determine male size and age at maturity are 

associated with the type of mating behavior exhibited. Genetically large males (metallic 

blue in color) regularly court females, regardless of social context (i.e., presence of other 

males). Genetically small males (metallic blue or yellow in color), however, are plastic—

they can act as ‘sneakers’ or they can court, depending on social context. Thus, in this 

species, there is evidence of behavioral plasticity in males associated with genetically 

determined body size (Zimmerer and Kallman 1989). Male X. montezumae swordtails 

also exhibit plasticity in mating behavior related to their genetically determined body 

size; after winning in a male-male competitive interaction, large males were more risk-

averse than small males. In addition, contest winners reduced the time spent near females 

after viewing a high-risk predation condition, but contest losers, usually the small males, 

increased the time spent near females (Basolo and Nootz in revision). Thus, there is 
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further evidence of a genetic link of P-alleles that determine age and size at sexual 

maturity with predator-related plasticity in male behavior in this genus. This makes 

members of this genus suitable candidates for investigating how possible genetic links of 

P-alleles with other alleles that affect behavior can explain differences in inter-individual 

behavioral plasticity. 

We used female green swordtails, Xiphophorus hellerii (subfamily Poeciliinae), to 

investigate the effect of body size at testing and age at sexual maturity on predator-related 

behavioral plasticity. These sexually dimorphic fish are livebearers found in Central 

America (Belize, Guatemala, Honduras) and Mexico (Heckel 1848). According to 

Kallman (1989), while male green swordtails exhibit variation in age and size at 

maturation, female green swordtails mature at a young age and small size (similar to 

early-maturing males). The Basolo Laboratory, however, has evidence suggesting that 

females from multiple wild populations express growth and maturation trajectories 

consistent with a P-allele system operating in both sexes (unpublished data). The 

population used for our study is one of these. In fact, this population reflects a P-allele 

system like that found in the southern platyfish (X. maculatus) (Schreibman et al. 1973; 

Kallman and Borkoski 1978; Kallman 1989). That is, males and females show similar 

maturation trajectories, and, females continue to grow after maturation, while males do 

not (Kallman et al. 1973; Kallman 1989; Royle et al. 2006; Basolo 2008). Thus, females 

with a P-genotype for early maturation will mature at a relatively small size, yet may 

ultimately become large due to post-maturation growth (see Figure 1.1 reproduced from 

Basolo 2008). If there is a genetic link of P-like-alleles with alleles that affect behavioral 
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expression in green swordtails (as found in some other swordtails within the genus, e.g., 

Zimmerer and Kallman 1989) these associations may underlie inter-individual 

differences in behavioral plasticity. The existence of such a genetic link can be elucidated 

by evaluating differences in predator-related behavioral plasticity exhibited by females 

that are similar in body size, but are dissimilar in age at maturation. 

Beyond the context of mate-choice, females are infrequently used as test subjects 

in behavioral studies (Gowaty 1997; Ah-King and Gowaty 2016). Few studies have 

investigated plasticity in behaviors exhibited during female-female interactions in general 

(for examples see Forsgren et al. 2004; Gavasa et al. 2012). To our knowledge, no 

studies have addressed behavioral plasticity in female-female social behaviors in green 

swordtails. We tested whether in an intrasexual social context (two females), female 

green swordtail body size at testing is associated with the degree of predator-related 

behavioral plasticity. In the wild, male and female green swordtails that co-occur with 

piscivorous fish are larger on average than those from sites in which piscivorous fish are 

absent (Basolo and Wagner 2004). And, in a laboratory study of a congener, the southern 

platyfish (X. maculatus), platyfish size increased in populations in which there was a 

piscivorous fish predator, and decreased in populations in which a predator was not 

present (Basolo 2008). These body size differences may be, in part, a product of predator 

gape width limitations (Basolo and Wagner 2004; Basolo 2008). Based on these two 

studies, we assumed that small individuals incur a greater risk of predation than large 

individuals. As such, we predicted that small females would express a greater degree of 

predator-related plasticity than large females.  
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We further considered that inter-individual differences in behavioral plasticity 

may be driven by genetic links of alleles for age and size at sexual maturation with alleles 

that affect behavioral expression, given that associations of P-alleles with behavior have 

previously been shown in other Xiphophorus species. If females that matured small and 

relatively early (early/large) that have grown to be similar in body size to females that 

matured later (late/large), show similar degrees of plasticity, this would suggest that 

current size, not P-like-alleles (i.e., age at maturation), affects plasticity. Conversely, if 

females dissimilar in body size at testing, but similar in ages at maturation behave 

similarly, this would suggest that P-like-alleles (i.e., age at maturation), not current size, 

affect plasticity.  

 

METHODS 

Source of Test Fish 

Green swordtails, Xiphophorus hellerii, were collected from Little Barton Creek near 

Unitedville, Belize, at approximately mile marker 59 on the Western Highway (N 17° 12’ 

28’’/W 88° 56’ 36”) in March 2013 and 2014. These Generation 0 (G0) male and female 

fish were transported to the University of Nebraska—Lincoln and held individually in 

20.8 L glass tanks with a handful of the freshwater plant Java moss, an under-gravel filter, 

and a loose gravel bottom (depth of gravel=1.5 cm). G0 females that were brought back 

to the laboratory, but did not have offspring, were mated in the laboratory to G0 males 

collected from the same location. Twenty-five G0 females produced between one and 
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five broods with 1 to 89 Generation 1 (G1) offspring per brood. When broods were born, 

up to 14 newborn G1 fish were collected within 10 hours of birth.  

G1 offspring were held individually in a 6.6 L plastic “home” tank (29.9 x 19.7 x 

20.3 cm) with a loose gravel bottom (depth of gravel=1 cm), 10-15 small snails, and a 

handful of Java moss to help maintain the quality of the environment in the home tanks. 

All fish were housed in a room in which available light (12L:12D) and temperature (26-

28°C) were controlled. G1 offspring were physically, but not visually isolated from one 

another throughout rearing.  

To standardize experience during rearing of G1 offspring, each individual’s home 

tank was rotated weekly within (same height) and across (different heights) shelving rows, 

and between shelving units, in order to standardize any effects due to variation in light, 

temperature, and disturbance levels across the room. To further standardize conditions, 

we fed all individuals at the same hour, four times daily with Tetra brand TetraMin® 

tropical fish flakes at 0900 h and 1400 h, and hatched Brine Shrimp Direct live brine 

shrimp nauplii at 1200 h and 1600 h.  

Further, every four weeks, each G1 offspring was temporarily removed from its 

home tank for 2-4 min in order to clean the tank. This involved emptying the tank 

(including all snails and Java moss), rinsing the gravel, and refilling the tank with clean 

water. The snails, Java moss, and G1 fish were then returned to the home tank, and the 

tank was placed back on the shelving unit.  

To track the stages of sexual maturation, G1 offspring were measured when they 

reached 77 +/- 7 days old, and measured every 17.5 +/- 5.5 days thereafter until they 
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reached sexual maturity. Four months after the date G1 females were identified as 

sexually mature (i.e., a gravidity spot present indicative of the presence of yolked eggs 

per Basolo and Melie unpublished data), they were considered ready to be used in test 

trials.  

 

Individual Traits of Test Fish Relevant to Analyses 

From the pool of mature G1 females, focal individuals were categorized as either small or 

large, and non-focal females were categorized as intermediate-sized. Size classes 

attributed to the test fish were relative to the mean body sizes of the pool of G1 females at 

testing (standard length ranged from 37.15 to 60.14 mm; body mass ranged from 1.06 to 

5.68 g). Our measure of standard length was defined as the length of the body from the 

tip of the rostrum to the midway point of the caudal vein. In our laboratory pool of test 

fish, as found in field populations (Basolo and Wagner 2004), standard length (mm) and 

body mass (g) are highly correlated (Pearson’s correlation coefficient r= 0.984, n= 71, p< 

0.001). Because of this correlation, our proxy for size class is based on standard length 

alone. Size classes were created by comparing the mean and range of female standard 

lengths within the pool of test fish, and by then choosing representative focal females 

from both ends of the range.   

Body sizes at testing for each size class were as follows: small focal females 

(standard length ranged from 37.15 to 45.46 mm; body mass ranged from 1.06 to 2.47 g; 

n= 20), large focal females (standard length ranged from 49.00 to 60.14 mm; body mass 
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ranged from 2.71 to 5.68 g; n= 30), and intermediate non-focal females (standard length 

ranged from 41.05 to 53.75 mm; body mass ranged from 1.55 to 3.52 g; n= 77). 

Intermediate non-focal females were chosen based on their body size relative to the focal 

individual, and were representative of the middle of the range of standard lengths within 

the pool of test fish at testing. On average, non-focal females differed in standard length 

from the focal female by 7.50 mm (standard length range of difference was 2.28 to 17.92 

mm; body mass range of difference was 0.21 to 4.08 g). Intermediate non-focal females 

were used as non-focal individuals between 1-7 times, with a mode of 4 tests per non-

focal female. 

 Test fish within both size classes represented a wide range of ages at sexual 

maturation (in days). Because individuals were grouped into size classes based on the 

standard length measured six days before the trials began, age and size at testing was not 

necessarily close to age and size at maturation. This means that some individuals that had 

been relatively small, early-maturers were ultimately grouped within the large size class, 

as a result of continued post-maturation growth. Focal females of the small size class had 

matured between 112 and 229 days old, and focal females of the large size class had 

matured between 98 and 279 days old. 

 Some individuals tested were half-or full-siblings (sibs) of one another. A total of 

23 families were represented in this study. Of the focal females tested, at least one small 

and one large individual were represented from 10 of the 23 families. Individuals within 

the small size class came from 18 different families, and individuals within the large size 

class came from 16 different families. Non-focal intermediate-sized females came from 
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24 different families. Of these 24 non-focal female families, 20 families were also 

represented by focal individuals, although neither half- nor full-sibs were tested with one 

another.  

 

Pre-trial Acclimation of Test Fish 

To acquaint test subjects to the environmental conditions experienced during testing, 

focal and non-focal fish experienced a series of pre-trial acclimation periods. Five days 

prior to the first test day, fish were individually introduced to a conspecific “socializer” 

female of a smaller size in a tank (60 x 30 x 30 cm) with a bottom white board partitioned 

into a 3 x 6 grid of equally-sized squares (9 x 9 cm), and covered with a thin layer of 

gravel (depth=3 mm) secured with silicon aquarium sealant (American Sealant, Inc.). The 

tank was partitioned into two sections of equal size (30 x 30 x 30 cm) by a clear, 

permeable plastic divider placed in the middle. Thus fish were physically, but not 

visually or chemically isolated from one another for 20 min.  

On the fourth evening prior to when trials began, an empty foraging ring, identical 

to the foraging ring of the testing tank, was placed in their home tanks overnight. Finally, 

three days prior to trial commencement, focal and non-focal fish were individually placed 

in a tank (60 x 30 x 30 cm) with the 3 x 6 gridded gravel board bottom and two sides (one 

60 x 30 cm and one 30 x 30 cm) covered with blue felt. On the other 30 x 30 cm side of 

the tank was a monitor (Truetech 2-in-1 17” LCD TV + DVD Model No. PVS21175S1) 

that played a 34-minute film sequence of a predation event by a large Jack Dempsey 
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cichlid predator, Rocio octofasciata (known at various times by nine other species names; 

Froese and Pauly 2016), on a male conspecific (X. hellerii). Monitor side was randomly 

determined for each individual.  

 

Experimental Design 

A testing framework was developed in which each focal female was tested twice per 

week over a four-week period (with three to four days in between tests). Within each test 

week, a female was tested within one context in two different treatments. The treatments 

for this study were two predator environments: (1) predator-absent and (2) predator-

present. Context order was randomized separately for each focal female prior to the start 

of a set of trials. Within each context, treatment order was also randomized. 

For this Chapter, females were tested in an intrasexual social context, in which a 

focal female was paired with an intermediate-sized non-focal (NF) female. For Chapter 2, 

females were tested in an intersexual social context, in which a focal female was paired 

with an intermediate-sized NF female and a NF male. In Chapter 2, the results for the two 

social contexts are compared. Finally, for a separate study, the females were tested in two 

non-social contexts: general activity and foraging (Coit and Basolo in prep). Of the four 

contexts described above, only the intrasexual social context is addressed in this chapter. 

Each trial was 30-min in duration. Trials were divided into three 10-min periods: 

acclimation (P0), pre-exposure (P1), exposure (P2). For the predator-absent treatment, 

one of 13 film stimuli was randomly designated and displayed on a monitor at one end of 
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the test tank during a trial. In the predator-absent treatment, P1 and P2 were identical to 

the acclimation (P0) period because in these periods, a film stimulus showed an 

environment devoid of predators for the entire 30 min. For the predator-present treatment, 

one of 12 film stimuli was randomly designated and displayed on a monitor at one end of 

the test tank during a trial. In the predator-present treatment, the third 10-min period (P2) 

differed from the predator-absent treatment P2 in that the film stimulus showed a large, 

field-collected fish, a Jack Dempsey cichlid (Rocio octofasciata), swimming across the 

monitor, in and out of view, in varying depths-of-field. Jack Dempsey cichlids are 

piscivorous predators that co-occur with green swordtails in the wild (Basolo and Wagner 

2004). In the laboratory, R. octofasciata consume X. hellerii (DiSciullo personal 

observation). The film stimuli used in this study were created for previous experiments 

with green swordtails (Melie and Basolo in revision). Monitor side was randomly 

designated for each trial. 

 

Testing Chamber Set-up 

Trials were conducted in one of four designated testing chambers in the Basolo 

Laboratory. A testing chamber included a 60 x 30 x 30 cm test tank with a monitor 

(DELL UltraSharp 2005FPW 51.05-cm Wide Aspect Flat Panel LCD Monitor) randomly 

placed at one of the two ends of the test tank (30 x 30 cm) to display a film stimulus. The 

glass at the other end of the tank (30 x 30 cm), opposite the monitor, was covered on the 

outer side with blue felt. One of the long sides of the tank (30 x 60 cm) was randomly 
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designated the back of the tank, and, was covered (on the outer side) with blue felt. The 

other long side of the tank (30 x 60 cm) was designated the front.  

We created a visually distinct 3 x 6 grid of 18, 9 x 9 cm squares on a white plastic 

panel by siliconing (American Sealants, Inc.) a thin layer of gravel across the panel, 

except at the borders of the 18 squares. The grid panel was situated on the bottom of the 

tank during experimental trials, allowing us to precisely track the position of test subjects 

throughout a trial. The six 9 x 9 cm squares closest to the monitor displaying a stimulus 

were designated Zone 1, the six 9 x 9 cm squares in the middle of the tank were 

designated Zone 2, and the six 9 x 9 cm squares farthest from the monitor displaying a 

stimulus were designated Zone 3 (Figure 1.2). Two plastic plant refuges (Imagine Gold 

Ambulia Green, 18 cm in length) were suspended in the middle of the tank, at the border 

of Zones 1 and 2, and, at the border of Zones 2 and 3. A clear plastic foraging ring was 

suspended across the tank from front to back, and equidistant to the ends of the tank. 

Two cameras were positioned in the chamber: one 33.8 cm above the tank (top-

facing; DCR-Sony SR47 Handycam or Sony DCR-SR68 Handycam; see Figure 1.2) and 

one in front of the tank, 130.8 cm away from the tank (front-facing; DCR-Sony SR47 

Handycam, Sony DCR-SR68 Handycam or Panasonic 5100HS WV-PS03). Filmed 

sequences of trials from these cameras were recorded onto Fuji Pro VHS tapes or Sony 

Memory Stick PRO Duo 4GB memory cards. In addition, trials were viewed remotely via 

two monitors located outside of the test chamber. A light fixture suspended above the 

tank was equipped with two 40 Vita light™ broad-spectrum lamps. To reduce glare on 

the surface of the tank water, the light fixture was fitted with a sheet of vellum.  
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Conducting and Scoring Trials 

Fish were not fed for a two-hr period prior to testing. Prior to the start of a trial, the 

testing chamber was fully prepared, including starting and pausing the film stimulus, such 

that the monitor displayed a predator-absent environment (P0) when test subjects were 

introduced into a test tank. For each trial, the focal individual was placed in the tank, then 

the non-focal female, and finally a red TetraMin flake was placed on the surface of the 

water in the middle of the test tank, to ensure that females were not hungry. Then, the 

film stimulus was resumed and the cameras started recording the fish in the tank.  

At the end of the 30-min test period, all test subjects were returned to their home 

tanks. If the trial series was not yet complete, the next trial was run three to four days 

after the previous trial. Because trials in the intersexual social context may have preceded 

trials in the intrasexual social context for some focal females, we took steps to ensure that 

females would not be pregnant. This was done by modifying the sexually developed anal 

fin (gonopodium) of every non-focal male tested in the intersexual social context (see 

Chapter 2). Once a focal fish had completed all trial types, she was removed from the 

study and monitored for five weeks to assess health and reproductive status (no females 

were impregnated during the trial series). 

Following each trial, the tank was drained immediately and the tank and its 

components were rinsed with an 80% denatured ethyl alcohol solution to eliminate any 

trace of the previous occupants. Trials were conducted between 0900 and 1700 h.  



18 

Behaviors (including anti-predator and social agonistic behaviors) were scored 

from the filmed trials that were uploaded to a computer (see Table 1.1). Behaviors 

exhibited during the pre-exposure (P1) and exposure (P2) periods were scored and 

compared within and across treatments. The social behaviors that we scored had 

previously been described as expressed by members of the genus Xiphophorus. In these 

previous studies, behaviors were exhibited by males toward other males and females, and, 

by females toward males (Clark et al. 1954; Franck 1964; Beaugrand et al. 1984; Basolo 

1995). In this study, we found that many of these same behaviors were exhibited by focal 

females toward non-focal females. A freeware program, Solomon Coder (version beta 

16.06.26; Péter 2016) was used to track frequency (number of times a behavior was 

exhibited, i.e., count) and duration (the time spent exhibiting the behavior from start to 

finish, sec) of the behaviors scored. 

 

ANALYSES 

Effect of Treatment and Individual Traits on Behavioral Plasticity 

We used linear mixed models with a Gaussian distribution to assess the effects of 

predator treatment and the covariates on the response variables. Data were analyzed in R 

(version 3.2.2; R Core Team 2015). We used the lmer function for linear mixed modeling 

in package lme4 (version 1.1-12; Bates et al. 2015).  

Because we were interested in the possible effect of each predictor on a number of 

different behaviors, we used the same global model for each response variable. The 
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global model included: the fixed effect of treatment (predator-absent or predator-present 

environment); focal individual body size at testing (standard length in mm) and age at 

maturation (number of days old when determined to be sexually mature) as covariates; 

and all possible two- and three-way interactions. Focal fish ID and family to which the 

fish belonged were included as random effects to account for the repeated measures 

design and the lack of independence of fish from the same family. Fish ID was nested 

within family ID. The response variable was defined as the difference in behavior 

expressed (i.e., the number of times or length of time a behavior was exhibited) during 

the exposure period and the pre-exposure period. Our measure of plasticity was the 

change in that response from the predator-present treatment to the predator-absent 

treatment. 

In this study, if there was a significant effect of treatment (i.e., predator 

environment), or a significant effect of the interaction of treatment with body size at 

testing and/or age at maturation on the response variable, then predator-related plasticity 

was expressed.   

To determine the effect of each predictor on the response variables, we used the 

drop1 function to run chi-squared likelihood ratio tests and obtain p-values by comparing 

models with and without the predictors of interest. To validate our models, we checked 

all fixed/random effects and covariates for collinearity, and checked all residuals of the 

models for violations of assumptions of normality and homoscedasticity. 
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Alpha Correction for Multiple Tests 

To account for multiple comparisons, we applied the Benjamini-Hochberg (B-H) 

procedure to control the false discovery rate across the multiple complex models applied 

to data from the same dataset (Benjamini and Hochberg 1995). We set the false discovery 

rate at Q = 0.05 and adjusted critical p-values (P) to q-values (Q), by considering the 

effects of all predictors across the 10 models simultaneously. Each of the 70 significance 

values were then ranked and adjusted per the B-H procedure. 

 

RESULTS 

Effect of Predator on Plasticity in Anti-Predator Behaviors  

There were no effects of the three- or any two-way interactions on predator-related 

plasticity in anti-predator behaviors after controlling the false discovery rate (FDR). As a 

result, these interactions were dropped from the models for all anti-predator-related 

behavioral response variables (all Q ≥ 0.182).  

Time spent in Zone 1. There were no significant effects of body size at testing or 

age at maturation on female time spent in Zone 1 (the third of the tank closest to the 

monitor displaying a stimulus) after controlling the FDR (Table 1.2). Treatment 

significantly affected time spent in Zone 1 (Table 1.2); females spent less time in Zone 1 

during the exposure period in the predator-present treatment, compared to the predator-

absent treatment (Figure 1.3). As such, females expressed predator-related behavioral 

plasticity in spatial positioning.   
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 Dart away from stimulus. There were no significant effects of treatment or body 

size at testing on female darts from the stimulus after controlling the FDR (Table 1.3). 

Age at maturation significantly affected female darts from the stimulus; females that 

matured relatively later darted more from the stimulus, regardless of treatment or body 

size at testing (Figure 1.4).  

Remain motionless facing stimulus. Neither the treatment nor the covariates of 

interest (body size at testing and age at maturation) affected female time spent facing the 

monitor displaying the stimulus after controlling the FDR (all Q ≥ 0.764). 

  

Effect of Predator on Plasticity in Social Behaviors  

Transverse display toward female. There was a significant effect of the three-way 

interaction between treatment, body size at testing, and age at maturation on female 

transverse displays after controlling the FDR (Table 1.4). This indicates that there is 

predator-related plasticity in female transverse displays, and, that body size at testing and 

age at maturation affect female transverse displays differently between treatments (Figure 

1.5). As age at maturation increased, small females increased time spent transverse 

displaying (Figure 1.6). Large females, however, decreased time spent transverse 

displaying as age at maturation increased (Figure 1.6). While females of both size classes 

expressed predator-related plasticity related to age at maturation, small females expressed 

a greater degree of predator-related plasticity than large females, with the direction of 

plasticity depending on female age at maturation. 
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Other social behaviors. After controlling the FDR, there were no significant 

effects of the three-way interactions (all Q ≥ 0.070), of any two-way interactions (all Q ≥ 

0.376), or of any predictors (treatment, body size at testing, age at maturation; all Q ≥ 

0.36) on the other social behaviors tested (i.e., displace from female, charge at female, 

dart away from female, bite female, simultaneous circling). 

 

Effect of Predator on Plasticity in General Activity 

Movement. After controlling the FDR, there were no significant effects of the 

three-way interaction, of any two-way interactions, or of any predictors (treatment, body 

size at testing, age at maturation) on movement throughout the trial (all Q ≥ 0.398). 

 

DISCUSSION 

Individual females expressed predator-related plasticity in time spent in Zone 1 (third of 

the tank closest to the monitor playing the stimulus) (Table 1.2). Females darting from 

the stimulus did not show predator-related plasticity, but age at maturation affected the 

expression of darts from the stimulus (Table 1.3). Body size at testing and age at 

maturation affected the expression of predator-related plasticity in transverse displaying 

toward the female (Table 1.4). 

Females, regardless of body size at testing or age at maturation, expressed 

predator-related plasticity in the time spent in Zone 1 (Table 1.2, Figure 1.3). Focal 

females reduced the time spent in Zone 1 when the predator was present in the exposure 
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period compared with the pre-exposure period, but showed little difference in the time 

spent in Zone 1 across periods when the predator was absent. It is widely known that 

organisms across a wide range of taxa regularly assess the risk of predation and modulate 

behaviors in response to predator environment (reviewed in Lima and Dill 1990). The 

finding of this study provides further evidence of this well-documented response, and is 

supported by the results of a similar study conducted in our laboratory, using male green 

swordtails (Melie and Basolo in revision). Females recognized the predator as a threat 

from the visual cue alone, and adjusted their behavior accordingly. Here, this behavioral 

response manifested as females moving away from the perceived threat (i.e., the monitor 

displaying the film stimulus), thereby increasing the distance between focal females and 

the predator and by doing so, likely reducing the perceived risk of predation. The 

expression of plasticity in this anti-predator behavior was similar across all individuals 

within the population, regardless of body size at testing or age at maturation.  

Females that were older at maturity darted more from the stimulus than females 

that were younger at maturity, regardless of treatment or body size at testing (Table 1.3, 

Figure 1.4). This result suggests that later-maturing individuals may be more risk-

sensitive to non-biological stimuli (such as the monitor displaying a film stimulus) than 

earlier-maturing females. Previous work has shown that female green swordtails respond 

to a monitor playing a film of a biological stimulus in a manner highly similar to that of 

how they respond to a live stimulus (Trainor and Basolo 2000). Yet in this study, 

response to the predator environment stimuli did not follow an expected pattern, because 

later-maturing females frequently darted from the monitor whether the film displayed a 
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biological stimulus (i.e., a predator) or not. This could be explained by the fact that there 

is a trade-off between age at maturation and other fitness-related traits (Flatt and Heyland 

2011). Maturing later can be risky given that an individual may succumb to predation or 

other sources of mortality prior to reproducing. But, this high-risk life history strategy 

may result in the high-reward of more abundant and larger, thus highly advantaged, 

offspring (Abrahams 1993; Reznick et al. 1993; Belk and Tuckfield 2010; O’Dea et al. 

2015). Late-maturing females may thus be more risk-sensitive in behavior overall than 

are early-maturing females in order to ensure survival to reproduction. This sensitivity 

may manifest in females as a tendency to increase responsiveness to non-biological 

stimuli (i.e., monitor displaying the stimulus) over time. This may explain why later-

maturing females expressed more darting throughout the trial, regardless of treatment (i.e., 

predator environment) or body size at testing.  

This result also suggests that the alleles that determine age at maturation appear to 

have an associated effect on the expression of this anti-predator behavior. We had 

predicted that females dissimilar in size but similar in ages at maturation would behave 

similarly in the trials if the P-like-alleles are associated with behavior alleles. Indeed, 

later-maturing females, regardless of body size at testing, darted more from the monitor 

displaying the stimuli than early-maturing females. This finding provides evidence in 

support of our prediction that P-like-alleles (here, alleles for later maturation) affect 

behavior expression—in this case that is how skittish or wary an individual is in response 

to non-biological stimuli (i.e., a monitor displaying a film stimulus). Treatment (i.e., 

predator environment) did not effect darts from the stimulus, which we had considered an 
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anti-predator behavior. This suggests that the overall tendency of later-maturing females 

to exhibit risk-sensitive behavior, such as darting from non-biological stimuli, may 

obfuscate female response specifically to a change in predator environment. 

The interaction between body size at testing and age at maturation affected focal 

female expression of time spent transverse displaying toward the non-focal female (Table 

1.4, Figure 1.5). Moreover, the interactive effect of these two covariates on expression of 

this threatening behavior differed in the presence and absence of the predator. This result 

indicates that body size at testing and age at maturation affect predator-related plasticity 

in behavior (Figure 1.6). For females that were small at testing, age at maturation had a 

major effect on predator-related plasticity; small, early-matured females decreased time 

spent transverse displaying in the presence of a predator, while small, late-maturing 

females increased time spent expressing this behavior. Large females showed the 

opposite pattern of small females.  

We had predicted that small females would express a greater degree of behavioral 

plasticity than large females, as it appears that small females incur a greater risk of 

predation in wild populations of green swordtails than do large individuals (Basolo and 

Wagner 2004). Because the effect of size depends on age at maturation, our results are 

inconsistent with this prediction. For example, small early-maturing females, and large 

late-maturing females, appear to express less risky behavior (i.e., interacting with the 

non-focal female through transverse displaying) in the presence of a predator, whereas 

small late-maturing females, and large early-maturing females, appear to express more 

risky behavior (i.e., interacting with the non-focal female through transverse displaying) 
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in the presence of a predator. We do not yet know why size and age at maturation interact 

as they do to affect female transverse displaying. What is clear, however, is that plasticity 

can be affected by complex interactions between other traits expressed by an individual. 

As a result, simple predictions about environmental effects on behavior and about 

differences in plasticity based on single traits (such as size or age at maturation) may 

often be misleading because of these complexities.  

In all, just one (transverse display) of the ten behaviors that we analyzed provides 

evidence that individual traits affect the degree of predator-related plasticity expressed in 

dissimilar ways. Further, age at maturation, but not treatment, also affected the 

expression of another behavior (dart from stimulus). Findings for darts from stimulus 

suggest that there may be an association between the alleles for size and age at 

maturation with alleles that affect behavior, because females of dissimilar size at testing, 

but similar ages at maturation behaved similarly. This study shows that the effects of 

individual traits on the expression of behavioral plasticity by individuals are integral to 

consider when investigating differences in behavioral plasticity within a population. 

Complex interactions of individual traits and changes in environment may direct the 

degree to which behavioral plasticity is expressed, as we found for plasticity in transverse 

displaying. Studies continuing to investigate plasticity at the level of the individual may 

provide greater insight into the maintenance and direction of evolution in plasticity within 

a population (Dingemanse and Wolf 2013). Further analyses evaluating the extent to 

which individuals are consistent in the degree of plasticity expressed, both within and 
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across contexts, will lead to a better understanding of the effect of individual traits on 

behavioral plasticity.  
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MULTIMEDIA OBJECTS 

 

Figure 1.1 Antagonistic pleiotropy results in trade-offs between age and size at sexual 
maturation in platyfish, with alternate P-alleles affecting life histories differently 
(Reproduced from Basolo 2008). 
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Figure 1.2 Top view of test tank with Zones demarcated. 
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Table 1.1 Behavioral responses measured in the intrasexual social context. 

Behavior name Type of 
behavior 

Measurement 
method Description of behavior 

Time spent in Zone 1 Anti-predator Duration (sec) 

Amount of time spent in close 
proximity to the monitor, 
regardless of predator 
environment 

Dart away from 
stimulus Anti-predator Count 

Quick swim (i.e., dart) from 
stimulus (i.e., monitor displaying 
the stimulus) whether or not 
predator was on screen  

Remain motionless 
facing stimulus Anti-predator Duration (sec) 

Fish is unmoving at the bottom, 
top, or middle of the water 
column, body is oriented toward 
the monitor displaying the 
stimulus, regardless of predator 
environment 

Transverse display 
toward female Agonistic Duration (sec) 

Body shaped in an "S" or "C" 
curve, or, held straight 
perpendicularly to NFF 

Displace from female Agonistic Count 
Move or displace body/part of 
body in response to lunge or bite 
from NFF 

Charge at female Agonistic Count Charge or lunge at NFF 

Dart away from 
female Agonistic Count 

Quick swim (i.e., dart) from NFF 
whether or not NFF had lunged at 
focal female  

Bite female Agonistic Count Bite NFF 

Simultaneous circling Agonistic Duration (sec) Focal and NFF circle one another 
head to tail (tight chase) 

Movement General 
activity Count Number of grids traversed  

Note: NFF means non-focal female 
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Table 1.2 Linear mixed model investigating the effects of the predictors on time spent in 
Zone 1. Q is the Benjamini-Hochberg adjusted p-value. 

Fixed Effects Coefficient SE Χ2 P Q 

Body Size at 
Testing 2.317 9.058 0.065 0.798 0.864 

Treatment -80.86 18.513 17.325 0.000 0.000 

Age at 
Maturation 6.753 9.496 0.503 0.478 0.764 

      Random Effects Variance SE 
   

Focal Fish 74.519 8.558 
   

Family 0.000 0.000       
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Figure 1.3 Behavioral reaction norm for the prediction of predator-related plasticity in the 
time spent in Zone 1 (third of the tank nearest to the monitor that displayed a stimulus) 
(n=20 small females, n=30 large females).  
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Table 1.3 Linear mixed model for investigating the effects of the predictors on number of 
darts from the stimulus. Q is the Benjamini-Hochberg adjusted p-value. 

Fixed Effects Coefficient SE Χ2 P Q 

Body Size at 
Testing 0.476 0.22 4.398 0.036 0.360 

Treatment 0.324 0.422 0.585 0.444 0.764 

Age at Maturation 0.673 0.206 9.165 0.002 0.047 

      Random Effects Variance SE 
   

Focal Fish 0.000 0.000 
   

Family 0.000 0.000 
   

 

 

  



38 

 

Figure 1.4 Predicted number of darts from stimulus as a function of age at maturation, 
regardless of treatment or body size at testing (n=13 small females, n=21 large females).  
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Table 1.4 Linear mixed model investigating the effects of the predictors on time spent 
transverse displaying toward non-focal females by focal females. Q is the Benjamini-
Hochberg adjusted p-value. 

Fixed Effects Coefficient SE Χ2 P Q 

Body Size at Testing * Age at   
Maturation * Treatment -76.025 23.894 9.437 0.002 0.047 

Body Size at Testing * Treatment 33.54 22.61 2.166 0.141 0.487 

Body Size at Testing * Age at Maturation 1.043 12.806 0.007 0.935 0.977 

Treatment * Age at Maturation 38.242 21.17 3.187 0.074 0.398 

Body Size at Testing -3.245 11.651 0.078 0.781 0.864 

Treatment 40.359 22.31 3.196 0.074 0.398 

Age at Maturation -19.982 10.909 3.275 0.070 0.398 

      Random Effects Variance SE 
   

Focal Fish 0.000 0.000 
   

Family 0.000 0.000       
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Figure 1.5 Behavioral reaction norm illustrating differences in the degree of predator-
related plasticity in predicted time spent transverse displaying toward non-focal females by 
focal females of varying body sizes at testing and ages at maturation. 

  



41 

 

Figure 1.6 Predicted plasticity in time spent transverse displaying at non-focal females by 
focal females as a function of body size at testing and age at maturation (n=13 small females, 
n=21 large females). 
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CHAPTER 2. Lack of individual consistency in predator-related behavioral plasticity 

expressed by female green swordtails (Xiphophorus hellerii) across social contexts  

 

ABSTRACT 

Behavioral plasticity is a type of phenotypic plasticity in which one genotype expresses 

multiple behavioral phenotypes, under differing environmental conditions. The 

expression of behavioral plasticity can vary among individuals based on individual traits, 

such as body size or age at maturation. Few studies have investigated the extent of inter-

individual variability in the expression of behavioral plasticity, and even fewer have 

considered whether inter-individual differences in the degree of behavioral plasticity are 

consistent across contexts. We used female green swordtails (Xiphophorus hellerii) to test 

how body size at testing and age at sexual maturation affect the degree of predator-related 

behavioral plasticity expressed. We also tested to what extent individual plasticity is 

consistent across two social contexts: (1) intrasexual (two females) and (2) intersexual 

(two females and a male). We found that all females, regardless of body size at testing or 

age at maturation, expressed predator-related plasticity in spatial positioning. For two 

agonistic behaviors, the interaction of the individual traits examined (body size at testing 

and age at maturation) affected the degree of predator-related plasticity expressed. 

Further, the effect of the interaction of the two individual traits on the expression of 

predator-related plasticity in these two behaviors was different across contexts. There was 

no evidence of individual consistency in behavioral plasticity across contexts. Individuals 

that were more plastic for a particular behavior in one context were not consistently more 
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plastic for that behavior in another context. Within a context, however, individuals that 

were more plastic for one behavior tended to be more plastic for other behaviors. This 

study shows that the effect of individual traits on the expression of behavioral plasticity 

by individuals is complex. Environmental change alone may not be a sufficient predictor 

of behavior, and individual traits should be considered when investigating individual 

variation in behavioral plasticity within a population. 

 

INTRODUCTION 

Phenotypic plasticity is the ability of one genotype to express different phenotypes across 

varying environments (West-Eberhard 1989; DeWitt et al. 1998). Behavior is among the 

most labile of all phenotypes that an organism expresses (Hazlett 1995). An organism 

that modulates or changes behavior in response to changes in environmental conditions is 

said to exhibit behavioral plasticity. Because environmental conditions can change 

rapidly, behavioral plasticity allows individuals to quickly adjust to changing 

environmental conditions (Komers 1997; Pigliucci 2001).  

 Behaviors and behavioral plasticity are typically measured at the level of the 

individual, but interpreted at the level of the population (Sih and Bell 2008). However, 

the behavioral response expressed as a population average does not capture inter-

individual differences in behavior (Bolnick et al. 2003; Nussey et al. 2007). For example, 

female common gulls (Larus canus) express plasticity in egg-laying date in response to 

temperature, but the individual change in egg-laying date is highly variable among 
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females within a population, with some individuals showing no plasticity (Brommer et al. 

2008). As recent studies of behavioral plasticity have suggested, considering the extent to 

which individuals within a population differ in the degree of behavioral plasticity 

expressed is increasingly important (Dingemanse and Dochtermann 2013; Alonzo 2015). 

This line of investigation can provide greater insight into how phenotypic plasticity can 

evolve, and how different degrees of plasticity can be maintained within a population 

(Nussey et al. 2007; Dingemanse and Wolf 2013). This may be especially true if the 

optimal response to environmental perturbations differs among individuals that differ in 

phenotypes (Wolf et al. 2008), such as when variation in individual traits like sex and 

body size influence the fitness effects of plasticity.  

 Plasticity in the expression of behavior by individuals under the threat of 

predation, or predator-related plasticity, can be affected by individual traits such as body 

size (Peters 1986; Lima and Dill 1990). For example, after exposure to a predator, small 

brown rockfish (Sebastes auriculatus) forage sooner and more readily than large rockfish, 

suggesting that large rockfish are more plastic in response to predation risk (Lee and 

Bereijikian 2008). Other studies have also suggested that small individuals may be more 

likely to engage in risky behavior, and that this is potentially attributable to the greater 

metabolic needs of small compared to large individuals (Clark 1994; Brown and 

Braithwaite 2004). Another explanation for differences in behavioral plasticity based on 

size is that large individuals may incur a greater risk of predation by predators (Lima and 

Dill 1990; Rosenthal et al. 2001). For example, female guppies (Poecilia reticulata) are 

larger, but duller (thus less conspicuous) than male guppies, yet females are preferentially 
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attacked by cichlid predators (Pocklington and Dill 1995). As a result, large individuals 

may be more cautious than small individuals.  

In some environments, however, larger individuals may be less susceptible to 

predation than small individuals, and thus may express fewer risk-sensitive behaviors. 

For example, in some species, predator-presence leads to the evolution of larger body 

size. In an experimental study of southern platyfish (Xiphophorus maculatus), male and 

female size evolved over time in populations. Prey body size increased in populations 

when a piscivorous fish predator was present, and decreased in populations when a 

predator was not present. Furthermore, genotypes for later maturation increased in the 

predator–present populations, but decreased in predator-absent populations (Basolo 2008). 

Field studies of wild populations of the southern platyfish X. maculatus and the related 

green swordtail X. hellerii (also known as Xiphophorus helleri; Froese and Pauly 2016) 

have found that adult size is greater at sites with piscivorous fish compared to sites at 

which piscivorous fish were absent (Basolo and Wagner 2004; Basolo unpublished data). 

These inter-population body size differences are thought to be, in part, a result of gape-

width limitations of predators, for whom large prey are too cumbersome to capture and 

consume (and therefore are less susceptible to predation than smaller prey) (Basolo and 

Wagner 2004; Basolo 2008). Thus, large individuals may behave differently than small 

individuals when they co-occur with piscivorous fishes. Body size therefore is an 

important phenotype to consider when investigating the effect of individual traits on 

behavioral plasticity. This is particularly true for studies of predator-related behavioral 

plasticity when individuals of different size have different susceptibilities to predation. 
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The expression of predator-related plasticity may also be affected by age. In a 

study of larval blue-tailed damselflies (Ischnura elegans), older, but not younger, larvae 

were plastic and reduced activity in response to predator presence (Mikolajewski et al. 

2015). How age at maturation affects the expression of predator-related plasticity is less 

well studied compared to the effects of age. Age at maturation is a life history trait 

associated with a life history strategy that only some individuals will share (Flatt and 

Heyland 2011), whereas age is a set of life stages through which many individuals will 

progress. As a result, individual differences in age at maturation could profoundly affect 

the expression of predator-related behavioral plasticity, in a way that differs from the 

effect of age differences, but this warrants investigation.  

 Predator presence can also have pronounced effects on female behavior in mating 

contexts. It can be costly for females to associate with males that exhibit conspicuous 

traits that attract predators (Lima and Dill 1990; Dill et al. 1999; Martin and Wagner 

2010). To mitigate such costs, females may express plasticity in social behaviors within a 

mating context. For example, female guppies reduce their preference for conspicuously 

colored males in the presence of a predator (Godin and Briggs 1996; Gong and Gibson 

1996) because these males are more likely to attract the attention of predators 

(Pocklington and Dill 1995; Godin and McDonough 2003). This pattern is evident in 

populations with high predation risk (Godin and Briggs 1996) and populations with low 

predation risk (Godin and Briggs 1996; Gong and Gibson 1996).   

A similar pattern has been shown in a fish species related to the guppy, the green 

swordtail (Xiphophorus hellerii). Male green swordtails express a set of conspicuously 
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colored rays at the base of the caudal fin that extend beyond the lower caudal margin 

known as a ‘sword’ (Basolo 1996). For some populations, male sword length approaches 

the length of the male’s body. Female green swordtails have been shown to prefer males 

with longer swords (Basolo 1990a; Basolo 1990b) and larger body sizes (Basolo 1998; 

Rosenthal and Evans 1998). In a study investigating the effect of predation on the female 

sword response, females preferred a digital male with a long sword to a digital male with 

sword coloration, but lacking the extension component of a sword. Yet, after witnessing a 

piscivorous predator consuming a male with a long sword, females no longer expressed a 

preference for the digital male with a long sword (Johnson and Basolo 2003). In a 

subsequent study, female green swordtails switched their preference for a long-sworded 

male to a short-sworded male after viewing a piscivorous predator consuming a short-

sworded male (Melie and Basolo in revision). In a similar study, female green swordtails 

also preferred a short-sworded male to a long-sworded after viewing a swimming 

piscivorous predator (Pilakouta and Alonzo 2013).  

 Although individual consistency in personality across contexts has garnered more 

attention in recent years, investigations of consistency in behavioral plasticity across 

contexts remain comparatively scant (Dingemanse et al. 2010; Stamps 2015; but see 

Przybylo et al. 2000; Mathot et al. 2011; Han and Brooks 2013). Investigating potential 

correlations in the expression of plasticity across contexts will further expand our 

understanding of costs and benefits of expressing behavioral plasticity, Further, 

understanding the extent to which individual expression of plasticity within a population 
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differs can better inform the evolutionary trajectory of plasticity within a population 

(Dingemanse and Wolf 2013; Stamps 2015).   

We used female green swordtails (X. hellerii) to evaluate: (1) how body size at 

testing and age at maturation pertain to the expression of predator-related behavioral 

plasticity, and, (2) to test whether there is consistency in the degree of plasticity exhibited 

across social contexts. Members of the genus Xiphophorus, i.e., swordtails and platyfish, 

comprise a monophyletic clade of Neotropical, freshwater fish in the family Poeciliidae 

(Heckel 1848; Rauchenberger et al. 1990; Kang et al. 2013). These sexually dimorphic 

livebearers are considered model organisms for studies concerning size and behavior, 

because previous research has revealed a genetic mechanism that influences body size 

and age at sexual maturity for a number of species within the genus (Kallman 1989). First 

identified in the southern platyfish (X. maculatus), and later established in swordtails, 

alleles associated with the sex-linked P-locus (pituitary locus) affect the production of the 

gonadotropin-releasing hormone (Kallman et al. 1973; Bao and Kallman 1982; Kallman 

1983). Hormones induced by these ‘P-alleles’ in turn initiate the development of the 

gonads, thus determining size and age at maturity (Schreibman et al. 1973; Kallman and 

Borkoski 1978; Zimmerer and Kallman 1988; Kallman 1989). It has previously been 

shown that in some swordtails, P-alleles have a genetic link with alleles that affect 

plasticity in mating behavior. For example, in one swordtail species Xiphophorus 

multilineatus (formerly X. nigrensis; Rauchenberger et al. 1990), small individuals are 

plastic in mating strategy, but large individuals are not. In the presence of a large, 

courting male, small males exhibit a ‘sneaker’ mating strategy, in which they attempt to 
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force copulations with females, but in the absence of a large, courting male, small males 

will court females. Large males are not plastic in mating behavior, and will court females 

in the presence and absence of small males (Zimmerer and Kallman 1989). The 

Xiphophorus P-allele system provides a unique opportunity to investigate the relationship 

that a genetic polymorphism for size and age at maturity has with behavior expression. 

Female green swordtails (Xiphophorus hellerii) are model candidates for testing 

the possibility that alleles that determine size and age at maturation may have a 

genetically associated relationship with alleles that affect expression of behavior.  It has 

been suggested that differences in body size and age at maturation in green swordtails are 

both heritable and correlated (Campton 1992). These differences may be attributable to 

variation in alleles present at the P-locus (Kallman 1989; Campton 1992; Basolo and 

Wagner 2004). The presence of P-alleles in this species, however, has yet to be 

empirically shown. Male green swordtails grow continuously until maturation, and then 

grow little after maturation (Campton 1992; Basolo and Wagner 2004; Basolo 2008). As 

a result, early-maturing males mature at a small size and remain small, while later-

maturers mature at larger sizes and remain large. According to Kallman (1989), female 

green swordtails mature at a size and age similar to that of the small, early-maturing 

males. This would suggest that females are fixed for early maturation and small size. 

However, female green swordtails in the population with which we worked matured at a 

range of ages and sizes. This suggests that the P-like-alleles are not fixed for early 

maturation (and small size) in females. Moreover, our female green swordtails, unlike 

their male counterparts, have indeterminate growth after sexual maturity (Royle et al. 
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2006; Basolo 2008; Basolo and DiSciullo personal observation). This means that a small, 

relatively early-maturing female can, over time, grow to become similar in size to a larger, 

later-maturing female (see Figure 2.1 reproduced from Basolo 2008). By comparing the 

behavior of females similar in body size but dissimilar in age at maturation, we can parse 

out the possible effects of the P-like-alleles on behavior from the effect of body size by 

itself.  

 We tested the hypothesis that body size at testing and age at maturation affect the 

degree of predator-related behavioral plasticity expressed by female green swordtails (X. 

hellerii) in two different social contexts: (1) intrasexual (two females) and (2) intersexual 

(two females and a male). Because green swordtails tend to be larger in environments in 

which they co-occur with piscivorous fish (Basolo and Wagner 2004), we assumed that 

small individuals are more susceptible to predation than large individuals. Thus, we 

predicted that the small females would express a greater degree of predator-related 

plasticity than large females in both social contexts. Moreover, female green swordtails 

may be more susceptible to predation risk when in the presence of an elaborated male, as 

in other species with conspicuous male (Lima and Dill 1990). For example, in a species 

closely related to X. hellerii, X. multilineatus, piscivorous fish predators are more likely 

to detect and orient toward relatively larger, sworded males (Rosenthal et al. 2001). In 

green swordtails, sworded males are more likely to be attacked by cichlid predators, 

possibly because these males are more conspicuous (Hernandez-Jimenez and Rios-

Cardenas 2012), or because males have a larger apparent size as a result of the sword 

(Rosenthal and Evans 1998). Predators, however, may be more capable of consuming 
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females associated with males due to gape-width limitations (Basolo and Wagner 2004) 

and females may thus suffer predation more often in the presence of a male. Therefore, 

we predicted that in the intersexual context, relatively small females (likely the most 

susceptible phenotype based on size; Basolo and Wagner 2004) would express a higher 

degree of predator-related plasticity than expressed in the intrasexual context (by 

reducing social behaviors in the presence of a predator). Large females may be less 

vulnerable in general to gape-width limited predators, and thus should express a lesser 

degree of plasticity across contexts if predator presence is not perceived as a threat. 

Within the intrasexual social context (in which a focal female was paired with a 

non-focal female), we found that there was an effect of the interaction between body size 

at testing and age at maturation on the degree of predator-related plasticity in focal 

female transverse displays (see Chapter 1). Thus, we considered that, as in the intrasexual 

social context, individual dissimilar in both body size at testing and age at maturation 

would express similar degrees of behavioral plasticity in the intersexual social context as 

in the intrasexual social context, for the transverse display and other social behaviors. 

Evaluating the effects of these individual traits (body size at testing and age at 

maturation) allowed us to test the possibility that the P-allele-like mechanism for size and 

age at maturity is genetically associated with alleles that affect the expression of 

behavioral plasticity, as found in other species of swordtails. We predicted that older, 

relatively early-maturing females that have grown in standard length (early/large) to 

become similar in size to younger, relatively late-matured females (late/large) would 
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express a similar degree of behavioral plasticity as a result of a genetically-linked effect 

of the P-allele-like genes, rather than the size of the individual when tested.   

We also tracked plasticity expressed by individual females to test the hypothesis 

that individual expression of predator-related behavioral plasticity is correlated across 

contexts. We predicted that individuals that show a high degree of plasticity in an 

intrasexual social context (two females) would show a high degree of plasticity in an 

intersexual social context (two females and a male). By incorporating the individual traits 

of body size at testing and age at maturation into the analyses, we also were able to test 

whether females of similar phenotypes were consistent in the degree of predator-related 

plasticity expressed across contexts. 

 

METHODS 

Source of Test Fish 

Green swordtails, Xiphophorus hellerii, were collected from Little Barton Creek near 

Unitedville, Belize, at approximately mile marker 59 on the Western Highway (N 17° 12’ 

28’’/W 88° 56’ 36”) in March 2013 and 2014. These Generation 0 (G0) male and female 

fish were transported to the University of Nebraska—Lincoln and held individually in 

20.8 L glass tanks with a handful of the freshwater plant Java moss, an under-gravel filter, 

and a loose gravel bottom (depth of gravel=1.5 cm). G0 females that were brought back 

to the laboratory, but did not have offspring, were mated in the laboratory to G0 males 

collected from the same location. Twenty-five G0 females produced between one and 
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five broods with 1 to 89 Generation 1 (G1) offspring per brood. When broods were born, 

up to 14 newborn G1 fish were collected within 10 hours of birth.  

G1 offspring were held individually in a 6.6 L plastic “home” tank (29.9 x 19.7 x 

20.3 cm) with a loose gravel bottom (depth of gravel=1 cm), 10-15 small snails, and a 

handful of Java moss to help maintain the quality of the environment in the home tanks. 

All fish were housed in a room in which available light (12L:12D) and temperature (26-

28°C) were controlled. G1 offspring were physically, but not visually isolated from one 

another throughout rearing.  

To standardize experience during rearing of G1 offspring, each individual’s home 

tank was rotated weekly within (same height) and across (different heights) shelving rows, 

and between shelving units, in order to standardize any effects due to variation in light, 

temperature, and disturbance levels across the room. To further standardize conditions, 

we fed all individuals at the same hour, four times daily with Tetra brand TetraMin® 

tropical fish flakes at 0900 h and 1400 h, and hatched Brine Shrimp Direct live brine 

shrimp nauplii at 1200 h and 1600 h.  

Further, every four weeks, each G1 offspring was temporarily removed from its 

home tank for 2-4 min in order to clean the tank. This involved emptying the tank 

(including all snails and Java moss), rinsing the gravel, and refilling the tank with clean 

water. The snails, Java moss, and G1 fish were then returned to the home tank, and the 

tank was placed back on the shelving unit.  

To track the stages of sexual maturation, G1 offspring were measured when they 

reached 77 +/- 7 days old, and measured every 17.5 +/- 5.5 days thereafter until they 
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reached sexual maturity. Four months after the date G1 females were identified as 

sexually mature (i.e., gravidity spot present indicative of the presence of yolked eggs per 

Basolo and Melie unpublished data; fully developed gonopodium for males per Grobstein 

1940), they were considered ready to be used in test trials.  

 

Individual Traits of Test Fish Relevant to Analyses 

From the pool of mature G1 females, focal individuals were categorized as either small or 

large, and non-focal females were categorized as intermediate-sized. Size classes 

attributed to the test fish were relative to the mean body sizes of the pool of G1 females at 

testing (standard length ranged from 38.80 to 53.75 mm; body mass ranged from 1.16 to 

3.86 g). Our measure of standard length was defined as the length of the body from the 

tip of the rostrum to the midway point of the caudal vein. In our laboratory pool of test 

fish, as found in field populations (Basolo and Wagner 2004), standard length (mm) and 

body mass (g) are highly correlated (Pearson’s correlation coefficient r= 0.984, n= 71, p< 

0.001). Because of this correlation, our proxy for size class is based on standard length 

alone. Size classes were created by comparing the mean and range of female standard 

lengths within the pool of test fish, and by then choosing representative focal females 

from both ends of the range.   

Body sizes at testing for each size class were as follows: small focal females 

(standard length ranged from 38.80 to 45.25 mm; mass ranged from 1.16 to 2.47 g; n= 

13), large focal females (standard length ranged from 49.18 to 60.14 mm; mass ranged 
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from 2.84 to 5.68 g; n= 22), intermediate non-focal females (standard length ranged from 

41.05 to 53.75 mm; mass ranged from 1.55 to 3.86 g; n= 68), and intermediate non-focal 

males (standard length ranged from 34.04 to 42.07 mm; mass ranged from 0.74 to 1.33 g 

n=37). Intermediate non-focal females were chosen based on their body size relative to 

the focal individual, and were representative of the middle of the range of standard 

lengths within the pool of test fish at testing. On average, non-focal females differed in 

standard length from the focal female by 7.67 mm (standard length range of difference 

was 2.52 to 17.92 mm; mass range of difference was 0.21 to 4.08 g). Intermediate non-

focal females were used as non-focal individuals between 1-7 times, with a mode of 4 

tests per non-focal female. 

 Test fish within both size classes represented a wide range of ages at sexual 

maturation (in days). Because individuals were grouped into size classes based on the 

standard length measured six days before the trials began, age and size at testing was not 

necessarily close to age and size at maturation. This means that some individuals in the 

population that had been relatively small, early-maturers were ultimately grouped within 

the large size class, as a result of continued post-maturation growth. Focal females of the 

small size class had matured between 112 and 229 days old, and focal females of the 

large size class had matured between 112 and 279 days old. 

 Some individuals tested were half- or full-siblings (sibs). A total of 21 families 

were represented in this study. Of the focal females tested, at least one small and one 

large individual were represented from 5 of the 21 families. Individuals within the small 

size class came from 10 different families, and individuals within the large size class 
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came from 16 different families. Non-focal intermediate-sized females came from 23 

different families. Of these 23 non-focal female families, 17 families were also 

represented by focal individuals, though neither half- nor full-sibs were tested with one 

another. Non-focal males came from 17 different families. Of these 17 non-focal male 

families, 12 families were also represented by focal individuals, though neither half- nor 

full-sibs were tested with one another. 

 

Pre-trial Acclimation of Test Fish 

To acquaint test subjects to the environmental conditions experienced during testing, 

focal and non-focal fish experienced a series of pre-trial acclimation periods. Five days 

prior to the first test day, fish were individually introduced to a conspecific “socializer” 

female of a smaller size in a tank (60 x 30 x 30 cm) with a bottom white board partitioned 

into a 3 x 6 grid of equally-sized squares (9 x 9 cm), and covered with a thin layer of 

gravel (depth=3 mm) secured with silicon aquarium sealant (American Sealant, Inc.). The 

tank was partitioned into two sections of equal size (30 x 30 x 30 cm) by a clear, 

permeable plastic divider placed in the middle. Thus fish were physically, but not 

visually or chemically isolated from one another for 20 min.  

On the fourth evening prior to when trials began, an empty foraging ring, identical 

to the foraging ring of the testing tank, was placed in their home tanks overnight. Finally, 

three days prior to trial commencement, focal and non-focal fish were individually placed 

in a tank (60 x 30 x 30 cm) with the 3 x 6 gridded gravel board bottom and two sides (one 

60 x 30 cm and one 30 x 30 cm) covered with blue felt. On the other 30 x 30 cm side of 
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the tank was a monitor (Truetech 2-in-1 17” LCD TV + DVD Model No. PVS21175S1) 

that played a 34-minute film sequence of a predation event by a large Jack Dempsey 

cichlid predator, Rocio octofasciata (known at various times by nine other species names; 

Froese and Pauly 2016), on a male conspecific (X. hellerii). Monitor side was randomly 

determined for each individual.  

To standardize the relative length of the sword, non-focal males were modified 

six days prior to the start of the trial series. At this time, the sword was trimmed to a point 

to simulate the natural appearance of the sword, and the altered length was approximately 

55% of the individual’s standard length. Female green swordtails have been shown to 

prefer males with longer swords (Basolo 1990a). Thus, standardizing male sword lengths 

relative to body size controls for potential differences in strength of preferences within 

and among females across trials. The cells of the trimmed caudal fin extension (i.e., the 

sword), showed varied regeneration rates across males over the trial period. At the end of 

the testing period, some males had nearly completely regrown the originally trimmed 

sword length, while others had not (mean growth +/- SE: 4.60 mm +/- 0.41; n=35). 

Trimming of the sword does not appear to affect behavior or swimming ability (Basolo 

and Alcaraz 2003). 

Because pregnant females may exhibit different behavior from virgin females, we 

reduced the likelihood of insemination of focal females by non-focal males by modifying 

the sexually developed anal fin (gonopodium) of every non-focal male. Specifically, we 

trimmed the hook and claw on the third and fifth ray, respectively, at the distal tip of the 

gonopodium (approximately 1-3 mm from the tip) (Figure 2.2). The hook and claw aid 
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the male in securely placing the tip of his gonopodium at the female’s genital opening 

(gonopore; Clark et al. 1954), which allows the sperm packet to be introduced into the 

female. It has previously been shown that the ray segments (including the hook and claw 

segments) of a mature gonopodium in another poeciliid, Gambusia sp., in addition to X. 

hellerii, do not regenerate readily after trimming (Turner 1941; Clark et al. 1954). Over 

the testing period, there was no evidence of segment or hook/claw re-growth in the 

modified test males (personal observation).  

 

Experimental Design 

A testing framework was developed in which each focal female was tested twice per 

week over a four-week period (with three to four days in between tests). Within each test 

week, a female was tested within one context in two different treatments. The treatments 

for this study were two predator environments: (1) predator-absent and (2) predator-

present. Context order was randomized separately for each focal female prior to the start 

of a set of trials. Within each context, treatment order was also randomized.  

For Chapter 1, females were tested in an intrasexual social context, in which a 

focal female was paired with an intermediate-sized non-focal (NF) female. For Chapter 2, 

females were tested in an intersexual social context, in which a focal female was paired 

with a NF female and a NF male. In this chapter, the results for the two social contexts 

are compared. Finally, for a separate study, the females were tested in two non-social 

contexts: general activity and foraging (Coit and Basolo in prep). Of the four contexts 
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described above, both the intrasexual and intersexual social contexts are addressed in this 

chapter. 

Each trial was 30-min in duration. Trials were divided into three 10-min periods: 

acclimation (P0), pre-exposure (P1), exposure (P2). For the predator-absent treatment, 

one of 13 film stimuli was randomly designated and displayed on a monitor at one end of 

the test tank during a trial. In the predator-absent treatment, P1 and P2 were identical to 

the acclimation (P0) period because in these periods, a film stimulus showed an 

environment devoid of predators for the entire 30 min. For the predator-present treatment, 

one of 12 film stimuli was randomly designated and displayed on a monitor at one end of 

the test tank during a trial. In the predator-present treatment, the third 10-min period (P2) 

differed from the predator-absent treatment P2 in that the film stimulus showed a large, 

field-collected fish, a Jack Dempsey cichlid (Rocio octofasciata), swimming across the 

monitor, in and out of view, in varying depths-of-field. Jack Dempsey cichlids are 

piscivorous predators that co-occur with green swordtails in the wild (Basolo and Wagner 

2004). In the laboratory, R. octofasciata consume X. hellerii (DiSciullo personal 

observation). The film stimuli used in this study were created for previous experiments 

with green swordtails (Melie and Basolo in revision). Monitor side was randomly 

designated for each trial. 

 

Testing Chamber Set-up 

Trials were conducted in one of four designated testing chambers in the Basolo 

Laboratory. A testing chamber included a 60 x 30 x 30 cm test tank with a monitor 
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(DELL UltraSharp 2005FPW 51.05-cm Wide Aspect Flat Panel LCD Monitor) randomly 

placed at one of the two ends of the test tank (30 x 30 cm) to display a film stimulus. The 

glass at the other end of the tank (30 x 30 cm), opposite the monitor, was covered on the 

outer side with blue felt. One of the long sides of the tank (30 x 60 cm) was randomly 

designated the back of the tank, and, was covered (on the outer side) with blue felt. The 

other long side of the tank (30 x 60 cm) was designated the front.  

We created a visually distinct grid 3 x 6 of 18, 9 x 9 cm squares on a white plastic 

panel by siliconing (American Sealants, Inc.) a thin layer of gravel across the panel, 

except at the borders of the 18 squares. The grid panel was situated on the bottom of the 

tank during experimental trials, allowing us to precisely track the position of test subjects 

throughout a trial.  The six 9 x 9 cm squares closest to the monitor displaying a stimulus 

were designated Zone 1, the six 9 x 9 cm squares in the middle of the tank were 

designated Zone 2, and the six 9 x 9 cm squares farthest from the monitor displaying a 

stimulus were designated Zone 3 (Figure 2.3). Two plastic plant refuges (Imagine Gold 

Ambulia Green, 18 cm in length) were suspended in the middle of the tank, at the border 

of Zones 1 and 2, and, at the border of Zones 2 and 3. A clear plastic foraging ring was 

suspended across the tank from front to back, and equidistant to the ends of the tank. 

Two cameras were positioned in the chamber: one 33.8 cm above the tank (top-

facing; DCR-Sony SR47 Handycam or Sony DCR-SR68 Handycam; see Figure 2.3) and 

one in front of the tank, 130.8 cm away from the tank (front-facing; DCR-Sony SR47 

Handycam, Sony DCR-SR68 Handycam or Panasonic 5100HS WV-PS03). Filmed 

sequences of trials from these cameras were recorded onto Fuji Pro VHS tapes or Sony 
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Memory Stick PRO Duo 4GB memory cards. In addition, trials were viewed remotely via 

two monitors located outside of the test chamber. A light fixture suspended above the 

tank was equipped with two 40 Vita light™ broad-spectrum lamps. To reduce glare on 

the surface of the tank water, the light fixture was fitted with a sheet of vellum.  

 

Conducting and Scoring Trials 

Fish were not fed for a two-hr period prior to testing. Prior to the start of a trial, the 

testing chamber was fully prepared, including starting and pausing the film stimulus, such 

that the monitor displayed a predator-absent environment (P0) when test subjects were 

introduced into a test tank. For each trial, the focal individual was placed in the tank, then 

the non-focal female (in both the intra- and intersexual contexts), the non-focal male (in 

the intersexual context), and finally a red TetraMin flake was placed on the surface of the 

water in the middle of the test tank, to ensure that females were not hungry. Then, the 

film stimulus was resumed and the cameras started recording the fish in the tank.  

At the end of the 30-min test period, all test subjects were returned to their home 

tanks. If the trial series was not yet complete, the next trial was run three to four days 

after the previous trial. Once a focal fish had completed all trial types, she was removed 

from the study and monitored for five weeks to assess health and reproductive status (no 

females were impregnated during the trial series). 

Following each trial, the tank was drained immediately and the tank and its 

components were rinsed with an 80% denatured ethyl alcohol solution to eliminate any 

trace of the previous occupants. Trials were conducted between 0900 and 1700 h.  
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Behaviors (including anti-predator and social agonistic behaviors) were scored 

from the filmed trials that were uploaded to a computer (see Table 1.1). Behaviors 

exhibited during the pre-exposure (P1) and exposure (P2) periods were scored and 

compared within and across treatments. The social behaviors that we scored had 

previously been described as expressed by members of the genus Xiphophorus. In these 

previous studies, behaviors were exhibited by males toward other males and females, and, 

by females toward males (Clark et al. 1954; Franck 1964; Beaugrand et al. 1984; Basolo 

1995). In this study, we found that many of these same behaviors were exhibited by focal 

females toward non-focal females. A freeware program, Solomon Coder (version beta 

16.06.26; Péter 2016) was used to track frequency (number of times a behavior was 

exhibited, i.e., count) and duration (the time spent exhibiting the behavior from start to 

finish, sec) of the behaviors scored. 

 

ANALYSES 

Effect of Context, Treatment, and Individual Traits on Behavioral Plasticity 

We used linear mixed models with a Gaussian distribution to assess the effects of 

predator treatment and the covariates on the response variables. Data were analyzed in R 

(version 3.2.2; R Core Team 2015). We used the lmer function for linear mixed modeling 

in package lme4 (version 1.1-12; Bates et al. 2015).  

Because we were interested in the possible effect of each predictor on a number of 

different behaviors, we used the same global model for each response variable. To 

compare behavioral responses across contexts, the global model included: the fixed 
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effects of context (intrasexual social or intersexual social) and treatment (predator-absent 

or predator-present environment); focal individual body size at testing (standard length in 

mm) and age at maturation (number of days old when determined to be sexually mature) 

as covariates; and all possible two-, three-, and four-way interactions. Focal fish ID and 

family to which the fish belonged were included as random effects to account for the 

repeated measures design and the lack of independence of fish from the same family. 

Fish ID was nested within family ID. The response variable was defined as the difference 

in behavior expressed (i.e., the number of times or length of time a behavior was 

exhibited) during the exposure period and the pre-exposure period. Our measure of 

plasticity was the change in that response from the predator-present treatment (P) to the 

predator-absent treatment (NP). 

In this study, if there was a significant effect of treatment (i.e., predator 

environment), or a significant effect of the interaction of treatment with body size at 

testing and/or age at maturation on the response variable, then predator-related plasticity 

was expressed.   

To determine the effect of each predictor on the response variables, we used the 

drop1 function to run chi-squared likelihood ratio tests and obtain p-values by comparing 

models with and without the predictors of interest. To validate our models, we checked 

all fixed/random effects and covariates for collinearity, and checked the residuals of all 

models for violations of assumptions of normality and homoscedasticity. 
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Consistency in Plasticity Across Contexts 

To address the question of potential consistency in behavioral plasticity, we ran a 

Pearson’s product-moment correlation in R using the function cor.test. This correlation 

compared the change in the behavioral response when the predator was present with the 

response when the predator was absent in the intrasexual social context (i.e., plasticity: 

the change in response from P to NP), with that same measure of change in responses 

between treatments in the intersexual social context. Significant correlations indicate that 

for a given behavior, individual females are consistent in the degree of plasticity 

exhibited across the two contexts.  

 

Alpha Correction for Multiple Tests 

To account for multiple comparisons, we applied the Benjamini-Hochberg (B-H) 

procedure to control the false discovery rate across the multiple complex models applied 

to data from the same dataset (Benjamini and Hochberg 1995). We set the false discovery 

rate (FDR) at Q = 0.05 and adjusted critical p-values (P) to q-values (Q), by considering 

the effects of all predictors across the 10 models simultaneously. Each of the 150 

significance values were then ranked and adjusted per the B-H procedure. 
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RESULTS 

Effect of Predator on Plasticity in Anti-Predator Behaviors  

There were no effects of the four- or any three- or two-way interactions on predator-

related plasticity in anti-predator behaviors after controlling the false discovery rate 

(FDR). As a result, these interactions were dropped from the models for all anti-predator-

related behavioral response variables (all Q ≥ 0.15).  

Time spent in Zone 1. There were no significant effects of context, body size at 

testing, or age at maturation on female time in Zone 1 (the third of the tank closest to the 

monitor displaying the stimulus) after controlling the FDR. Treatment significantly 

affected time spent in Zone 1 (Table 2.2); females spent less time in Zone 1 in the 

predator-present treatment compared with the predator-absent treatment (Figure 2.4). 

Females thus expressed predator-related plasticity in spatial positioning, but this was 

independent of context, body size at testing, and age at maturation. 

 Dart away from stimulus. There were no significant effects of context, treatment, 

body size at testing, or age at maturation on female darts from the stimulus after 

controlling the FDR (all Q ≥ 0.764) 

Remain motionless facing stimulus. There were no significant effects of context, 

treatment, body size at testing, or age at maturation on female time spent facing the 

monitor displaying the stimulus after controlling the FDR (all Q ≥ 0.638). 
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Effect of Predator on Plasticity in Social Behaviors  

Transverse display toward female. There was a significant effect of the four-way 

interaction between context, treatment, body size at testing, and age at maturation on 

female transverse displays after controlling the FDR (Table 2.3). Female body size at 

testing and age at maturation affected the expression of predator-related plasticity in 

transverse displays, and, the degree and direction of this plasticity differed across 

contexts (Figure 2.5). In the absence of a male, small females increased the time spent 

transverse displaying as age at maturation increased (Figure 2.6a). In the presence of a 

male, small females decreased the time spent transverse displaying as age at maturation 

increased (Figure 2.6b). Large females expressed the opposite trends of small females 

with respect to the relationship of body size at testing and age at maturation when 

transverse displaying in the absence (Figure 2.6a) and presence (Figure 2.6b) of a male. 

Displace from female. There was a significant effect of the four-way interaction 

between context, treatment, body size at testing, and age at maturation on female 

displaces from non-focal female after controlling the FDR (Table 2.4). Female body size 

at testing and age at maturation affected the expression of predator-related plasticity in 

displacements from female, and, the degree and direction of this plasticity differed across 

contexts (Figure 2.7). In the absence of a male, small females increased the number of 

displacements as age at maturation increased (Figure 2.8a). In the presence of a male, 

small females decreased the number of displacements as age at maturation increased 

(Figure 2.8b). Large females expressed the opposite trends of small females with respect 
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to the relationship of body size at testing with age at maturation when displacing from the 

non-focal female in the absence (Figure 2.8a) and presence (Figure 2.8b) of a male. 

Other social behaviors. After controlling the FDR, there were no significant 

effects of any interactions, or of any individual fixed effects or covariates (all Q ≥ 0.171) 

on the other social behaviors tested (i.e., charge at female, dart away from female, bite 

female, simultaneous circling). 

 

Effect of Predator on Plasticity in General Activity 

Movement. After controlling the FDR, there were no significant effects of any 

interactions, or of any individual fixed effects or covariates (all Q ≥ 0.441) on movement 

throughout the trial. 

 

Consistency in Individual Plasticity Across Contexts 

Predator-related plasticity in the intrasexual context was not significantly correlated with 

predator-related plasticity in the intersexual context for any of the behaviors recorded in 

this study (Table 2.5). 

 

DISCUSSION 

Individual females expressed predator-related behavioral plasticity in three out of ten 

behaviors analyzed: time spent in Zone 1 (the third of the tank closest to the monitor 
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playing the stimulus) (Table 2.2), transverse displaying toward the non-focal female 

(Table 2.3), and displacing away from the non-focal female (Table 2.4). The interaction 

between body size at testing and age at maturation affected the expression of predator-

related plasticity in transverse displaying toward the non-focal female, and displacing 

from the non-focal female, but not time spent in Zone 1. Females did not express 

consistency in the degree of plasticity exhibited in a given behavior across contexts 

(Table 2.5). However, plasticity in some behaviors was positively correlated with other 

behaviors within contexts (Tables S1 and S2), such that individuals that expressed a high 

degree of predator-related plasticity in one behavior within one context also expressed a 

high degree of predator-related plasticity in another behavior in the same context. These 

results thus suggest that, within individuals, there is consistency in plasticity among some 

behaviors within social contexts, but that expression of behavioral plasticity is not 

consistent across social contexts.  

Females expressed predator-related plasticity in the time spent in Zone 1 (Table 

2.2, Figure 2.4). However, there were no effects of body size at testing or age at 

maturation on the expression of behavioral plasticity of time spent at Zone 1. On average, 

this plasticity was expressed to a similar degree and in the same direction in both the 

intrasexual social context and in the intersexual social contexts. Simply put, individuals 

moved away from the area with the predator when it was present, regardless of social 

context or individual traits. The effect of predator-presence on habitat-use behavior, such 

as spatial positioning, has been well documented in a variety of taxa (reviewed in Lima 

and Dill 1990), including males of this study species in the same laboratory setting 
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(Melie and Basolo in revision). Thus, our finding confirms that females perceived the 

presence of the predator on the video stimulus, and adjusted their behavior in order to 

reduce the perceived risk of predation.  

 There was an effect of the four-way interaction effect between social context, 

treatment, body size at testing, and age at maturation, on two agonistic behaviors: 

transverse display and displace from female (Tables 2.3 and 2.4). This means that female 

predator-related plasticity in these two agonistic behaviors was affected by the interaction 

between body size at testing and age at maturation, and this effect differed across social 

contexts. The first behavior, transverse display toward the non-focal female, is considered 

to be a threatening behavior (Beaugrand et al. 1984). The second behavior, displace from 

the non-focal female in response to an attack or lunge, is considered a defensive behavior 

(Beaugrand et al. 1984). Expression of the displace behavior followed very similar 

patterns to expression of the transverse display behavior, with respect to each of the four 

predictors of interest. This is because there was a strong correlation between expressions 

of plasticity for the two behaviors within each context; females that exhibited a high 

degree of plasticity in transverse displays toward non-focal females also exhibited a high 

degree of plasticity in displacements from non-focal females (Tables S1 and S2).  

Overall, small females expressed a greater degree of plasticity in transverse 

displays and displaces from female in response to the predator than did large females, 

although not in a consistent manner across social contexts (Figures 2.5 and 2.7). In the 

intrasexual context (two females), both the small, early-maturing females and the small, 

late-maturing females expressed a greater degree of plasticity in transverse displays 
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(Figure 2.5a) and displacements (Figure 2.7a) than did large females (regardless of large 

female age at maturation). In the intersexual context (two females and a male), the degree 

of plasticity expressed in both transverse displays (Figure 2.5b) and displacements 

(Figure 2.7b) by small and large females (regardless of age at maturation) was similar in 

magnitude (i.e., slope), but not in direction or elevation. Thus, it appears that age at 

maturation is strongly affecting small female plasticity in the intrasexual context, but is 

doing so to a lesser degree in the intersexual context, and, age at maturation is having less 

an effect on large female plasticity.  

In the absence of a male (i.e., in the intrasexual social context), small, early-

maturing females reduced the expression of transverse displays and displacements in the 

presence of a predator, while small, late-maturing females’ expression increased. This 

difference in response may be explained by varying motivations of these small 

individuals. Young individuals that have yet to reproduce should take fewer risks in order 

to best ensure survival in order to produce offspring (Bell 1980). The small, early-

maturing (i.e., relatively younger) females are among the smallest of the early-maturing 

genotype. If small individuals are at a greater risk of predation, we would expect small 

focal females to reduce time spent engaging with the relatively larger non-focal female, 

in order to reduce the risk of predation and ensure reproductive success. Small, late-

maturing females (i.e., relatively older) are among the smallest of the late-maturing 

genotype. Yet, these small females increased time spent interacting with non-focal 

females in the presence of a predator, despite their presumed susceptibility to predation as 

small individuals (Basolo and Wagner 2004). This difference in response between small, 
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early-maturing females and small, late-maturing females may thus be attributable to the 

P-like-alleles that are determining age and size at sexual maturity. Females that are of the 

late-maturing phenotype, regardless of current body size, may be behaving as we would 

have expected large individuals to behave (i.e., individuals that are invulnerable to 

predation are less risk-sensitive). This unexpected and potentially mismatched response 

could therefore be due to genetic association of the P-like-alleles with behavioral 

expression, rather than of current female body size.  

In the presence of a male (i.e., in the intersexual social context), the degree of 

plasticity expressed by small females was more similar to that of large females regardless 

of age at maturation, than in the absence of a male (intrasexual social context). The 

degree of plasticity expressed overall was reduced, as evidenced by the reduction of the 

slopes of the reaction norms (Figures 2.5 and 2.7). Male presence may make an 

environment more risky for females (Lima and Dill 1990; Martin and Wagner 2010), 

particularly in species like the green swordtails in which the male is highly elaborated. 

Because of this, we had predicted that all females would reduce behavioral expression 

when in the presence of both a predator and a male, but small females would do so to a 

greater degree. Instead, we found that predator-related plasticity in female-female social 

behaviors exhibited by all focal females was expressed to a lesser degree. These findings 

suggest that male presence may dampen female response to other females, as well as 

female response to a predator regardless of female size (and therefore regardless of 

female vulnerability to predation).  
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While we found it surprising that predator presence did not overall reduce 

behavioral expression, it is clear that expression of two agonistic behaviors, transverse 

display and displace, changed in the presence of a predator. As predicted, small females 

expressed a greater degree of predator-related plasticity than large females, though not 

always by reducing behavior in the presence of a predator. Because females that were 

similar in body size at testing but dissimilar in age at maturation expressed different 

degrees and directions of plasticity, we posit that there may be associated genetic effects 

of alleles that determine age and size at maturity on behavior expression for individuals 

of the early-maturing genotype. To our knowledge, this is the first evidence of such a 

possible genetic link of P-like-alleles with alleles that affect the expression of behavioral 

plasticity in this species. 

 Although the results suggest that females exhibit within-individual consistency in 

plasticity across behaviors within contexts (Tables S1 and S2), we found no evidence of 

within-individual consistency in plasticity within behaviors across contexts (Table 2.5). 

In fact, for seven of the ten behaviors that we tested, females, on average, did not express 

any notable degree of predator-related plasticity. However, when we consider the 

individual expression of behavioral plasticity for these same behaviors, we appear to see 

abundant inter-individual variation in both the direction and degree to which plasticity is 

expressed (Figures S1-S3). If significantly different, this apparent underlying variation in 

plastic responses among individuals within the same population is important to measure 

and evaluate.  Individual variation in the expression of traits, such as plasticity in 

behavior, may affect the direction of evolution within a population (Nussey et al. 2007; 
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Dingemanse et al. 2010). An understanding of these individual differences in plasticity 

expression may better inform the ecological and evolutionary consequences of plasticity 

(Dingemanse and Wolf 2013). 

 The lack of intra-individual consistency in behavioral plasticity expressed across 

contexts may be explained by several reasons. First, focal females may differ in how 

highly they value the non-focal male in the intersexual social context. If a female is 

highly interested in mating with a male, her predation-risk sensitivity may be reduced in 

the male’s presence, and increased in his absence. If a female is uninterested in a male, 

her risk sensitivity should be consistently high across contexts because we might expect 

more of her attention would be focused on assessing the environment rather than 

assessing a potential mate. Second, female-female competitive interactions in the 

presence of a male may also be informed by female interest in the male, male interest in 

either female, or both. Further, if some pairs of females are closer in body size to one 

another than other pairs, female interest in intrasexual competition may be higher in the 

presence of a male than in the absence, if closeness in body size increases the amount of 

intrasexual competition between the females. Thus, risk sensitivity in the presence of a 

male may be lower than in the absence. Third, male interest in either female may also 

inform female risk sensitivity, depending on a female’s degree of reciprocal interest. 

Finally, there are a number of other individual traits that may affect the expression of 

behavioral plasticity across social contexts that we did not analyze, such as age at testing. 

Future analyses could address the impact of such traits.  
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Continuing to elucidate the extent to which there are intra- and inter-individual 

differences in behavioral plasticity within a population will allow researchers to gain a 

more thorough understanding of the evolution and maintenance of behavioral plasticity 

(Dingemanse and Dochtermann 2013). Future research regarding the amount of intra- and 

inter-individual consistency in behavioral plasticity that is expressed within a population 

should address how complex interactions of individual traits underlie the expression of 

such plasticity, in order to shed light on the answers to these questions.  
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MULTIMEDIA OBJECTS 

 

Figure 2.1 Antagonistic pleiotropy results in trade-offs between age and size at sexual 
maturation in platyfish, with alternate P-alleles affecting life histories differently 
(Reproduced from Basolo 2008). 
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Figure 2.2 Fully developed gonopodium of a sexually mature green swordtail male. Dashed 
red line indicates location at which the distal hooks and claws were trimmed. 
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Figure 2.3 Top view of test tank with Zones demarcated. 
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Table 2.1 Behavioral responses measured in both contexts. 

Behavior name Type of 
behavior 

Measurement 
method Description of behavior 

Time spent in Zone 1 Anti-predator Duration (sec) 

Amount of time spent in close 
proximity to the monitor, 
regardless of predator 
environment 

Dart away from 
stimulus Anti-predator Count 

Quick swim (i.e., dart) from 
stimulus (i.e., monitor displaying 
the stimulus) whether or not 
predator was on screen  

Remain motionless 
facing stimulus Anti-predator Duration (sec) 

Fish is unmoving at the bottom, 
top, or middle of the water 
column, body is oriented toward 
the monitor displaying the 
stimulus, regardless of predator 
environment 

Transverse display 
toward female Agonistic Duration (sec) 

Body shaped in an "S" or "C" 
curve, or, held straight 
perpendicularly to NFF 

Displace from female Agonistic Count 
Move or displace body/part of 
body in response to lunge or bite 
from NFF 

Charge at female Agonistic Count Charge or lunge at NFF 

Dart away from 
female Agonistic Count 

Quick swim (i.e., dart) from NFF 
whether or not NFF had lunged at 
focal female  

Bite female Agonistic Count Bite NFF 

Simultaneous circling Agonistic Duration (sec) Focal and NFF circle one another 
head to tail (tight chase) 

Movement General 
activity Count Number of grids traversed  

Note: NFF means non-focal female 
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Table 2.2 Linear mixed model investigating the effects of the predictors on time spent in 
Zone 1. Q is the Benjamini-Hochberg adjusted p-value. 

Fixed Effects Coefficient SE Χ2 P Q 

Body Size at Testing 3.811 8.330 0.209 0.647 0.932 

Treatment -78.559 15.951 22.321 0.000 0.000 

Age at Maturation 5.333 7.799 0.467 0.494 0.911 

Context -9.294 15.951 0.339 0.560 0.932 

      
Random Effects Variance SE 

   
Focal Fish 0.000 0.000 

   
Family 0.000 0.000       
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Figure 2.4 Behavioral reaction norm for the prediction of predator-related plasticity in time 
spent in Zone 1 (third of the tank nearest to the monitor that displayed a stimulus) (n=13 
small females, n=21 large females).  
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Table 2.3 Linear mixed model investigating the effects of the predictors on time spent 
transverse displaying toward non-focal females by focal females. Q is the Benjamini-
Hochberg adjusted p-value. 

Fixed Effects Coefficient SE Χ2 P Q 

Body Size at Testing * Treatment * 
Age at Maturation * Context 111.774 28.571 14.260 0.000 0.000 

Body Size at Testing * Treatment * 
Age at Maturation -20.138 15.320 1.713 0.191 0.702 

Body Size at Testing * Treatment * 
Context -52.884 27.049 3.752 0.053 0.442 

Body Size at Testing * Age at 
Maturation * Context -8.115 15.320 0.280 0.597 0.932 

Treatment * Age at Maturation * 
Context -49.582 25.327 3.762 0.052 0.442 

Body Size at Testing * Treatment 7.098 14.036 0.255 0.613 0.932 

Body Size at Testing * Age at 
Maturation -3.015 8.722 0.119 0.730 0.932 

Body Size at Testing * Context 14.383 14.036 1.045 0.307 0.818 

Treatment * Age at Maturation 13.451 13.142 1.042 0.307 0.818 

Treatment * Context -46.836 26.879 2.992 0.084 0.525 

Age at Maturation * Context 40.371 13.142 9.025 0.003 0.113 

Body Size at Testing 3.947 7.714 0.261 0.610 0.932 

Treatment 16.941 14.305 1.393 0.238 0.760 

Age at Maturation 0.203 7.222 0.001 0.978 0.985 

Context 10.553 14.305 0.543 0.461 0.910 

      Random Effects Variance SE 
   Focal Fish 608.650 20.204    

Family 0.000 0.000       
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Figure 2.5 Behavioral reaction norms illustrating differences in the degree of predator-
related plasticity in time spent transverse displaying toward non-focal females by focal 
females of varying body sizes at testing and ages at maturation in two contexts: (a) 
intrasexual social and (b) intersexual social. 
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Figure 2.6 Predicted plasticity in time spent transverse displaying toward non-focal females 
by focal females as a function of focal female body size at testing and age at maturation, in 
two contexts: (a) intrasexual social and (b) intersexual social (n=13 small females, n=21 
large females). 
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Table 2.4 Linear mixed model investigating the effects of the predictors on number of focal 
displaces from non-focal females. Q is the Benjamini-Hochberg adjusted p-value. 

Fixed Effects Coefficient SE Χ2 P Q 

Body Size at Testing * Treatment * Age 
at Maturation * Context 27.807 7.091 14.324 0.000 0.000 

Body Size at Testing * Treatment * Age at 

Maturation -2.361 3.803 0.385 0.535 0.922 

Body Size at Testing * Treatment * Context -12.310 6.715 3.306 0.069 0.477 

Body Size at Testing * Age at Maturation * 

Context -1.295 3.803 0.116 0.733 0.932 

Treatment * Age at Maturation * Context -10.788 6.288 2.902 0.088 0.528 

Body Size at Testing * Treatment 2.473 3.444 0.514 0.473 0.910 

Body Size at Testing * Age at Maturation 0.854 2.381 0.129 0.720 0.932 

Body Size at Testing * Context 2.536 3.444 0.541 0.462 0.910 

Treatment * Age at Maturation 5.018 3.225 2.393 0.122 0.634 

Treatment * Context -3.147 6.595 0.227 0.633 0.932 

Age at Maturation * Context 7.907 3.225 5.842 0.016 0.245 

Body Size at Testing 0.217 2.106 0.011 0.918 0.976 

Treatment 5.015 3.436 2.108 0.147 0.638 

Age at Maturation 0.272 1.972 0.019 0.890 0.976 

Context 2.338 3.436 0.462 0.497 0.911 

	 	 	 	 	 	Random Effects Variance SE 

	 	 	Focal Fish 61.340 5.832 

	 	 	Family 0.000 0.000 		 		 		
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Figure 2.7 Behavioral reaction norms illustrating differences in the degree of predator-
related plasticity in number of focal displaces from non-focal females of varying body sizes 
at testing and ages at maturation in two contexts: (a) intrasexual social and (b) intersexual 
social. 
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Figure 2.8 Predicted plasticity in number of focal displaces from non-focal females as a 
function of body size at testing and age at maturation, in two contexts: (a) intrasexual social 
and (b) intersexual social (n=13 small females, n=21 large females). 
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Table 2.5 Pearson’s product-moment correlation between plasticity measures of the same 
behavior in two social contexts. Q is the Benjamini-Hochberg adjusted p-value. 

Plasticity measures correlated df P Q 

Pearson's 
correlation 
coefficient 

Time spent in Zone 1 32 0.353 0.832 -0.164 

Dart away from stimulus 32 0.315 0.832  0.177 

Remain motionless facing 
stimulus 32 0.745 0.832  0.058 

Transverse display toward 
female 32 0.624 0.832 -0.087 

Displace from female 32 0.614 0.832 -0.090 

Charge at female 32 0.749 0.832  0.057 

Dart away from female 32 0.989 0.989  0.002 

Bite female 32 0.314 0.832  0.178 

Simultaneous circling 32 0.107 0.832  0.281 

Movement 32 0.533 0.832 -0.111 
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APPENDIX 

Table S1 Pearson's product-moment correlation between plasticity measures of different 
behaviors within the intrasexual social context. Q is the Benjamini-Hochberg adjusted p-
value. 

Plasticity measures correlated df P Q 
Pearson's 

correlation 
coefficient 

Dart away from 
stimulus Displace from female 34 0.51 0.84 0.12 

Dart away from 
stimulus Simultaneous circling 34 0.32 0.79 0.17 

Dart away from 
stimulus 

Remain motionless 
facing stimulus 34 0.00 0.00 0.56 

Dart away from 
stimulus 

Transverse display 
toward female 34 0.63 0.89 -0.09 

Dart away from 
stimulus Movement 34 0.58 0.84 0.10 

Dart away from 
stimulus Time spent in Zone 1 34 0.65 0.89 0.08 

Remain motionless 
facing stimulus 

Transverse display 
toward female 34 0.01 0.06 -0.43 

Remain motionless 
facing stimulus Movement 34 0.96 0.98 0.01 

Remain motionless 
facing stimulus Time spent in Zone 1 34 0.82 0.94 -0.04 

Transverse display 
toward female Movement 34 0.99 0.99 0.00 

Transverse display 
toward female Time spent in Zone 1 34 0.48 0.84 -0.12 

Displace from female Simultaneous circling 34 0.05 0.23 0.35 

Displace from female Remain motionless 
facing stimulus 34 0.27 0.71 -0.19 
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Displace from 
female 

Transverse display 
toward female 34 0.00 0.00 0.84 

Displace from female Movement 34 0.55 0.84 0.11 

Displace from female Time spent in Zone 1 34 0.44 0.84 -0.14 

Charge at female Dart away from 
female 34 0.75 0.89 0.06 

Charge at female Dart away from 
stimulus 34 0.24 0.71 -0.21 

Charge at female Displace from female 34 0.00 0.00 0.58 

Charge at female Simultaneous 
circling 34 0.00 0.00 0.47 

Charge at female Remain motionless 
facing stimulus 34 0.19 0.64 -0.23 

Charge at female Transverse display 
toward female 34 0.00 0.00 0.66 

Charge at female Movement 34 0.51 0.84 -0.12 

Charge at female Time spent in Zone 1 34 0.01 0.06 -0.46 

Dart away from 
female 

Dart away from 
stimulus 34 0.16 0.60 -0.24 

Dart away from 
female Displace from female 34 0.88 0.94 0.03 

Dart away from 
female Simultaneous circling 34 0.95 0.98 0.01 

Dart away from 
female 

Remain motionless 
facing stimulus 34 0.03 0.15 -0.38 

Dart away from 
female 

Transverse display 
toward female 34 0.87 0.94 0.03 

Dart away from 
female Movement 34 0.34 0.79 -0.17 



95 

Dart away from 
female Time spent in Zone 1 34 0.71 0.89 0.07 

Bite female Charge at female 34 0.27 0.71 0.19 

Bite female Dart away from 
female 34 0.69 0.89 -0.07 

Bite female Dart away from 
stimulus 34 0.13 0.53 0.26 

Bite female Displace from female 34 0.20 0.64 0.23 

Bite female Simultaneous circling 34 0.86 0.94 -0.03 

Bite female Remain motionless 
facing stimulus 34 0.71 0.89 0.07 

Bite female Transverse display 
toward female 34 0.54 0.84 0.11 

Bite female Movement 34 0.37 0.79 -0.16 

Bite female Time spent in Zone 1 34 0.75 0.89 0.06 

Simultaneous circling Remain motionless 
facing stimulus 34 0.58 0.84 -0.10 

Simultaneous 
circling 

Transverse display 
toward female 34 0.00 0.00 0.54 

Simultaneous circling Movement 34 0.54 0.84 -0.11 

Simultaneous circling Time spent in Zone 1 34 0.57 0.84 -0.10 

Movement Time spent in Zone 1 34 0.35 0.79 0.16 
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Table S2 Pearson's product-moment correlation between plasticity measures of different 
behaviors within the intersexual social context. Q is the Benjamini-Hochberg adjusted p-
value. 

Correlation of plasticities within the 
intersexual social context df P Q 

Pearson's 
correlation 
coefficient 

Dart away from 
stimulus Displace from female 34 0.72 0.93 -0.06 

Dart away from 
stimulus Simultaneous circling 34 0.09 0.34 -0.30 

Dart away from 
stimulus 

Remain motionless 
facing stimulus 34 0.05 0.25 0.33 

Dart away from 
stimulus 

Transverse display 
toward female 34 0.29 0.73 -0.19 

Dart away from 
stimulus Movement 34 0.81 0.93 0.04 

Dart away from 
stimulus Time spent in Zone 1 34 0.89 0.93 0.02 

Remain motionless 
facing stimulus 

Transverse display 
toward female 34 0.03 0.19 -0.36 

Remain motionless 
facing stimulus Movement 34 0.47 0.93 0.13 

Remain motionless 
facing stimulus Time spent in Zone 1 34 0.65 0.93 -0.08 

Transverse display 
toward female Movement 34 0.75 0.93 0.06 

Transverse display 
toward female Time spent in Zone 1 34 0.81 0.93 -0.04 

Displace from female Simultaneous circling 34 0.72 0.93 0.06 

Displace from female Remain motionless 
facing stimulus 34 0.26 0.69 -0.20 

Displace from 
female 

Transverse display 
toward female 34 0.00 0.00 0.79 
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Displace from female Movement 34 0.11 0.35 0.28 

Displace from female Time spent in Zone 1 34 0.83 0.93 -0.04 

Charge at female Dart away from 
female 34 0.55 0.93 -0.11 

Charge at female Dart away from 
stimulus 34 0.06 0.25 -0.33 

Charge at female Displace from 
female 34 0.00 0.00 0.55 

Charge at female Simultaneous circling 34 0.37 0.79 0.16 

Charge at female Remain motionless 
facing stimulus 34 0.04 0.23 -0.36 

Charge at female Transverse display 
toward female 34 0.00 0.00 0.49 

Charge at female Movement 34 0.74 0.93 -0.06 

Charge at female Time spent in Zone 1 34 0.90 0.93 0.02 

Dart away from 
female 

Dart away from 
stimulus 34 0.65 0.93 0.08 

Dart away from 
female Displace from female 34 0.23 0.65 -0.21 

Dart away from 
female Simultaneous circling 34 0.11 0.35 -0.28 

Dart away from 
female 

Remain motionless 
facing stimulus 34 0.88 0.93 -0.03 

Dart away from 
female 

Transverse display 
toward female 34 0.16 0.48 -0.25 

Dart away from 
female Movement 34 0.91 0.93 0.02 

Dart away from 
female Time spent in Zone 1 34 0.70 0.93 -0.07 
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Bite female Charge at female 34 0.83 0.93 0.04 

Bite female Dart away from 
female 34 0.32 0.76 -0.18 

Bite female Dart away from 
stimulus 34 0.84 0.93 0.03 

Bite female Displace from 
female 34 0.00 0.00 0.49 

Bite female Simultaneous circling 34 0.60 0.93 -0.09 

Bite female Remain motionless 
facing stimulus 34 0.79 0.93 -0.05 

Bite female Transverse display 
toward female 34 0.00 0.00 0.56 

Bite female Movement 34 0.98 0.98 0.01 

Bite female Time spent in Zone 1 34 0.62 0.93 -0.09 

Simultaneous circling Remain motionless 
facing stimulus 34 0.55 0.93 -0.11 

Simultaneous circling Transverse display 
toward female 34 0.03 0.19 0.36 

Simultaneous circling Movement 34 0.81 0.93 -0.04 

Simultaneous circling Time spent in Zone 1 34 0.06 0.25 0.33 

Movement Time spent in Zone 1 34 0.36 0.79 -0.16 
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Figure S1 Behavioral reaction norms illustrating inter-individual variation in predator-
related plasticity in anti-predator behaviors across social contexts (n=13 small females, 
n=21 large females). 
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Figure S2 Behavioral reaction norms illustrating inter-individual variation in predator-
related plasticity in social behaviors across social contexts (n=13 small females, n=21 large 
females).  
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Figure S3 Behavioral reaction norms illustrating inter-individual variation in predator-
related plasticity in movement across social contexts (n=13 small females, n=21 large 
females). 
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